• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunable enhanced spatial shifts of reflective beam on the surface of a twisted bilayer of hBN

    2022-06-29 08:54:44YuBoLi李宇博HaoYuanSong宋浩元YuQiZhang張玉琦XiangGuangWang王相光ShuFangFu付淑芳andXuanZhangWang王選章
    Chinese Physics B 2022年6期
    關(guān)鍵詞:淑芳

    Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Yu-Qi Zhang(張玉琦), Xiang-Guang Wang(王相光),Shu-Fang Fu(付淑芳), and Xuan-Zhang Wang(王選章)

    Key Laboratory for Photonic and Electronic Bandgap Materials,Ministry of Education,and School of Physics and Electronic Engineering,Harbin Normal University,Harbin 150025,China

    Keywords: Goos–H¨anchen shift,Imbert–Fedorov shift,hBN,reststrahlen band

    1. Introduction

    When total internal reflection occurs,the reflection point is not the same as the incident point, which was first proven by Goos and H¨anchen in 1947.[1]The displacement is in the incident plane and known as the Goos–H¨anchen (GH) shift.This was explained as an experience of phase change for the reflected wave vector,[2]closely related to the interface impedance or dispersion properties. Another shift perpendicular to the incident plane is named as the Imbert–Fedorov(IF)shift,[3]which exists upon a circularly or elliptically polarized incident beam on the surface of isotropic media. The IF shift results from the interaction of the optical orbit and spin, which is one of the spin-Hall effects of light. The GH and IF shifts have been confirmed in experiments and also investigated widely in different physical systems, such as photonic crystals,[4]negative refractive media,[5]lossless dielectric slabs,[6]and others. Normally, the optical loss can be ignored for the interface between two ordinary transparent materials as well as metamaterials. In particular,the optical loss of the artificial structure obviously affects the spatial shifts,which is attributed to the optical scattering from internal defects in the material. In general, the GH shift, as well as the IF shift, is extremely weak and is not easily detected by traditional optical measurements. Therefore,a method known as the weak measurement has been established in experiments to amplify spatial shifts significantly.[8]

    Many efforts have been made to enhance and tune GH and IF shifts, for instance, using various fascinating structures,i.e.,left-handed metamaterials,[9]metasurfaces,[10]and anisotropic metamaterials.[11]In particular, some twodimensional (2D) materials have been applied to investigate the spatial shifts of light, such as graphene and black phosphorus.[12,13]The chemical potential of graphene can be tuned by the gate voltage and then the adjustable and enhanced GH and IF shifts can be expected due to the coating of graphene on the surface of materials. For example, Liet al. experimentally measured the GH shift on the surface of a glass prism coating the graphene layer by using the beam splitter scanning method.[14]They observed a maximum difference of 31.16 μm in the GH shift between TM and TE incidences in graphene. Songet al.predicted large spatial shifts of the reflective beam near the critical angle and the Brewster angle on the surface of graphene/hBN metamaterial,and the reflectivity can be even more than 80%.[15]Another way to enhance the spatial shifts is to reduce the effect of optical loss. Polar crystals with lower optical loss resulting from the lattice vibration attract more attention. Most polar crystals are ionic crystals,and their reststrahlen band(RB)is different. Hexagonal boron nitride(hBN),an interesting van der Waals(vdW)crystal, is a kind of natural hyperbolic materials, which has two separate RBs. In the two RBs, the principal values of its permittivity are opposite in sign so that propagating modes are of hyperbolic dispersion. When a beam just falls in the RBs,the reflection nearly reaches the total reflection. Surface phonon polaritons(SPhPs)in ionic crystals originate from the coupling of optical phonons with electromagnetic fields. It has been proven that SPhPs in the hBN exhibit high confinement and much lower optical loss than surface plasmon polaritons(SPPs).[16]Thus,large spatial shifts with high reflectivity may be realized in or near the two RBs. Wanget al.studied the spatial shifts of the reflective beam at the critical or Brewster angle on the surface of hBN.[17]They found that the large GH shifts for s- and p-waves at the critical angle were about-5.32λ0and-3.71λ0,respectively,accompanied by high reflective ratiosRs=0.51 andRp=0.58.However,although the GH shift is massive at the Brewster angle,it is always accompanied by a very small reflective ratio,such asRp≈10-4. In most investigations,the optical axis(OA)is vertical or parallel to the surface, while the effect of the OA on spatial shifts has seldom been considered. In Ref.[18],a twisted structure,

    where the optical axes of the two hBN slabs are different in orientation,was introduced to explore the combined effects of polarization conversion and selective transmission for realizing chirality. The simulation results showed that polarization conversion in the top slab of the bilayer structure was sensitive to the tilting angle of the slab’s OA. Wanget al.studied the influence of the orientation of OA on the GH shift of lefthanded materials.[9]Wuet al.investigated the GH shift at the surface of the titled uniaxial crystal and noted that the permittivity expressed by the tilted angle has a remarkable effect on the shift.[19]In our recent works, the impact of the OA of hBN on the GH and IF shifts,[17]the reflection,[20]and the spin angular-momentum[21]also were further explored. Based on these discussions,it can be seen that an anisotropic dielectric permittivity can lead to complex dispersion properties because of the polarization feature of electromagnetic waves. Adjusting the spatial shifts of reflective beams by means of changing the OA orientation is promising since the change is vital to some optical devices, such as sensors and switches. In this paper, the simple bilayer structure composed of two twisted hBN slabs is considered where there is a twist angle between the two optical axes of the slabs. The twist angle effect on the two spatial shifts of the reflective beam will be investigated.Since the total reflection occurs in the RBs, we will mainly focus on the spatial shifts in these frequency bands. Then, a large spatial shift with high reflectivity may be further selected by tuning the tilted angles.

    The paper is organized as follows. Section 2 shows the structure of double hBN slabs with the different OA.With the transfer method, the reflective coefficients are derived for sand p-wave incidences,and further,the corresponding expressions of the GH and IF shifts are presented. Numerical results and discussions are in Section 3. Finally, Section 4 summarizes the entire paper.

    2. Theoretical model

    The structure and geometry are depicted in Fig. 1(a),where two hBN slabs with different anisotropic axes are stacked together. The optical axes of the top and bottom slabs in thex–zplane are tilted off thex-axis by anglesα1andα2,respectively.d1andd2represent the thicknesses of the two layers. The permittivity of hBN slabs can be expressed by

    We consider a transverse-magnetic(TM)wave as the incident wave and thex–zplane as the incident plane since for a transverse-electric(TE)incident wave the crystal behaves like an isotropic medium due to the permittivityε⊥independent of the tilted angle.[19]In addition,contrasted with the TM incidence, the GH shift produced by the TE incidence is very small. We assume the wave vector in the two slabs to beKj=(kx,0,k±jz), and then the magnetic field in them can be expressed as

    Fig.1. (a)Schematic of twisted hBN slab structure,where the two OAs both are in the x–z plane and tilted off the x-axis by an angle α1 for the top slab and α2 for the bottom slab, while d1 and d2 represent the thicknesses of the top and bottom slabs,respectively. The incident beam with index I is at an angle θ to the z-axis. The dashed line represents the reflective beam in geometry optics, while the line with index R shows the real reflective beam. (b) The real parts of the two components of the primary permittivity as functions of the frequency. The two shadows indicate the two RBs.

    by means of the stationary phase method,whereλ0is the vacuum wavelength. Obviously, the GH shift can reach its peak when the phase differenceφpexperiences a sharp variation with the incident angle. Therefore, the massive GH shift can be observed near the Brewster angle or the critical angle.

    Fig.2.Imaginary part of(j=1,2)of the mode wave versus frequency at α1=α2=0°. The inset shows the first jumping point at ω/ft=1.8,where the imaginary part ofbecomes negative and becomes positive. The second jumping point happens at ω/ft =2.1,where the signs of and are swapped.

    3. Results and discussion

    3.1. GH shift of the reflective beam

    We take the thicknesses of the top and bottom slabs as 1.5 μm and 2.5 μm,respectively. Unlike the hyperbolic metamaterials, hBN is a nature hyperbolic material, so the spatial shifts can be further enhanced only by promoting the quality of the hBN crystal.We will investigate the large GH shift accompanied with the high reflectivity in the RBs. The incident angle is fixed atθ=85°in subsequent discussions since the large GH shift may be achieved at large incident angles,as indicated by Eq.(11). The effect of the OA orientations on the GH shift in the RBs also will be discussed,where the titled angle of the top OA is taken asα1=0°, 30°, and 90°, respectively. Forα1=0°, the GH shift distribution as a function of frequency and tilted angleα2in RB-I is presented in Fig.3(a). It can be found that the positive maximum is about 38λ0, localized at the left boundary of RB-I and in the range ofα2>30°,while the negative maximum is about-5λ0, appearing at the right boundary and the range ofα2>80°.Two obvious intersecting strips with relatively high GH shift values are observed. Contrasting with the reflectivity shown in Fig.3(b),unfortunately in these regions the reflectivity becomes very small. Near the maximum GH shift value, an impressive GH shift with about 30%reflectivity can be acquired,which is not bounded by the tilted angleα2. The GH shift reduces evidently as the frequency is increased,but reflectivity is enhanced,by more than 70%in some regions. For example,R ≈75%and Δx ≈15λ0forω/ft=1.02 andα2=20°. Thus, the purpose to directly heighten the reflective ratio by means of slightly sacrificing the shift value can be realized. Forα1=30°,the vertical strip with a larger GH shift moves to the middle of the frequency window,as shown in Fig.3(c). Moreover,the GH shift is enhanced significantly. Contrasted with Fig. 3(d), the GH shift in the frequency range ofω/ft>1.02 should be paid more attention since the reflectivity is more than 60%except for the strip zone. Of course,the negative GH shift is expected in the region ofω/ft<1.01 andα2>30°. Forα1=90°,the maximum of the GH shift quickly drops to about 19λ0,lower than the other two cases,as shown in Fig.3(e). However,it is interesting that the reflectivity shown in Fig.3(f)is evaluated to be more than 30%in the whole region. In this case,we can arbitrarily choose the GH shift value according to the requirement without the consideration of reflectivity.

    Now we focus on the GH shift and reflectivity in RB-II,as presented in Fig. 4. The large GH shift near the strip attracts our attention due to nearly 100%reflectivity in a certain region atα1=0°. For example,Δx ≈10λ0withR ≈0.96 forω/ft=1.8 andα2=85°. The situation ofα1=30°is a little complicated due to the intersection of two strips. Although a massive GH shift over 100 times the vacuum wavelength is observed at a narrow frequency band, the corresponding reflectivity is very low,almost close to zero. In the other region,to obtain the large GH shift with high reflectivity is also difficult.An interesting phenomenon should be noted whenα2=90°.Comparing Figs. 4(e) and 4(f), a GH shift accompanied with high reflectivity is obtained in a wide frequency range. For instance,the GH shift about 20λ0with 70%reflectivity is easily achieved.

    Fig.3. GH shift and reflectivity versus frequency and bottom titled angle α2 in RB-I:(a)and(b)for α1=0°,(c)and(d)for 30° and(e)and(f)for 90°.

    Fig.4. GH shift and reflectivity versus frequency and bottom titled angle α2 in RB-II:(a)and(b)for α1=0°,(c)and(d)for 30°and(e)and(f)for 90°.

    In order to further indicate the effect ofα1andα2on the GH shift,the GH shift and reflectivity spectra atω/ft=1.05,1.08 in RB-I are depicted in Fig. 5. An obvious intersection of the two strips is discovered and divides the frequency window into four parts. Among them,the region ofα1<52°andα2<52°attracts attention, where the GH shift is about 10λ0and the reflectivity is over 50%. It is worth noting that this region is expanded as the frequency increases toω/ft=1.08,as shown in Figs.5(c)and 5(d). Figures 3–5 show two distinct intersecting strips in which the GH shift is large but the reflectivity is very small. Based on the discussion for the derivation of the phase difference with the incident angle in Eq.(11),the incident angles related to these regions should be near Brewster angles,where the reflectivity is almost zero. If we further examine the wave vector of either hBN slab (see Eq. (5)), it can be found that the two absorption strips in the reflective spectra will be mainly determined by the twist angle of the OA orientation of the two slabs.

    Fig.5. GH shift and reflectivity versus titled angles α1 and α2: (a)and(b)at ω/ft=1.05,and(c)and(d)at ω/ft=1.08.

    3.2. IF shift of the reflective beam

    In this part, the distribution of the IF shift versus the titled angles and the frequency is indicated in Fig. 6. The incident angle is fixed atθ=10°in the following numerical calculation. Due to Eq. (12), the maximum of the IF shift,Δymax=-λ0cotθ/π,is about-1.8λ0in the conditions mentioned above. Firstly, we consider the changes of the IF shift versusα2whenα1=0°,60°,and 90°,as shown in Figs.6(a)–6(c). Forα1=0°, the maximum of the IF shift is found in RB-II and the region with the maximum gradually shrinks and moves to the lower frequency region with an increase ofα1.Whenα1=60°, the relatively larger values appear not only in RB-II but also in RB-I.However,the frequency bands with large IF shifts are very narrow.We further twist the upper hBN plate to 90°.It is found that the maximum of the IF shift in RBII completely transfers into RB-I,and is slightly smaller than the other two cases. This implies that the conditions obtaining the maximum cannot be matched in RB-I.Secondly,the titled angle of the bottom hBN is fixed atα2=0°, 30°, and 90°,as shown in Figs. 6(d)–6(f). Unlike the first case, the region with the large IF shift is found in RB-I and gradually moves to RB-II.As shown in Fig.6(e),the IF shift in RB-I is smaller than that in RB-II. Asα2is increased to 90°,the blue region with the maximum of IF shift moves into RB-II entirely.Comparing the two cases, it can be easier to get the maximum of the IF shift at the second case. When carefully checking the changes of the IF shift withα1andα2, we find that the twist angle of the OA orientation between the two hBN slabs plays an important role.

    Fig.6. IF shift in RBs versus frequency and tilted angles: (a)–(c)show IF shift at α1=0°,60°,90°;(d)–(e)show IF shift at α2=0°,30°,90°.

    Fig.7. (a)IF shift, the difference of(b)phase or(c)reflectivity between pand s-waves versus frequency under the condition of α1 =3° and α2 =50°or α1=10° and α2=40°.

    3.3. Beam simulations for GH and IF shifts of reflected Gaussian beam

    From the above analysis and considering a paraxial incident beam,an assumption is necessary,which is that the phase of the reflectivity coefficient is a linear function of the in-plane wave vector in the cross section of the incident beam. In reality, the incident Gaussian beam should be with a finite waist.Therefore, a comparison is made between the results using the beam simulation and the ones obtained with the stationary phase method. The Gaussian incident beam with the waist widthW0and TM-polarization considered here is expressed by

    Here,ktandkpspecify the in-plane and out-of-plane deflection of non-central wave andErrepresents the electric field of the reflected beam.

    Figure 8(a)represents the GH shift versus the titled angleα1for the differentα2in RB-I atω/ft≈1.05 andθ=85°.The maximal values are about Δx ≈32λ0atα1=50.27°andα2=50°and Δx ≈18λ0atα1=51.89°andα2=90°, respectively. Figure 8(b)simulates the GH shift versus the waist of the incident beam at the conditions for obtaining the maximal shift values shown in Fig.8(a). It is evident that the GH shift will be steady after the waist width relative to the vacuum wavelength is larger than a certain value,which just coincides with the results in Fig.8(a)from the stationary phase method.In Fig. 9(a), the IF shift as a function ofα1is presented atω/ft=2.08,α2=40°andθ=10°. Two points,α1=12.79°and 18.96°,are chosen in Fig.9(a),and the curves of IF shift versus the waist at the two points are depicted in Fig. 9(b).Compared with Fig. 9(a), the IF shift obtaining from the two ways also agrees well if the beam waist is large enough.

    Fig.8. Comparison of the GH shift between the stationary phase method and the beam simulation at ω/ft =1.05 and θ =85°. GH shift versus(a)α1 at α2=50° and 90° and(b)W0/λ0 at α1=50.27° and α2=50° for the black curve and α1=51.89° and α2=90° for the red curve.

    Fig.9. Comparison of IF shift between the stationary phase method and the beam simulation at ω/ft =2.08, α2 =40° and θ =10°. (a)IF shift versus α1. (b)IF shift versus W0/λ0 at α1=12.79° and 18.96°.

    4. Conclusion

    We took advantage of a planar bilayer structure composed of two twisted hBN slabs to realize the large spatial shifts with high reflectivity. The GH and IF shifts of the reflective beam on the surface were numerically calculated as functions of the OA orientations in the two hBN slabs. Interesting phenomena

    Acknowledgments

    Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. LH2020A014),Harbin Normal University Fund(Grant No.HSDSSCX2021-27), and Education Commission of Heilongjiang Province,China(Grant No.2020-KYYWF352).

    猜你喜歡
    淑芳
    歸寧
    劍南文學(2025年1期)2025-03-03 00:00:00
    Spin splitting of vortex beams on the surface of natural biaxial hyperbolic materials
    Visual Storytelling and Globalization
    攝影《黃河左岸》 魏淑芳
    舊時光鶯飛草長
    91歲開畫展
    ChineseStudents’PerceptionofEnglishLanguageLearningActivitiesintheclass
    春雪(攝影)
    新奇的傘
    兒子去世后,她變了
    心理與健康(2015年9期)2015-05-30 03:41:26
    欧美高清成人免费视频www| 又爽又黄无遮挡网站| 后天国语完整版免费观看| 99久久无色码亚洲精品果冻| 黄频高清免费视频| 国产一区在线观看成人免费| 成人国产综合亚洲| 国产午夜精品论理片| 日韩欧美在线二视频| 国产成人一区二区三区免费视频网站| 中国美女看黄片| 在线观看美女被高潮喷水网站 | 成人国产一区最新在线观看| 亚洲真实伦在线观看| 波多野结衣高清无吗| 99国产极品粉嫩在线观看| 两个人的视频大全免费| 好男人在线观看高清免费视频| 久久久久国内视频| 国产成人精品久久二区二区91| 岛国在线免费视频观看| 亚洲黑人精品在线| 国产精品精品国产色婷婷| 亚洲九九香蕉| 国产一区二区三区在线臀色熟女| 欧美日韩中文字幕国产精品一区二区三区| 91成年电影在线观看| 亚洲av电影在线进入| 精品国产乱码久久久久久男人| 亚洲七黄色美女视频| 色播亚洲综合网| 午夜福利在线观看吧| 国产精品 国内视频| 欧美在线一区亚洲| 一夜夜www| 嫩草影院精品99| 51午夜福利影视在线观看| 亚洲七黄色美女视频| 亚洲精华国产精华精| 午夜免费激情av| 欧美色视频一区免费| 国产麻豆成人av免费视频| 国产69精品久久久久777片 | 欧美3d第一页| 日韩欧美在线二视频| 级片在线观看| 国产激情欧美一区二区| 国产精品亚洲美女久久久| 曰老女人黄片| 久久精品91蜜桃| 嫩草影视91久久| 免费看a级黄色片| 国产高清激情床上av| 九色成人免费人妻av| 亚洲性夜色夜夜综合| 69av精品久久久久久| 国产精品一区二区三区四区久久| 国产午夜精品久久久久久| 国产精品av久久久久免费| 一个人观看的视频www高清免费观看 | 最新在线观看一区二区三区| 午夜福利成人在线免费观看| 国产av一区在线观看免费| 免费一级毛片在线播放高清视频| 一本综合久久免费| 岛国在线观看网站| 亚洲国产高清在线一区二区三| 国产精品综合久久久久久久免费| 亚洲欧美精品综合一区二区三区| 亚洲电影在线观看av| 亚洲专区中文字幕在线| 男女下面进入的视频免费午夜| 国产野战对白在线观看| 国产蜜桃级精品一区二区三区| 88av欧美| 久久香蕉国产精品| 搡老妇女老女人老熟妇| 亚洲aⅴ乱码一区二区在线播放 | av福利片在线观看| 三级国产精品欧美在线观看 | 国产av在哪里看| 色噜噜av男人的天堂激情| 亚洲激情在线av| 久久久久久国产a免费观看| 人成视频在线观看免费观看| 国产亚洲av嫩草精品影院| 欧美色欧美亚洲另类二区| 亚洲av电影不卡..在线观看| 成人一区二区视频在线观看| 又黄又粗又硬又大视频| 夜夜看夜夜爽夜夜摸| 午夜免费成人在线视频| 国产高清激情床上av| 麻豆国产97在线/欧美 | 成人国语在线视频| 制服人妻中文乱码| 国产亚洲精品一区二区www| 一级黄色大片毛片| 亚洲精品在线观看二区| 国产91精品成人一区二区三区| 国产精品爽爽va在线观看网站| 一夜夜www| 亚洲人成电影免费在线| 亚洲男人的天堂狠狠| 免费一级毛片在线播放高清视频| 午夜激情av网站| 欧美一区二区精品小视频在线| ponron亚洲| 99re在线观看精品视频| 宅男免费午夜| 欧美日韩亚洲综合一区二区三区_| 欧美在线一区亚洲| 黄片大片在线免费观看| 老司机午夜十八禁免费视频| 亚洲国产中文字幕在线视频| 看免费av毛片| 在线十欧美十亚洲十日本专区| 国产一区二区三区视频了| 波多野结衣高清无吗| 久久中文看片网| 久久久久久久精品吃奶| bbb黄色大片| 亚洲国产中文字幕在线视频| 中文字幕av在线有码专区| 亚洲欧美精品综合一区二区三区| 久久久国产欧美日韩av| 亚洲精品粉嫩美女一区| 亚洲一码二码三码区别大吗| 操出白浆在线播放| 久久久国产成人精品二区| xxx96com| www日本在线高清视频| 亚洲精品在线美女| 国产男靠女视频免费网站| 宅男免费午夜| 日韩av在线大香蕉| 日韩av在线大香蕉| 精品一区二区三区四区五区乱码| 国产高清videossex| 日韩精品中文字幕看吧| 精品电影一区二区在线| 久久亚洲精品不卡| 淫秽高清视频在线观看| 久久性视频一级片| 久久久久国产一级毛片高清牌| 黄色毛片三级朝国网站| 日本成人三级电影网站| 亚洲精品在线观看二区| 亚洲精品粉嫩美女一区| 精品久久久久久久末码| 免费在线观看亚洲国产| 欧美大码av| 免费在线观看视频国产中文字幕亚洲| 日本黄色视频三级网站网址| 日韩欧美国产一区二区入口| 少妇被粗大的猛进出69影院| a级毛片a级免费在线| 1024视频免费在线观看| bbb黄色大片| 黄色丝袜av网址大全| 成人欧美大片| 一边摸一边做爽爽视频免费| 成人国产一区最新在线观看| 美女黄网站色视频| 俄罗斯特黄特色一大片| 亚洲色图 男人天堂 中文字幕| 国产久久久一区二区三区| 国产99久久九九免费精品| 99国产精品一区二区三区| ponron亚洲| 亚洲男人天堂网一区| 性色av乱码一区二区三区2| 午夜老司机福利片| 亚洲人成网站高清观看| 亚洲中文日韩欧美视频| 国产精品久久久久久久电影 | 欧美一级a爱片免费观看看 | 中亚洲国语对白在线视频| 两人在一起打扑克的视频| 国产1区2区3区精品| 久热爱精品视频在线9| 丁香欧美五月| 天天添夜夜摸| 欧美成狂野欧美在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产免费男女视频| 又粗又爽又猛毛片免费看| 免费高清视频大片| 亚洲精华国产精华精| 国产成人欧美在线观看| 国产亚洲精品综合一区在线观看 | 男插女下体视频免费在线播放| 可以免费在线观看a视频的电影网站| 天堂av国产一区二区熟女人妻 | 中文字幕人妻丝袜一区二区| 老鸭窝网址在线观看| 老司机福利观看| 久久精品亚洲精品国产色婷小说| 欧美成人午夜精品| 国产黄片美女视频| 国产成人av激情在线播放| www.熟女人妻精品国产| 正在播放国产对白刺激| 免费在线观看成人毛片| x7x7x7水蜜桃| 欧美黑人巨大hd| 在线观看美女被高潮喷水网站 | 1024手机看黄色片| 美女扒开内裤让男人捅视频| 又黄又粗又硬又大视频| 亚洲精品一区av在线观看| a级毛片a级免费在线| 免费在线观看黄色视频的| 国产片内射在线| 又黄又粗又硬又大视频| www.自偷自拍.com| 久久久久久国产a免费观看| 禁无遮挡网站| 91大片在线观看| 国语自产精品视频在线第100页| 日韩成人在线观看一区二区三区| 黄色视频,在线免费观看| 免费在线观看黄色视频的| 级片在线观看| 欧美精品亚洲一区二区| 国产成人系列免费观看| 欧美日韩中文字幕国产精品一区二区三区| 嫁个100分男人电影在线观看| 女警被强在线播放| 欧美最黄视频在线播放免费| 精品一区二区三区视频在线观看免费| 18禁黄网站禁片免费观看直播| 国内毛片毛片毛片毛片毛片| 欧美日韩一级在线毛片| 国产aⅴ精品一区二区三区波| 国产亚洲av高清不卡| 久久99热这里只有精品18| 国产精品 国内视频| 欧美3d第一页| 超碰成人久久| 亚洲成人精品中文字幕电影| 国产黄色小视频在线观看| 久久草成人影院| 无限看片的www在线观看| 日韩免费av在线播放| 国产av不卡久久| 18美女黄网站色大片免费观看| 欧美另类亚洲清纯唯美| 亚洲国产欧美网| www.自偷自拍.com| 天天添夜夜摸| 热99re8久久精品国产| 亚洲av中文字字幕乱码综合| 精品一区二区三区视频在线观看免费| 亚洲成人中文字幕在线播放| 国产高清视频在线观看网站| 又大又爽又粗| 91麻豆av在线| 成人高潮视频无遮挡免费网站| 巨乳人妻的诱惑在线观看| 国产伦人伦偷精品视频| 国产真实乱freesex| 夜夜躁狠狠躁天天躁| 全区人妻精品视频| 国产精品av视频在线免费观看| 成人午夜高清在线视频| 亚洲欧美精品综合久久99| 欧美日韩瑟瑟在线播放| 99re在线观看精品视频| 亚洲一码二码三码区别大吗| 精品久久久久久成人av| 激情在线观看视频在线高清| 巨乳人妻的诱惑在线观看| 狠狠狠狠99中文字幕| 国产v大片淫在线免费观看| 亚洲一区二区三区不卡视频| 在线视频色国产色| 叶爱在线成人免费视频播放| 夜夜夜夜夜久久久久| 韩国av一区二区三区四区| 精品人妻1区二区| 香蕉丝袜av| 午夜福利成人在线免费观看| 国产精品免费视频内射| 久久亚洲精品不卡| 成人手机av| 精品久久久久久久人妻蜜臀av| 亚洲精品中文字幕在线视频| 岛国视频午夜一区免费看| 两性夫妻黄色片| 日日摸夜夜添夜夜添小说| 色哟哟哟哟哟哟| 国产一区二区在线av高清观看| 午夜精品久久久久久毛片777| 一级毛片女人18水好多| 三级国产精品欧美在线观看 | 熟女电影av网| 国内揄拍国产精品人妻在线| 18禁美女被吸乳视频| 久久草成人影院| 亚洲一区中文字幕在线| 一区福利在线观看| 国产亚洲av嫩草精品影院| 看免费av毛片| 好男人电影高清在线观看| 国产精品精品国产色婷婷| 国产精品亚洲av一区麻豆| 又黄又粗又硬又大视频| 成人国产一区最新在线观看| 一个人免费在线观看的高清视频| 国产区一区二久久| 天天一区二区日本电影三级| 亚洲国产精品sss在线观看| 大型av网站在线播放| 日韩欧美在线二视频| 精品国产超薄肉色丝袜足j| 在线免费观看的www视频| 欧美色视频一区免费| 欧美日本视频| 色噜噜av男人的天堂激情| av超薄肉色丝袜交足视频| 国产精品永久免费网站| 国产视频一区二区在线看| 国产免费av片在线观看野外av| av超薄肉色丝袜交足视频| 中文在线观看免费www的网站 | 欧美成人一区二区免费高清观看 | 一级毛片女人18水好多| 久久久国产欧美日韩av| 欧美在线一区亚洲| 国内久久婷婷六月综合欲色啪| 精品国产超薄肉色丝袜足j| 琪琪午夜伦伦电影理论片6080| 国产97色在线日韩免费| 亚洲av五月六月丁香网| 久久这里只有精品中国| 十八禁人妻一区二区| 免费观看精品视频网站| 日本五十路高清| 男女之事视频高清在线观看| 欧美国产日韩亚洲一区| 18禁观看日本| 99国产精品一区二区蜜桃av| 午夜成年电影在线免费观看| 99久久久亚洲精品蜜臀av| 久久久国产精品麻豆| 亚洲男人的天堂狠狠| 国产aⅴ精品一区二区三区波| 国产精品久久久久久亚洲av鲁大| 国产黄色小视频在线观看| 在线播放国产精品三级| 999久久久国产精品视频| 精品免费久久久久久久清纯| 男女那种视频在线观看| 99久久久亚洲精品蜜臀av| 日本a在线网址| 黄色a级毛片大全视频| 午夜福利高清视频| 日本a在线网址| 91老司机精品| 亚洲乱码一区二区免费版| 视频区欧美日本亚洲| 国产激情久久老熟女| 老司机靠b影院| 精品国产乱码久久久久久男人| 久久久久精品国产欧美久久久| 精品电影一区二区在线| 亚洲国产欧美一区二区综合| 一级毛片女人18水好多| 亚洲乱码一区二区免费版| 亚洲精品中文字幕一二三四区| 国产久久久一区二区三区| 99久久久亚洲精品蜜臀av| 国产黄色小视频在线观看| 亚洲欧洲精品一区二区精品久久久| 日本免费一区二区三区高清不卡| 最近最新中文字幕大全免费视频| 亚洲av成人精品一区久久| 无遮挡黄片免费观看| 十八禁人妻一区二区| 搡老熟女国产l中国老女人| 亚洲,欧美精品.| 中文字幕精品亚洲无线码一区| 又黄又爽又免费观看的视频| 变态另类丝袜制服| 欧美日韩亚洲国产一区二区在线观看| 亚洲 欧美 日韩 在线 免费| 久久中文字幕一级| 久久人妻av系列| 国产精品久久久久久亚洲av鲁大| 99riav亚洲国产免费| 91在线观看av| 久久久久久久久久黄片| 国产日本99.免费观看| 国产99白浆流出| 亚洲av熟女| 亚洲天堂国产精品一区在线| 久久人人精品亚洲av| 国产成人影院久久av| 香蕉久久夜色| 亚洲,欧美精品.| 亚洲第一欧美日韩一区二区三区| 亚洲精品在线美女| 18禁美女被吸乳视频| 久久 成人 亚洲| 丰满的人妻完整版| 国产亚洲欧美98| 欧美三级亚洲精品| 国产伦人伦偷精品视频| 欧美日韩亚洲国产一区二区在线观看| 久久久久久人人人人人| 51午夜福利影视在线观看| 十八禁人妻一区二区| 精品高清国产在线一区| 一进一出好大好爽视频| 首页视频小说图片口味搜索| 免费在线观看影片大全网站| 日韩av在线大香蕉| 亚洲成av人片在线播放无| 男人舔女人的私密视频| 日韩高清综合在线| www日本在线高清视频| 琪琪午夜伦伦电影理论片6080| 欧美大码av| 国产精品香港三级国产av潘金莲| bbb黄色大片| 国产精品久久久久久久电影 | 小说图片视频综合网站| 欧美日韩亚洲综合一区二区三区_| 亚洲 欧美一区二区三区| 一进一出好大好爽视频| 亚洲avbb在线观看| 精品久久久久久,| 在线观看日韩欧美| 国产私拍福利视频在线观看| 精品欧美一区二区三区在线| 亚洲成人久久性| av超薄肉色丝袜交足视频| 成人永久免费在线观看视频| 黄色视频不卡| 在线看三级毛片| 亚洲专区国产一区二区| 亚洲av第一区精品v没综合| 精品久久久久久久人妻蜜臀av| 国产精品一及| 精品久久蜜臀av无| 999久久久精品免费观看国产| 亚洲国产欧美一区二区综合| 国产成+人综合+亚洲专区| 国产一区二区激情短视频| 亚洲人成网站高清观看| 日本 av在线| 亚洲欧美激情综合另类| 悠悠久久av| 一边摸一边抽搐一进一小说| 不卡av一区二区三区| 视频区欧美日本亚洲| 国产成人av激情在线播放| 少妇人妻一区二区三区视频| 99热6这里只有精品| 午夜福利高清视频| 日韩高清综合在线| 日韩精品中文字幕看吧| 90打野战视频偷拍视频| 91老司机精品| 久久天堂一区二区三区四区| 欧美极品一区二区三区四区| 男人舔奶头视频| 99精品久久久久人妻精品| 欧美绝顶高潮抽搐喷水| videosex国产| 国内精品久久久久精免费| 亚洲18禁久久av| 欧美日韩亚洲国产一区二区在线观看| 18禁观看日本| 久久午夜亚洲精品久久| 国产精品1区2区在线观看.| 亚洲精品粉嫩美女一区| 黑人欧美特级aaaaaa片| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲午夜理论影院| 99在线人妻在线中文字幕| 亚洲av成人精品一区久久| 免费av毛片视频| 日本三级黄在线观看| 欧美av亚洲av综合av国产av| 99久久国产精品久久久| 两个人的视频大全免费| 香蕉国产在线看| 欧美成人午夜精品| 中国美女看黄片| 国产精品国产高清国产av| 亚洲av电影在线进入| 黄色毛片三级朝国网站| 亚洲,欧美精品.| 99热这里只有精品一区 | 9191精品国产免费久久| 久久久久久久午夜电影| 50天的宝宝边吃奶边哭怎么回事| 日韩精品青青久久久久久| 在线观看日韩欧美| 身体一侧抽搐| 嫁个100分男人电影在线观看| 三级男女做爰猛烈吃奶摸视频| 国产精品 国内视频| 国产成人精品久久二区二区免费| 波多野结衣高清作品| 最近最新中文字幕大全电影3| 国产私拍福利视频在线观看| 正在播放国产对白刺激| 日韩精品免费视频一区二区三区| 国产区一区二久久| 国产男靠女视频免费网站| 国内精品久久久久久久电影| 999久久久国产精品视频| 欧美人与性动交α欧美精品济南到| 亚洲 欧美 日韩 在线 免费| 久久久久九九精品影院| 精品少妇一区二区三区视频日本电影| 久久亚洲真实| 国产精品一区二区三区四区免费观看 | 亚洲乱码一区二区免费版| 精品一区二区三区四区五区乱码| 亚洲成人久久性| 91国产中文字幕| 久久香蕉精品热| 最近最新免费中文字幕在线| 中文亚洲av片在线观看爽| 一本久久中文字幕| 欧美成人午夜精品| 色播亚洲综合网| 亚洲午夜精品一区,二区,三区| 久久精品国产亚洲av高清一级| 国产亚洲精品综合一区在线观看 | 国产日本99.免费观看| 精品电影一区二区在线| 禁无遮挡网站| 老司机靠b影院| 欧美日韩福利视频一区二区| 男人舔女人的私密视频| 精品一区二区三区四区五区乱码| 又粗又爽又猛毛片免费看| 黄色片一级片一级黄色片| 国产精品影院久久| 99久久精品国产亚洲精品| 午夜福利18| 国产区一区二久久| 人人妻人人澡欧美一区二区| 99久久精品国产亚洲精品| 亚洲成人精品中文字幕电影| 国产v大片淫在线免费观看| 在线观看一区二区三区| 伦理电影免费视频| 精品乱码久久久久久99久播| 中文在线观看免费www的网站 | 国产欧美日韩一区二区精品| 亚洲专区中文字幕在线| aaaaa片日本免费| 亚洲成人精品中文字幕电影| 少妇的丰满在线观看| 欧美在线黄色| 色综合欧美亚洲国产小说| 亚洲 国产 在线| 国产区一区二久久| 美女大奶头视频| 国产精品 欧美亚洲| 免费电影在线观看免费观看| 亚洲在线自拍视频| 变态另类丝袜制服| 在线国产一区二区在线| 免费看美女性在线毛片视频| 99国产精品一区二区三区| 亚洲一码二码三码区别大吗| 国产精品1区2区在线观看.| 丝袜人妻中文字幕| 我的老师免费观看完整版| 国产成人一区二区三区免费视频网站| 两个人的视频大全免费| 免费在线观看黄色视频的| 天天躁夜夜躁狠狠躁躁| 三级毛片av免费| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩亚洲国产一区二区在线观看| 国产高清激情床上av| √禁漫天堂资源中文www| 精品乱码久久久久久99久播| 91大片在线观看| 亚洲国产欧洲综合997久久,| 99热这里只有是精品50| 国产精品久久久久久精品电影| 中文在线观看免费www的网站 | 亚洲男人的天堂狠狠| 18禁国产床啪视频网站| 国内精品久久久久精免费| 欧美日韩中文字幕国产精品一区二区三区| 亚洲午夜理论影院| 亚洲av第一区精品v没综合| 曰老女人黄片| 亚洲五月婷婷丁香| 亚洲全国av大片| 欧美中文日本在线观看视频| 国产主播在线观看一区二区| 日本一本二区三区精品| 国产亚洲欧美在线一区二区| 国产成+人综合+亚洲专区| 啪啪无遮挡十八禁网站| 全区人妻精品视频| 麻豆国产av国片精品| 人人妻,人人澡人人爽秒播| 精品久久蜜臀av无| 18禁国产床啪视频网站| 免费一级毛片在线播放高清视频| 成在线人永久免费视频| 亚洲国产日韩欧美精品在线观看 | 精品国产亚洲在线|