• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates

    2022-06-29 09:18:38XiaoLi李驍LiangLiangWang王亮亮JiashunZhang張家順WeiChen陳巍YueWang王玥DanWu吳丹andJunMingAn安俊明
    Chinese Physics B 2022年6期
    關(guān)鍵詞:張家

    Xiao Li(李驍) Liang-Liang Wang(王亮亮) Jia-shun Zhang(張家順) Wei Chen(陳巍)Yue Wang(王玥) Dan Wu(吳丹) and Jun-Ming An(安俊明)

    1State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences(CAS),Beijing 100083,China

    2College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China

    3Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    4CAS Key Laboratory of Quantum Information,University of Science and Technology of China,Hefei 230026,China

    Keywords: quantum key distribution,hybrid-integration,BB84

    1. Introduction

    Cyber communication provides much convenience in daily life and becomes more and more indispensable to us.However the boost and innovation of computing capacity drastically increase the risk of failure for classic data encryption method. Therefore the need for higher-level information security becomes urgent. Quantum key distribution(QKD)can ensure best security based on quantum mechanics. Bennett and Brassard,[1]and Bennettet al.,[2]first proposed the effective and famous BB84 protocol. Bulk optics connected by fibers were used for the realization of BB84 protocol,in which weak coherent pulse pairs(WCPs)with a temporal delay were generated for encoding and decoding quantum states.[3,4]In these systems too much room,however,is required for apparatuses to lay on a heavy and large optical platform,which is not conducive to manufacture and practical applications.

    One way to miniaturize the system is to turn into integrated photonics technology. Silica planar light-wave circuits(PLCs) have been used first for the WCP generation at Alice and state decoding at Bob.[5–14]Recently,various photonic integrated circuits (PICs) technologies have been integrated into QKD systems,such as indium phosphide(InP)[15,16]and Si photonic (SiP)[17–23]based integrated photonic platforms,which have shown a good application prospect.The BB84 system based on the combination of a silica asymmetric Mach–Zehnder interferometer(AMZI)and off-chip lithium niobates(LN)modulators was reported,[9,13]where high speed of phase modulation and intensity modulation were implemented by extra LN modulators.

    To further increase the degree of integration,a promising way is to integrate silica and LN into one single chip. The relevant technology has been reported in the field of coherence communication,[24]where low-loss silica PLCs and LN phase modulator array chip were spliced together to implement quadrature phase shift keying (QPSK). In the field of QKD,Nambuet al. demonstrated a prototype of BB84 QKD transmitter based on hybrid integration,[25]where an AMZI silica PLC was coupled with an MZI LN PLC. His demo could realize the high-speed intensity modulation but lacked the function to modulate relative phase between WCPs in a dynamic fashion and a fast fashion.

    Here we present a transmitter with a different structure based on this hybrid-integration technique. There are two main parts in our chip. One is the silica part which consists of a tunable directional coupler(DC)and 400-ps delay line. The other is the LN part which consists of a Y-branch,with electrooptic(EO)modulators on both arms. The two parts are facetcoupled to form an AMZI.Our design has three features.First,we make it in one single AMZI to implement both functions of WCP generation and high-speed relative phase modulation.This is different from other researches[9–14]where these two functions are usually done by separate apparatuses. Second,a combination of slow silica thermo-optic phase modulator(TOPM) and fast LN EO phase modulator makes our chip more flexible to regulate any defined relative phase. Third,the LN phase modulator is designed in a push-and-pull model in order to reach a higher EO modulation efficiency. With the aid of an extra off-chip LN intensity modulator and a passive silica decoder chip,[26]we demonstrate the preparation of four BB84 states and the corresponding states decoding.

    2. Design and fabrication of hybrid chip

    We design and fabricate a hybrid chip for a telecom(1.55 μm) wavelength window. The structure is shown in Fig.1(a). The silica chip on the left consists of two sub-parts.Part 1 is a 2×2 MZI with a TOPM1 in one arm,which functions as a tunable DC. Part 2 consist of two arms of waveguides,whose path difference produces 400-ps temporal delay.There is another TOPM2 in the short arm. It is worth noting that this silica part is different from that in Ref. [26], which is terminated with a DC at the output. We here remove the DC for the coupling with the LN chip. The relative refractive index differenceΔis 2.0% between the waveguide core and cladding. The full-vectorial beam propagation method(BPM)is used to find the geometric zero birefringence condition for the stripe waveguides, where the effective indices are found equal for both TE and TM modes. The fabrication process can be referred to Refs.[26,27].

    The LN chip on the right has a Y-branch structure, with electro-optic (EO) modulators on both arms. The groundsignal-ground (GSG) coplanar waveguide electrodes are designed in a push-pull model,making electric fields opposite to each other for both arms. The LN modulation chip is prepared by diffusion method. First, the design waveguide structure pattern is transferred to the LN wafer by lithography. Next,the wafer is placed into the C6H5COOH solution at 120°C–250°C,where Li-in the lithium niobate material is exchanged with H+to form the core HxLi1-xNbO3and diffused for 5 h–10 h at 300°C–400°C to form the exchange diffusion waveguide. The relative refractive index differenceΔis about 0.3%between the waveguide core and cladding. Then photolithography is again used to transfer the traveling wave electrode pattern, and the GSG electrode is formed by electroplating method.

    The silica chip is facet-coupled with a single mode fiber array (FA) on the left side, with a coupling loss of 0.4 dB.The LN chip is facet-coupled with a polarization maintenance FA on the right side,whose slow-axis coincides with thex-cut direction of LN chip, with a coupling loss of 3 dB. Next the silica and LN chips,with the connecting end-faces polished at an 8°angle, are facet-coupled to form an AMZI chip in the way shown in Fig. 1(a). The chip size is 2.3 cm×0.6 cm for silica part and 3.8 cm×0.1 cm for LN part. The hybrid chip is fixed on a large silicon substrate together with the designed printed circuit board(PCB).Wire bonding is employed to connect the electrodes between the PCB and the chip. The chip’s temperature is controlled by a commercial temperature controller(TEC)based on the Peltier effect.

    Fig.1. (a)Schematic diagram of the hybrid-integration chip and(b)packaging.

    3. Measurement of temporal delay and phase modulation speed

    The temporal delay of the WCP generated by our hybrid chip is measured by both normal-intensity light and stronglyattenuated light(mean photon per cycleμ <0.01). A train of pulses, with pulse 50-ps duration, are input to our chip. The pulse pair graph in one cycle captured by the sampling oscilloscope(SOC)and the histogram of the two time-bins scanned by the gated-mode single photon detector(SPD)are shown in Figs.2(a)and 2(b),respectively.

    Fig.2. Measurement of temporal delay of WCP for our chip: (a)measured by SOC with normal-intensity light, (b) measured by SPD with stronglyattenuated light(μ <0.01).

    The measured temporal delay is 401.5 ps for SOC and 440 ps for SPD.The value for SPD is about 40 ps larger than that for SOC. This is because SPD has small time-resolution than SOC and its gate width is wider than 400 ps. Therefore the value of 401.5 measured by SOC is closer to the true one.The difference between measurement and design is below 0.4%,which proves the accuracy of our design and fabrication.

    In addition,the speed of phase modulation for the hybrid chip is tested. The hybrid chip is fixed on the TEC platform and the microwave probe is used to connect GSG electrode on chip. As shown in Fig. 3, the eye diagram under 10 Gbps is obtained. The rise/fall time is around 100 ps and the extinction ratio of the eye diagram is 6.12 dB.From the test results,we can see that the modulation rate of the integrated chip can meet the needs of fast phase-encoding.

    Fig.3.Eye diagram of hybrid chip.Green is driving signal from PPG before amplified;yellow is optical signal.

    4. Polarization characteristic analysis on interference

    In order to optimize the interference visibility in QKD,it is necessary to analyze the dependence of interference visibility on the chip temperature for both Alice and Bob chips.With the aid of the pulse self-interference method,[27]we conduct the following experiments. Considering the limit of our TEC,We scan the hybrid chip temperature from 17°C to 60°C.The interference fringes against temperature are shown in Fig.4(a).We can observe that the photon count for the TE mode is much larger than that of the TM mode. This is because the polarization characteristic of LN waveguide. Furthermore,the TE and TM modes are in phase despite the change of chip temperature. Since the visibility increases with the temperature and our TEC has lower control precision above 55°,we decide to use this value as the optimal temperature for the hybrid chip.Next, we use the same method to determine the Bob AMZI chip temperature as shown in Fig.4(b),In the vicinity of 42°,the visibility reaches a minimum value,and TE mode and TM mode are in anti-phase. Though in the scope of TEC temperature domain there is no such temperature point, where both modes are perfectly in phase, we obtain the best visibility as we can in the vicinity of 17°. Therefore the Bob chip temperature is set to be this value.

    Fig. 4. Interference fringes of TE mode (blue) and TM mode (red) versus chip temperature in a range from 17 °C to 60 °C.Top black curve is the sum of TE and TM modes. (a) Hybrid chip for Alice and (b) silica AMZI chip for Bob.

    5. Encoding and decoding of four BB84 states

    The four BB84 states are encoded on relative phase and amplitudes of WCPs. The encoder/decoder scheme is demonstrated in Fig.5.

    Fig. 5. Schematic diagram of QKD system based on hybrid chip at Alice and silica AMZI chip at Bob. PC:polarization controller;TEC:temperature controller; DC: direct current source; PPG&Sync: pulse pattern generator and synchronization clock; Ampf.: RF amplification; Int. Mod: LN intensity modulator; Att.: off-chip optical attenuator; SPD: gated mode single photon detector.

    The Alice section includes a pulse laser, a polarization controller, the hybrid chip, an off-chip LN intensity modulator, and an off-chip attenuator, in sequence. The Bob section includes SPDs and an silica AMZI chip,[26,27]with the identical temporal delay of Alice. Pulse pattern generator (PPG)provides the system clock to synchronize all the devices including pulse laser and SPDs. The driving signal from PPG is amplified by the radio-frequency(RF)amplifier,up to 3-dB bandwidth of 10 GHz with a 26-dB gain,to drive the EO modulator in the hybrid chip. Direct current source is used to drive the TOPMs in both Alice and Bob chips

    5.1. Phase basis states|+〉and|-〉

    We input to the system the pulses of 50-ps duration at 156.25-MHz repetition rate. We set the attenuator so thatμ=0.1. The Alice and Bob chips are separately temperaturecontrolled according to what we discussed in Section 2. We set the TOPM of tunable DC in both Alice and Bob chips to make intensity-balanced for WCPs. The system output generates three time slots in SPDs. Interference occurs in the middle time-slot,named S2,allowing the states|+〉and|-〉to be measured.

    The interference fringesversusPPG driving voltage are shown in Fig. 6(a). It can be seen that the curve profile is sine-like within 0.66 Vpp, beyond which the curve becomes flat due to the saturation of the RF amplifier. The relative phases between WCPs are 0 andπcorresponding to 0.1 Vpp and 0.62 Vpp,respectively. When the voltage is 0.1 Vpp,the output count at S2 is 0.28×105for SPD1 and 2.02×105for SPD2. When the voltage is 0.62 Vpp, the output count at S2 is 2.38×105for SPD1 and 0.19×105for SPD2. The interference visibility,V=(max-min)/(max+min),is 78.53%for SPD1 and 82.68% for SPD2. The histograms of three time slots are scanned as shown in Figs.6(b)and 6(c)corresponding to 0.1 Vpp and 0.62 Vpp, respectively. Next, we conduct the research on the phase stability. We keep the voltage at 0.62 Vpp, The ratio between outputs of both SPDs at S2 is recorded every 3 min over 8 h. Figure 7 shows the plot of the ratio variationversustime. It can be seen that most of values vary from 4 dB to 8 dB.

    Fig. 6. Measurements of BB84 states |+〉 and |-〉, showing (a) interference fringe versus PPG driving voltage, and histogram of the three time slots corresponding to(b)0.1 Vpp and(c)0.62 Vpp,respectively.

    Fig. 7. Test of phase stability, indicating ratio between two outputs versus time,with voltage fixed at 0.62 Vpp.

    Next we will discuss the visibility and phase stability shown by our system.The visibility is related to the ratio given in Ref.[27]

    whereN1andN2are the photon counts of two interfering pulses and ΔφModeis the modal phase mismatch. The interference visibility is relatively low. For that there are two major reasons. One reason is that the increase of driving voltage breaks the intensity-balance of WCP.As can be seen from the SPD2 (red curve) in Figs. 6(b) and 6(c), the count ratio between the first and final times lot dramatically changes when the driving voltage changes from 0.1 Vpp (N1=N2)to 0.62 Vpp (N1/=N2). The increase of voltage breaks the count balance betweenN1andN2, thus reducing the visibility. The other reason is that the temperature of Bob chip is not optimal due to TEC limitation. At this temperature point,the TE mode and TM mode are not perfectly in phase, namely,ΔφMode/=0,thus leading to none-perfect interference and low visibility. It is promising to improve the visibility in these two aspects by compensating for the imbalance of intensity and upgrading TEC to cover the optimal AMZI temperature. Besides, the relative phase between WCPs is unstable. The reason is that the LN EO phase modulator is quite polarization sensitive. Therefore the interference is very sensitive to the fluctuation of driving signal or the fiber stress change.

    5.2. Time-bin basis states|0〉and|1〉

    With the aid of an extra off-chip LN intensity modulator as shown in Fig. 5, we prepare states|0〉and|1〉for the time-bin basis. Figure 8 illustrates a histogram of the states’generation before Bob(left column)and the corresponding final measurement outcomes on both SPDs(right two columns).Measurement in the first time slot (S1) of either SPD output represents a|0〉and a measurement in the third time slot(S3)is|1〉. The extinction ratio ERtimefor state|0〉(or|1〉) can be represented by the ratio in dB of sum of both SPD outputs at S1(or S3)to the counterpart at S3(or S1). Therefore ERtimeis 18.65 dB for state|0〉and 15.46 dB for state|1〉. It is worth noting that the two SPDs cannot achieve the balanced WCP simultaneously. In this case the SPD2 has nearly balanced counts at the two time slots while SPD2 has not. This is because the ending DC of AMZI at Bob is not perfectly 3 dB.This can be optimized by scanning and finding the optimal coupling length of DC in the fabrication process.

    Fig.8. Measurements of BB84 states|0〉and|1〉. Measurement in slot S1 of either SPD output represents a|0〉and a measurement in slot S3 is|1〉.

    6. Asymptotic secure key analysis

    We perform an asymptotic secure key estimation based on the visibility and extinction ratio ERtimemeasured in our case.Since our circuit does not include another intensity modulator that is required for the use of decoy states. We therefore use a security proof,[28]to provide security against general attacks in the case of non-phase-random,non-decoy state BB84,with the key rate per pulse given by

    whereILBob, the excess loss of Bob AMZI chip, is measured to be 2.48 dB,α=0.2 dB/km is the loss coefficient of single mode fiber andLis the fiber length. Hereεis the quantum bit error rate (QBER) observed in the verification test, andf(ε)≥1 is the error correction inefficiency used to perform key reconciliation(heref(ε)=1.22 according to the literature estimate value).H2(ε)is the binary Shannon entropy given by

    where the factor of 1/2 in each term on the right-hand side is related to the random basis selection of 50%possibility. The QBERphaseis due to imperfect phase state and given by

    wherepdarkis the probability of recording a dark count per time gate and per detector. In our case,pdarkis 3×10-6/gate.Then=2 is the number of detectors. It is clear that QBERdetincreases with distance,since the dark-count rate remains constant while the bit rate comes down liketlink.

    It is worth noting that the fluctuation of the phase state can also increase the QBER.The analysis of this factor is also out of our experimental capability. Fortunately, our AMZI chips are capable of actively compensating for the phase variation.The TOPM in the AMZI can be used to actively compensate for the phase fluctuation. An online feedback procedure,[22]based on the TOPM has been demonstrated by some researchers to implement the compensation, showing good effect on reducing the QBER.

    Fig. 9. Estimated asymptotic secret key rate and relevant QBER for nondecoy BB84 QKD.

    The raw keyRequation (3), secret keyKBB84equation (2), and QBER equation (8) are plotted against the distance as shown in Fig. 9. A secure key rate of 10.041 kbps(6.4265×10-5bit per pulse)is expected at 156.25-MHz repetition rate over a 20-km distance with an estimated QBER of 0.059.

    7. Conclusions and perspectives

    In this work,we design and prepare a BB84 QKD transmitter based on hybrid-integration of silica and LN chips.Four BB84 states are encoded and decoded at a repetition rate of 156.25 MHz. The interference fringe visibility is 78.53%for phase state|+〉and 82.68% for phase state|-〉. The extinction ratio is 18.65 dB for time-bin state|0〉and 15.46 dB for time-bin state|1〉. An asymptotic estimated secure key rate of 10.041 kbps is expected over a 20-km distance with an estimated QBER of 0.059. We give several possible reasons for the low visibility and low-stability that our system shows,based on which future work is needed to improve the performance.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2018YFA0306403),the National Natural Science Foundation of China (Grant Nos. 61435013 and 61627820), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB43000000),and the K.C.Wong Education Foundation, Anhui Initiative in Quantum Information Technologies,China(Grant No.AHY030000).

    猜你喜歡
    張家
    說(shuō)話算話的我
    “霸王”不在家
    筍和張先生的故事
    等腰三角形的對(duì)稱(chēng)性
    張家邊涌泵站建設(shè)難點(diǎn)及技術(shù)創(chuàng)新實(shí)踐
    張家塬村村歌
    張家坤
    張家貴 藏石欣賞
    寶藏(2018年12期)2019-01-29 01:51:10
    給張家源的信
    攝影家張家讓眼中的錦屏
    美女高潮的动态| 一个人免费在线观看电影| 一本一本综合久久| 亚洲天堂国产精品一区在线| 国内精品一区二区在线观看| 日韩成人在线观看一区二区三区| 女生性感内裤真人,穿戴方法视频| 两个人视频免费观看高清| 午夜精品久久久久久毛片777| 在线播放国产精品三级| 激情在线观看视频在线高清| 中文字幕人成人乱码亚洲影| 免费大片18禁| 美女高潮的动态| 一级毛片高清免费大全| 中文字幕av成人在线电影| 97超视频在线观看视频| 亚洲五月婷婷丁香| 国产精品永久免费网站| 在线a可以看的网站| 午夜免费成人在线视频| 99国产综合亚洲精品| 在线观看免费午夜福利视频| a级一级毛片免费在线观看| 国产精品亚洲美女久久久| 色吧在线观看| 五月伊人婷婷丁香| 俺也久久电影网| 成年人黄色毛片网站| 亚洲黑人精品在线| 久久6这里有精品| 夜夜爽天天搞| 亚洲欧美日韩高清专用| 热99re8久久精品国产| 国产69精品久久久久777片| 女警被强在线播放| 中亚洲国语对白在线视频| 欧美bdsm另类| 国产男靠女视频免费网站| 精品国产超薄肉色丝袜足j| 欧美日韩一级在线毛片| 亚洲av一区综合| 琪琪午夜伦伦电影理论片6080| 宅男免费午夜| 97超视频在线观看视频| 久久这里只有精品中国| 少妇人妻一区二区三区视频| 国产黄色小视频在线观看| 美女 人体艺术 gogo| 精品一区二区三区av网在线观看| 日本黄色视频三级网站网址| 国产精品一区二区三区四区久久| 在线观看日韩欧美| 日韩欧美在线乱码| 亚洲国产精品sss在线观看| 亚洲狠狠婷婷综合久久图片| 又爽又黄无遮挡网站| 中文资源天堂在线| 在线视频色国产色| 欧美激情在线99| 国产v大片淫在线免费观看| 香蕉久久夜色| 久久精品国产自在天天线| 国产伦人伦偷精品视频| 蜜桃亚洲精品一区二区三区| 99久久九九国产精品国产免费| 美女免费视频网站| 免费搜索国产男女视频| 中文在线观看免费www的网站| 免费av不卡在线播放| 午夜a级毛片| 欧美zozozo另类| 老司机福利观看| 久久精品国产亚洲av涩爱 | 全区人妻精品视频| 老汉色av国产亚洲站长工具| 无人区码免费观看不卡| 无限看片的www在线观看| 国产午夜精品久久久久久一区二区三区 | 伊人久久大香线蕉亚洲五| 亚洲av成人av| xxxwww97欧美| 少妇高潮的动态图| 宅男免费午夜| bbb黄色大片| 免费一级毛片在线播放高清视频| 亚洲真实伦在线观看| 国产精品自产拍在线观看55亚洲| 成年女人毛片免费观看观看9| 国产免费男女视频| 男女做爰动态图高潮gif福利片| 99在线人妻在线中文字幕| 亚洲av第一区精品v没综合| 久久久国产成人免费| 性欧美人与动物交配| 欧美乱色亚洲激情| 九九久久精品国产亚洲av麻豆| 亚洲精华国产精华精| 欧美国产日韩亚洲一区| 不卡一级毛片| 听说在线观看完整版免费高清| 国内精品久久久久久久电影| 少妇熟女aⅴ在线视频| 亚洲乱码一区二区免费版| 香蕉丝袜av| 特大巨黑吊av在线直播| 久久国产精品影院| 亚洲无线在线观看| 国产成人啪精品午夜网站| 一级黄色大片毛片| 欧美日韩中文字幕国产精品一区二区三区| 色综合欧美亚洲国产小说| 老司机在亚洲福利影院| 国产三级黄色录像| 一卡2卡三卡四卡精品乱码亚洲| 婷婷精品国产亚洲av| 精品乱码久久久久久99久播| 亚洲欧美激情综合另类| 国产精品1区2区在线观看.| 久久中文看片网| 久9热在线精品视频| 麻豆一二三区av精品| 人人妻人人澡欧美一区二区| 欧美zozozo另类| 天堂影院成人在线观看| 国产av在哪里看| 99国产精品一区二区蜜桃av| 看免费av毛片| 久久精品国产自在天天线| 日韩高清综合在线| 看片在线看免费视频| 日本五十路高清| 亚洲av熟女| 一本精品99久久精品77| 亚洲成人久久性| 乱人视频在线观看| 亚洲男人的天堂狠狠| 在线天堂最新版资源| 九色成人免费人妻av| 久久久久性生活片| 欧美日韩综合久久久久久 | 日本免费一区二区三区高清不卡| 乱人视频在线观看| 观看免费一级毛片| www.999成人在线观看| 国产亚洲av嫩草精品影院| 一区二区三区国产精品乱码| 最新中文字幕久久久久| 18禁黄网站禁片午夜丰满| 搞女人的毛片| 亚洲av成人av| 国产单亲对白刺激| 精品不卡国产一区二区三区| 变态另类丝袜制服| 亚洲人成网站在线播| 亚洲电影在线观看av| 成年女人永久免费观看视频| 亚洲精品乱码久久久v下载方式 | 亚洲国产中文字幕在线视频| 精品人妻偷拍中文字幕| 男女视频在线观看网站免费| 小蜜桃在线观看免费完整版高清| 香蕉av资源在线| 一级作爱视频免费观看| 成人国产综合亚洲| 午夜福利免费观看在线| 国产aⅴ精品一区二区三区波| 国产爱豆传媒在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美一级a爱片免费观看看| 午夜免费成人在线视频| 午夜精品在线福利| 欧美不卡视频在线免费观看| 国产精品美女特级片免费视频播放器| 韩国av一区二区三区四区| 中文字幕人成人乱码亚洲影| 久久久久九九精品影院| 亚洲va日本ⅴa欧美va伊人久久| 精品国产美女av久久久久小说| 99在线视频只有这里精品首页| 欧美乱色亚洲激情| 一二三四社区在线视频社区8| 99久久精品国产亚洲精品| 欧美日韩精品网址| 欧美性猛交╳xxx乱大交人| 丰满人妻熟妇乱又伦精品不卡| 久久久久久人人人人人| 亚洲精品影视一区二区三区av| 国产欧美日韩精品一区二区| 免费av毛片视频| 女警被强在线播放| 在线十欧美十亚洲十日本专区| 成人三级黄色视频| 搡老妇女老女人老熟妇| 香蕉久久夜色| 精华霜和精华液先用哪个| 有码 亚洲区| 亚洲av熟女| 日韩欧美在线二视频| 日本成人三级电影网站| 国产免费av片在线观看野外av| 男女视频在线观看网站免费| 亚洲男人的天堂狠狠| 国产午夜福利久久久久久| 国产国拍精品亚洲av在线观看 | 日本撒尿小便嘘嘘汇集6| 国产午夜精品论理片| 国产精品久久久久久亚洲av鲁大| 亚洲熟妇中文字幕五十中出| 一本久久中文字幕| 国产单亲对白刺激| 看黄色毛片网站| 日韩免费av在线播放| 日韩欧美一区二区三区在线观看| 天美传媒精品一区二区| 成年免费大片在线观看| 欧美国产日韩亚洲一区| 高潮久久久久久久久久久不卡| 国产欧美日韩精品一区二区| netflix在线观看网站| 岛国在线观看网站| 成人特级黄色片久久久久久久| 少妇丰满av| 日本免费a在线| 在线免费观看不下载黄p国产 | 嫩草影院入口| 最新美女视频免费是黄的| 激情在线观看视频在线高清| 他把我摸到了高潮在线观看| 黄片大片在线免费观看| 免费观看精品视频网站| 男人舔奶头视频| 国产一区二区激情短视频| 精品一区二区三区视频在线 | 色吧在线观看| 麻豆成人午夜福利视频| 在线播放无遮挡| 伊人久久大香线蕉亚洲五| 九色成人免费人妻av| av女优亚洲男人天堂| 人妻丰满熟妇av一区二区三区| 国产精品亚洲一级av第二区| www.999成人在线观看| 亚洲av免费高清在线观看| 最近最新中文字幕大全电影3| 麻豆成人av在线观看| 高清日韩中文字幕在线| 亚洲欧美精品综合久久99| 人妻夜夜爽99麻豆av| 欧美zozozo另类| 波多野结衣巨乳人妻| 久久99热这里只有精品18| 久久久久性生活片| 久久久久久九九精品二区国产| 夜夜爽天天搞| 国产精品亚洲美女久久久| 中文字幕人妻丝袜一区二区| 亚洲国产中文字幕在线视频| 精品久久久久久,| 国模一区二区三区四区视频| 国产激情欧美一区二区| 久久久久久久久久黄片| 亚洲第一电影网av| 一a级毛片在线观看| 一进一出抽搐动态| 身体一侧抽搐| 高清毛片免费观看视频网站| 欧美日韩精品网址| 日本a在线网址| 99久久精品一区二区三区| 男女做爰动态图高潮gif福利片| 国产日本99.免费观看| 亚洲成人免费电影在线观看| 亚洲精品影视一区二区三区av| 国产亚洲精品av在线| 99久久精品热视频| 亚洲av不卡在线观看| 久久精品人妻少妇| 午夜精品在线福利| 全区人妻精品视频| 日韩欧美精品免费久久 | 国产精品野战在线观看| 无遮挡黄片免费观看| 天天添夜夜摸| 桃色一区二区三区在线观看| 精品人妻一区二区三区麻豆 | 制服人妻中文乱码| 嫩草影视91久久| 90打野战视频偷拍视频| 亚洲一区高清亚洲精品| 欧美精品啪啪一区二区三区| 国产私拍福利视频在线观看| 国产精品嫩草影院av在线观看 | 美女高潮喷水抽搐中文字幕| xxxwww97欧美| 久久国产精品人妻蜜桃| 日本与韩国留学比较| 男女之事视频高清在线观看| 成人18禁在线播放| 精品人妻偷拍中文字幕| 男女之事视频高清在线观看| 淫妇啪啪啪对白视频| 欧美+亚洲+日韩+国产| 免费观看人在逋| 脱女人内裤的视频| 欧美黄色片欧美黄色片| 国产精品一区二区免费欧美| 岛国视频午夜一区免费看| 亚洲国产中文字幕在线视频| 精品国产三级普通话版| 亚洲人成网站在线播| 亚洲欧美日韩无卡精品| 国产69精品久久久久777片| 91字幕亚洲| tocl精华| 国产高潮美女av| 午夜免费激情av| 黄色成人免费大全| 一区二区三区免费毛片| 又紧又爽又黄一区二区| 亚洲精品久久国产高清桃花| 免费av不卡在线播放| av视频在线观看入口| 欧美乱色亚洲激情| 精品免费久久久久久久清纯| 国产精品99久久久久久久久| 观看美女的网站| 91九色精品人成在线观看| 亚洲无线在线观看| 久久精品国产综合久久久| 丰满乱子伦码专区| 少妇的逼水好多| 亚洲精品国产精品久久久不卡| 男女那种视频在线观看| 美女黄网站色视频| 中文在线观看免费www的网站| 国产伦精品一区二区三区视频9 | 白带黄色成豆腐渣| 久久久久久久精品吃奶| 欧美日韩精品网址| 欧美xxxx黑人xx丫x性爽| 婷婷亚洲欧美| 天天躁日日操中文字幕| 又黄又爽又免费观看的视频| 夜夜爽天天搞| 99久久九九国产精品国产免费| 国产高清有码在线观看视频| 白带黄色成豆腐渣| 99国产精品一区二区蜜桃av| 婷婷精品国产亚洲av| 啪啪无遮挡十八禁网站| 黄色成人免费大全| 午夜免费激情av| 国产视频一区二区在线看| 久久天躁狠狠躁夜夜2o2o| 国产乱人伦免费视频| 久久久久久久精品吃奶| 免费av不卡在线播放| 最近最新免费中文字幕在线| 熟女电影av网| 国产亚洲av嫩草精品影院| 日韩中文字幕欧美一区二区| 午夜精品在线福利| 日本免费一区二区三区高清不卡| 一进一出抽搐动态| 亚洲精品一区av在线观看| 欧美色欧美亚洲另类二区| 男女午夜视频在线观看| 老司机午夜福利在线观看视频| 国产成人系列免费观看| 亚洲久久久久久中文字幕| 国内揄拍国产精品人妻在线| 99久久成人亚洲精品观看| 久久久成人免费电影| 国产久久久一区二区三区| 男女做爰动态图高潮gif福利片| 国产精品 欧美亚洲| 搡女人真爽免费视频火全软件 | 18禁黄网站禁片免费观看直播| 欧美丝袜亚洲另类 | 精品国产超薄肉色丝袜足j| 久久九九热精品免费| 亚洲成人免费电影在线观看| 麻豆国产av国片精品| 不卡一级毛片| 熟女人妻精品中文字幕| 人人妻人人澡欧美一区二区| 91麻豆av在线| 国产免费av片在线观看野外av| 99久久成人亚洲精品观看| 亚洲激情在线av| 日韩欧美国产在线观看| www.999成人在线观看| 日日夜夜操网爽| 成人特级av手机在线观看| 一级毛片高清免费大全| 超碰av人人做人人爽久久 | 国产三级黄色录像| 91在线观看av| 亚洲av熟女| 婷婷精品国产亚洲av| 在线观看午夜福利视频| 国产极品精品免费视频能看的| 毛片女人毛片| 午夜福利高清视频| 97超级碰碰碰精品色视频在线观看| 亚洲精品一区av在线观看| 少妇的丰满在线观看| 午夜福利欧美成人| 午夜久久久久精精品| 88av欧美| 人人妻人人看人人澡| 久久久国产精品麻豆| 精品一区二区三区av网在线观看| 99热只有精品国产| 99热精品在线国产| 久久久精品欧美日韩精品| 国产精品99久久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲最大成人中文| 亚洲五月天丁香| 全区人妻精品视频| 亚洲成人久久爱视频| 国产精品久久久久久亚洲av鲁大| 99久久综合精品五月天人人| 精品国产三级普通话版| 精品一区二区三区av网在线观看| 久久久久久大精品| 国产精品乱码一区二三区的特点| 久久精品91无色码中文字幕| 乱人视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 此物有八面人人有两片| 久久久久性生活片| 在线观看一区二区三区| 两个人看的免费小视频| 国产精品三级大全| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品影视一区二区三区av| 夜夜看夜夜爽夜夜摸| 成人性生交大片免费视频hd| av中文乱码字幕在线| 婷婷丁香在线五月| 精品乱码久久久久久99久播| 天堂av国产一区二区熟女人妻| 亚洲狠狠婷婷综合久久图片| 99久久九九国产精品国产免费| 最近最新中文字幕大全免费视频| 国产久久久一区二区三区| 色综合亚洲欧美另类图片| 制服人妻中文乱码| 亚洲av日韩精品久久久久久密| 久久精品亚洲精品国产色婷小说| 一区二区三区免费毛片| 久久久久久人人人人人| 免费看日本二区| 国产精品久久久久久精品电影| 黑人欧美特级aaaaaa片| 亚洲无线在线观看| 少妇高潮的动态图| 免费观看的影片在线观看| 在线观看av片永久免费下载| 性欧美人与动物交配| 亚洲美女视频黄频| 啦啦啦韩国在线观看视频| 国产精品精品国产色婷婷| 免费无遮挡裸体视频| 桃红色精品国产亚洲av| 亚洲av成人不卡在线观看播放网| 成熟少妇高潮喷水视频| 88av欧美| 一本综合久久免费| 性色avwww在线观看| 欧美一区二区精品小视频在线| 欧美3d第一页| 免费av毛片视频| 国产伦精品一区二区三区四那| 制服丝袜大香蕉在线| 在线a可以看的网站| 好男人在线观看高清免费视频| av中文乱码字幕在线| 亚洲国产精品久久男人天堂| 亚洲精品粉嫩美女一区| 在线十欧美十亚洲十日本专区| 午夜免费激情av| 国产精品久久久久久亚洲av鲁大| 日韩欧美在线二视频| 波多野结衣高清作品| 91九色精品人成在线观看| 国产精品 国内视频| 国产高潮美女av| 中出人妻视频一区二区| 欧美黄色片欧美黄色片| 国产午夜精品论理片| 成人无遮挡网站| 国产爱豆传媒在线观看| 欧美极品一区二区三区四区| 国产国拍精品亚洲av在线观看 | 国产成人福利小说| 国产精品乱码一区二三区的特点| 成年人黄色毛片网站| 国产野战对白在线观看| 欧美大码av| 噜噜噜噜噜久久久久久91| 精品福利观看| 一进一出抽搐动态| 久久亚洲精品不卡| a级一级毛片免费在线观看| 欧美激情在线99| 欧美日韩黄片免| 国产97色在线日韩免费| 18禁国产床啪视频网站| 好看av亚洲va欧美ⅴa在| 最后的刺客免费高清国语| 又粗又爽又猛毛片免费看| 精品日产1卡2卡| 欧美黑人欧美精品刺激| 老司机深夜福利视频在线观看| 美女cb高潮喷水在线观看| 好男人电影高清在线观看| 成熟少妇高潮喷水视频| 床上黄色一级片| 一本综合久久免费| 青草久久国产| 村上凉子中文字幕在线| 中文在线观看免费www的网站| 精品久久久久久久毛片微露脸| 黄色日韩在线| 非洲黑人性xxxx精品又粗又长| 久久精品国产亚洲av香蕉五月| 窝窝影院91人妻| 久久久久久久精品吃奶| 国产乱人视频| 亚洲第一电影网av| 天天添夜夜摸| 日本黄色视频三级网站网址| 欧美中文日本在线观看视频| 日韩欧美三级三区| 内射极品少妇av片p| 最近最新中文字幕大全电影3| 国产精品自产拍在线观看55亚洲| 九九在线视频观看精品| 99精品久久久久人妻精品| 亚洲精品日韩av片在线观看 | 久久亚洲精品不卡| 少妇的逼水好多| 国模一区二区三区四区视频| 免费看a级黄色片| 成人18禁在线播放| 国产精品精品国产色婷婷| 夜夜看夜夜爽夜夜摸| 欧美中文日本在线观看视频| 国产欧美日韩精品亚洲av| 成人精品一区二区免费| 一个人免费在线观看电影| 精品福利观看| 免费在线观看成人毛片| 男女做爰动态图高潮gif福利片| 久久国产精品人妻蜜桃| 女生性感内裤真人,穿戴方法视频| 搞女人的毛片| 一级作爱视频免费观看| 男人舔女人下体高潮全视频| 天堂av国产一区二区熟女人妻| 最近最新免费中文字幕在线| av中文乱码字幕在线| 日本一本二区三区精品| 性色av乱码一区二区三区2| 1000部很黄的大片| 日韩欧美在线二视频| 中文字幕熟女人妻在线| 亚洲电影在线观看av| 亚洲欧美精品综合久久99| 国产一区二区激情短视频| 欧美最新免费一区二区三区 | 在线播放国产精品三级| 成人特级av手机在线观看| 久久香蕉精品热| 老司机午夜福利在线观看视频| 有码 亚洲区| 一级黄色大片毛片| 亚洲成a人片在线一区二区| 天堂动漫精品| 亚洲av五月六月丁香网| 在线免费观看不下载黄p国产 | 亚洲国产精品sss在线观看| 精品久久久久久久久久免费视频| 岛国在线免费视频观看| 男人舔奶头视频| 国产高清三级在线| 69av精品久久久久久| 人人妻,人人澡人人爽秒播| 国产高清三级在线| 69av精品久久久久久| 国产av在哪里看| 中文字幕久久专区| 夜夜爽天天搞| 国产午夜精品久久久久久一区二区三区 | 好男人在线观看高清免费视频| av国产免费在线观看| 一级毛片高清免费大全| 免费观看的影片在线观看| 午夜a级毛片| 久久久久免费精品人妻一区二区| 精品欧美国产一区二区三| 午夜a级毛片| 国产午夜精品论理片| 欧美日韩一级在线毛片| 18禁国产床啪视频网站| 成人国产综合亚洲| 两人在一起打扑克的视频| 亚洲内射少妇av| 在线观看免费视频日本深夜| 亚洲第一欧美日韩一区二区三区| 欧美日韩中文字幕国产精品一区二区三区|