• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nd L-shell x-ray emission induced by light ions

    2022-06-29 09:17:42XianMingZhou周賢明JingWei尉靜RuiCheng程銳YanHongChen陳燕紅CeXiangMei梅策香LiXiaZeng曾利霞YuLiu柳鈺YanNingZhang張艷寧ChangHuiLiang梁昌慧YongTaoZhao趙永濤andXiaoAnZhang張小安
    Chinese Physics B 2022年6期

    Xian-Ming Zhou(周賢明) Jing Wei(尉靜) Rui Cheng(程銳) Yan-Hong Chen(陳燕紅)Ce-Xiang Mei(梅策香) Li-Xia Zeng(曾利霞) Yu Liu(柳鈺) Yan-Ning Zhang(張艷寧)Chang-Hui Liang(梁昌慧) Yong-Tao Zhao(趙永濤) and Xiao-An Zhang(張小安)

    1Ion Beam and Optical Physics Joint Laboratory of Xianyang Normal University and Insitite of Modern Physics,Chinese Academy of Sciences,Xianyang Normal University,Xianyang 712000,China

    2School of Science,Xi’an Jiaotong University,Xi’an 710049,China

    3Institute of Modern Physics,Chinese Academy of Sciences,Lanzhou 730000,China

    Keywords: light ions,ion–atom collision,L-shell x-ray,multiple ionization

    1. Introduction

    The ion–atom collisions have been extensively investigated experimentally and theoretically in the past few decades to meet the requirement of fundamental research and practical applications.[1–8]During such collisions, the inner-shell electrons of projectile and target atom can be excited by the direct Coulomb ionization or charge transfer. The corresponding vacancy decays radiatively by x-ray emission or nonradiatively by Auger or Coster–Kronig (CK) transition processes.The parameters of the x-ray, such as, emission energy, line width,satellite structure and production cross section,can provide significant information for the atomic structure, innershell process in collisions, plasma characteristic, and so on.Therefore, the x-ray emission studies are not only an important method for the experimental research on atomic collision mechanism and verification of the relative theory,but also has important significance for many basic research, for instance,the technique of particle induced x-ray emission(PIXE),diagnosis of dense plasma and laboratory astrophysics.[9–12]

    Multiple ionization state, which means more than one outer-shell electrons are absent at the moment of inner-shell x-ray emission,can be produced by the subsequent Auger transition and CK transition or simultaneous direct ejection of several electrons with relatively high probability in collisions of ion-atom by the strong Coulomb field of the projectile.[13,14]This action results in a reduction of the nuclear charge screening, and thus increases the binding energy of the residual orbital electrons, and alters the fluorescence yield of radiative transition. Consequently, the x-ray energy shifts to the high energy side, with respect to the data of singly ionized atom, and the relative intensity ratio of the subshell x-rays is changed. Generally, such phenomena can be caused by swift highly charged heavy ions.[15–17]However, a few recent experimental results demonstrate that the multiple ionization can also be induced by low-energy light ions.[18–20]In our previous work,such phenomena by low-energy protons and the dependence on the proton energy has been investigated.[21]Here,we would like to present further research on the multiple ionization for He2+and H+2ions impacting.

    In the present work,the measurement of theL-shell x-ray of neodymium (Nd) is presented for He2+ions in the energy region of 300–600 keV, and H+and H+2ions with energy of about 150 keV/u. The threshold of incident energy for NdL-shell x-ray emission is checked. The line energy and relative intensity ratio of theL-subshell x-rays are analyzed as a function of the projectile energy and effective nuclear charge.The multiple ionization induced by low energy light ions is discussed.

    2. Experimental method

    The measurements have been carried out at 320 kV high voltage experimental platform at the Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS) in Lanzhou,China.More details of the experimental system have been described in a previous work.[22]The experimental setup is shown in Fig. 1. In brief, the He2+, H+2and H+ions are produced and extracted from the electron cyclotron resonance(ECR) ion source and selected by a 90°analyzing magnet,and then introduced into the ultrahigh vacuum target chamber(10-8mbar) after acceleration, focus, multi-deflections and multi-collimations.The divergence of the beam is smaller than 0.2°. The ion beam impacts perpendicularly onto the target with a spot size of about Φ3 mm. The number of incident projectiles,which could not be measured immediately by recording the target current due to the influence of the secondary electron emission, is detected indirectly by the combined use of a penetrable Faraday cup and a common one.

    The emitted x-rays are detected by a silicon drift detector(SDD)produced by AMPTEK.The SDD has an effective detection area of 7 mm2and a 12.5 μm Be window in the front of the detector. The SDD is placed at 80 mm far away from the target surface in the chamber and at 135°angle with respect to the beam direction. The detector has an effective energy range of 0.5–14.3 keV when the gain was selected at 100,and an energy resolution of about 136 eV at 5.9 keV.The energy calibration is done by using simultaneously two standard radioactive sources of55Fe and241Am, and then tested by measuring the energies of theK-shell x-ray of Al,V and Fe induced by photon irradiation,which is produced by a Mini-X x-ray tube and has an energy of about 5–40 keV.In this way,a precise measurement for the x-ray energy can be guaranteed.The SDD intrinsic efficiency, which combines the transmission effect through the Be window and the interaction in the silicon detector, is well determined by the transmission measurement.

    Fig.1. Schematic drawing of experiment setup: 1,ECR ion source,2,analyzing magnet,3,high volt accelerate platform,4,barrier,5,90°deflection magnet,6,magnetic quadrupled lens,7,60° deflection magnet,8,ultrahigh vacuum target chamber,9,target,10,silicon drift detector,11, x-ray recording system, 12, penetrable faraday cup, 13, common faraday cup,14,projectile number recording system.

    3. Results and discussion

    3.1. Kinetic energy threshold of Nd L-shell x-ray emission

    In the present work, the incident energy of He2+ions is 300–600 keV with interval of 100 keV. The NdL-shell xrays are observed at all incident energies except at 300 keV.As shown in Fig. 2, six distinct lines are observed and identified asLι,Lα1,2,Lβ1,3,4,Lβ2,15,Lγ1andLγ2,3,4,4′ x-ray,

    which are emitted from the radiative decay ofL-subshell vacancies.[23,24]The corresponding vacancy is a prerequisite for the x-ray emission. So, it is proposed that there is a kinetic energy threshold for the ionization ofL-shell electrons between 300 keV and 400 keV.

    Fig. 2. Typical L x-ray spectra of neodymium induced by He2+ ions,and compared with that by proton and photon.

    The inner-shell process induced by ion-atom collision can be simulated by the binary encounter approximation (BEA)model.[25]Here, the ionized orbital electrons of target atom can be regarded as free electrons, and the ionization is described as the classical Coulomb collision between the projectile and the expelled electron. The momentum and kinetic energy are conserved. For a crude estimation, it is assumed that, at the minimum mean collision distance, the Coulomb potential between the projectile and the ionized electron must be at least greater than or equal to the binding energy of the ionized electron,if the inner-shell electrons are to be ionized.Therefore,the kinetic energy threshold for producing holes in the inner shell of the target atom can be estimated as[26–28]

    wherez′1(z′2)andM1(M2)are the effective nuclear charge and mass number of projectile(target atom).qis the charge state of incident ions.Uiis the binding energy of the ionized orbital electron. For He2+, the value ofz′1is equal to that ofq.z′2=z2-δ,whereδis the atomic screening constant,and can be derived from the analysis of optimized orbital exponents on the computation of self-consistent-field method.[29,30]

    For Nd, the average binding energy of 2s and 2p electrons are about 7126 eV and 6465 eV. Based on Eq. (1), the kinetic energy threshold for the ionization of 2s and 2p electrons are predicted as 322 keV and 375 keV,respectively. This is in agreement with the experimental results. At the incident energy of 400 keV,theL-shell x-rays of Nd are observed,but they are not observed at 300 keV.

    3.2. Energy shift of the L-subshell x-ray

    In Fig. 2, the typical x-ray emission spectra of Nd produced by He2+ions are presented as a function of incident energy, and compared with that of lower energy proton and photon. The spectra can be well fitted by a nonlinear curve Gaussian program. One can find that the energy of the spectral lines produced by He2+ions are similar to the result of proton,and have a blue shift toward the high energy direction than that of photon, which can be considered as a standard atomic spectrum. For example, the measured energies of the sixL-subshell x-rays are listed in Table 1. There is no obvious regular change with the increase of kinetic energy, and they are almost constant within the estimated error range,but larger than that of a singly ionized atom and that of photon,which is nearly the same as the atomic data apart fromLγ1.This is consistent with the result of lower energy proton.[21]

    Table 1. Energies of Nd L-subshell x-ray induced by He2+ions. For comparison,the data of the singly ionized atom(DSIA)and that produced by 5–40 keV photon and 200 keV protons were also given.[23,24,31]

    In the previous work, we have investigated the multiple ionization induced by lower energy proton and the dependence on the incident energy by analyzing theL-subshell x-ray emission. In the energy range of 100–250 keV/u, the outer-shell electrons of mediumZelements,such asM,N,andO,can be multiply ionized by the bombardment of light ions,and the extent of such multiple ionization decreases with the increase of incident energy. It is proposed that the same is anticipated for He2+ions. Here, the observed blue shift mainly results from outer-shell multiple ionization of Nd by the He2+impacting,and that presents a dwindling trend as a function of the incident energy. And it can also be verified in the following discussion of the relative intensity ratio. However, due to the limitation of the detector’s energy resolution, no obvious distinction of the experimental blue shift is obtained for various projectile’energy.

    3.3. Relative intensity ratio of the L-subshell x-ray

    In addition to the blue shift of energy, multiple ionization of outer shell can cause changes in the x-ray fluorescence yield, because the probability of radiationless transition is altered due to the absence of electrons in outershells.This will result in a change in the relative intensity ratio of theL-subshell x-rays. It can be seen from Fig. 2 that although the spectral shapes at different incident energies are relatively similar, there is a significant decrease in theLβ1,3,4x-ray emissions with increasing incident energy,compared to that ofLα1,2x-ray. For further quantitative analysis,the relative intensity ratios ofLβ1,3,4andLβ2,15toLα1,2x rays are investigated. As shown in Figs.3 and 4,the ratio is higher than the atomic data and that of photon and proton,and is dwindled as the incident energy increases. This provides another credible evidence for the outer-shell multiple ionization of target atom by impact of lower energy light ions.

    TheLβ1,3,4x-ray consists of three lines,which come from the radiation transitions ofM4–L2,M3–L1andM2–L1,respectively.Lβ1andLα1,2x-ray mainly originate from the transitions of 3d electrons toL2andL3vacancy,and the corresponding fluorescence yield are 0.031 and 0.058 for Nd. The Auger yielda2anda3for the decay ofL2andL3vacancy are 0.724 and 0.875.[32,33]They are not much different in the same magnitude. When the outer shells are multiply ionized,the drop in Auger yield should be at the same extent,and the resulting enlargement in the fluorescence yield should also be of the same magnitude. This will not result in an obvious change in the relative intensity ratio ofLβ1,3,4toLα1,2x-rays.

    Fig. 3. Relative intensity ratios of Nd Lβ1,3,4 to Lα1,2 x-ray for He2+ions impact as a function of the incident energy, and the data for 200 keV proton, 5–40 keV photon, and the theoretical calculation for the singly ionized atom.

    However,there is an additional channel of CK transition for the decay ofL2vacancy compared with that ofL3. In the case of multiple ionization, the Coster–Kronig yieldf23is diminished. Correspondingly, the probability of radiation transition,namely,the fluorescence yield ofLβ1x-ray,will increase. Moreover, owing to the absence of some outer-shell electrons,some of the non-radiative transition is restricted for the de-excitation ofL1vacancy,and the fluorescence yieldω1increases. This will result in an enhancement of theLβ3,4xray emission. In summary,the experimental relative intensity ratio ofLβ1,3,4toLα1,2x-ray is enlarged as shown in Fig. 3,and decreases with increasing incident energy as the dawdle of the multi-ionization degree.

    TheLβ2,15andLα1,2x-rays are mainly the result of radiation de-excitation ofL3vacancy filled byNandMelectrons, respectively. When multiple electrons are missing in the outer shell, the Auger transition filling theL3vacancy is suppressed, and the corresponding radiation transition is enhanced, because the sum of fluorescence yieldω3and Auger yielda3is unity. The Auger yielda3of Nd is almost 9 and 46 times higher than the fluorescence yield ofLα1,2andLβ2,15xray.[32,33]The fluorescence yield ofLβ2,15x-ray is more susceptible to the effect of multiple ionization. As a result, theLβ2,15x-ray emission has a larger enhancement than that ofLα1,2. The relative intensity ratio ofLβ2,15toLα1,2x-ray is higher than the atomic data as shown in Fig.4.

    Fig. 4. Relative intensity ratios of Nd Lβ2,15 to Lα1,2 x-ray for He2+ions impact as a function of incident energy, and the data for 200 keV proton,5–40 keV photon,and the theoretical calculation for the singly ionized atom.

    3.4. Dependence of multiple ionization on the effective nuclear charge

    In a simple approach based on the independent-particle framework,the electron correlation effect is not taken into account, and the multiple ionization can be treated as simultaneous independent single ionization of the orbital electrons.The probability of multiple ionization can be estimated by that of the single ionization. If the ionization probability of per electron is constant in the same shell, the cross section of simultaneous singleLandn-fold outer-shell ionization can be expressed by the binomial distribution.[34–36]Therefore, one can find that the multiple ionization degree is positive to the single ionization cross section. Single ionization produced by light ions is mainly induced by direct Coulomb collision.Such cross section is proportional to the square of the effective nuclear charge of incident ion.[25]As a result, the multiple ionization degree should be positively related to the effective nuclear charge.

    Fig. 5. The L x-ray spectra of neodymium induced by He2+, H+2 and H+ ions with the same single-nucleon energy.

    As we all know, the effective nuclear charge of H+and He+2are 1 and 2, respectively. By comparing the experimental and theoretical values of the potential function of hydrogen molecule-ion (H+2), the effective nuclear charge of H+2is obtained of about 1.23, which is between that of H+and He+2.[37,38]As mentioned above, the outer-shell multiple ionization of Nd produced by H+2ions impacting should be stronger than that by H+and weaker than that by He+2.

    Figure 5 presents the NdL-shell x-ray spectra produced by He2+, H+2and H+ions with the energy of 150 keV/u. It is obvious that the relative intensity ofLβ2,15x-ray is various for different incident ions, compared to the emission ofLα1,2x-ray. For further analysis, the relative intensity ratios ofLβ1,3,4andLβ2,15toLα1,2x-rays are extracted from the original counts. As shown in Figs. 6 and 7, the experimental results are larger than the theoretical value of single ionized atom and data of photon. In addition, this ratio increases as a function of effective nuclear charge. According to the effect of multiple ionization on the relative intensity ratio as discussed in Subsection 3.3, the present result confirms that the multiple ionization of Nd produced by low energy light ions is positively correlated with the effective nuclear charge of the incident ion.

    Fig. 6. Relative intensity ratios of Nd Lβ1,3,4 to Lα for H+, H+2 and He2+ions impact,and the data of photon and theoretical calculation for the singly ionized atom.

    Fig. 7. Relative intensity ratios of Nd Lβ2,15 to Lα for H+, H+2 and He2+ions impact,and the data of photon and theoretical calculation for the singly ionized atom.

    4. Conclusion

    The NdL-shell x-ray emission has been studied for the impact of 300–600 keV He2+ions and H+,H+2ions with energy of 150 keV/u. It is indicated that there is a threshold for the NdL-shell ionization in the energy region of 300–400 keV.The outer-shell electrons of Nd are multiply ionized by light ions,at the moment ofLx-ray emission. This leads to a blue shift of the x-ray energy and an enhancement of the relative intensity ratios of theL-subshell x-rays. The extent of such multiple ionization is dwindled with increasing the incident energy and is enlarged as the projectile’s effective nuclear charge increases.

    Acknowledgements

    The authors sincerely acknowledge the technical support from the group of 320 kV HCI platform.

    Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300), the National Natural Science Foundation of China (Grant Nos. 11505248,11775042,11875096,and 11605147),the Scientific Research Program Funded by Shaanxi Provincial Education Department(Grant No.20JK0975),Scientific Research Plan of Science and Technology Department of Shaanxi Province,China(Grant No. 2021JQ-812), Xianyang Normal University Science Foundation(Grant Nos.XSYK20024 and XSYK20009),and the academic leader of Xianyang Normal University(Grant No.XSYXSDT202108).

    亚洲欧美日韩高清专用| 在现免费观看毛片| 老女人水多毛片| 日韩,欧美,国产一区二区三区 | 在线观看av片永久免费下载| 成年女人永久免费观看视频| 亚洲欧美日韩高清专用| 久久这里有精品视频免费| 国产精品一区二区三区四区免费观看| 91av网一区二区| 国产一区二区三区在线臀色熟女| 狂野欧美白嫩少妇大欣赏| 精品99又大又爽又粗少妇毛片| 麻豆成人av视频| 日韩av不卡免费在线播放| 亚州av有码| 一夜夜www| 午夜激情欧美在线| 天堂av国产一区二区熟女人妻| 日本黄大片高清| 搡女人真爽免费视频火全软件| 亚洲av第一区精品v没综合| 麻豆乱淫一区二区| 欧美人与善性xxx| 久久久午夜欧美精品| 少妇的逼好多水| 午夜精品在线福利| 欧美一级a爱片免费观看看| 在线观看免费视频日本深夜| 国产精品免费一区二区三区在线| 亚洲四区av| 精品久久久久久久久久久久久| 亚洲色图av天堂| 精华霜和精华液先用哪个| 久久久久久大精品| 性欧美人与动物交配| 在线播放无遮挡| 又粗又爽又猛毛片免费看| 一边亲一边摸免费视频| 非洲黑人性xxxx精品又粗又长| 国产精品电影一区二区三区| 欧美又色又爽又黄视频| 青春草亚洲视频在线观看| 非洲黑人性xxxx精品又粗又长| 小蜜桃在线观看免费完整版高清| 国产乱人视频| 18禁在线播放成人免费| 国产91av在线免费观看| 你懂的网址亚洲精品在线观看 | 天天躁日日操中文字幕| 日韩欧美国产在线观看| 精品一区二区三区人妻视频| 天堂√8在线中文| 美女cb高潮喷水在线观看| 精品人妻一区二区三区麻豆| 不卡一级毛片| 久久久精品94久久精品| 最近2019中文字幕mv第一页| 欧美日韩国产亚洲二区| 亚洲欧美成人综合另类久久久 | 能在线免费观看的黄片| 久久人人爽人人片av| 日韩欧美精品v在线| 亚洲乱码一区二区免费版| 日韩欧美三级三区| 精品久久久久久久久av| 国产av不卡久久| 国产精品久久视频播放| 国产精品蜜桃在线观看 | 亚洲丝袜综合中文字幕| 搞女人的毛片| 又粗又爽又猛毛片免费看| 亚洲熟妇中文字幕五十中出| 美女cb高潮喷水在线观看| 亚洲国产精品久久男人天堂| 国产伦一二天堂av在线观看| 边亲边吃奶的免费视频| eeuss影院久久| 久久久久久伊人网av| 国产成人精品婷婷| 99国产精品一区二区蜜桃av| 人妻少妇偷人精品九色| 欧洲精品卡2卡3卡4卡5卡区| 看黄色毛片网站| 欧美区成人在线视频| 国产精品久久久久久亚洲av鲁大| 久久久久久久久大av| 亚洲av一区综合| 国内精品宾馆在线| 最新中文字幕久久久久| 久久久久久久午夜电影| videossex国产| 99热全是精品| 又黄又爽又刺激的免费视频.| 不卡视频在线观看欧美| 人妻夜夜爽99麻豆av| 男女下面进入的视频免费午夜| 亚洲精品乱码久久久久久按摩| 亚洲婷婷狠狠爱综合网| 亚洲成人久久爱视频| 中文字幕免费在线视频6| av在线老鸭窝| 国产91av在线免费观看| 99久久精品一区二区三区| 国产精品1区2区在线观看.| 亚洲精品久久久久久婷婷小说 | 日韩一区二区三区影片| 亚洲不卡免费看| 久久久久久久久久久丰满| 久久精品国产亚洲av天美| 高清毛片免费看| 国产又黄又爽又无遮挡在线| 亚洲熟妇中文字幕五十中出| 成人午夜高清在线视频| 秋霞在线观看毛片| 亚洲第一电影网av| 日韩国内少妇激情av| 日本黄大片高清| av天堂在线播放| 国产一区亚洲一区在线观看| a级毛片a级免费在线| 亚洲欧美清纯卡通| 国产一级毛片在线| 可以在线观看毛片的网站| 国产精品一区二区三区四区免费观看| 此物有八面人人有两片| 久久中文看片网| 一个人免费在线观看电影| 亚洲av免费高清在线观看| 中出人妻视频一区二区| 国产成人午夜福利电影在线观看| 国产熟女欧美一区二区| 一区福利在线观看| 国产黄色小视频在线观看| 狂野欧美白嫩少妇大欣赏| 国产色婷婷99| 日韩欧美精品v在线| 六月丁香七月| 99热精品在线国产| 五月伊人婷婷丁香| 男人和女人高潮做爰伦理| 人人妻人人看人人澡| 黄片无遮挡物在线观看| 男女视频在线观看网站免费| 成人一区二区视频在线观看| 少妇丰满av| 一本久久精品| 伦精品一区二区三区| 久久精品国产亚洲av香蕉五月| 日本欧美国产在线视频| 欧美+日韩+精品| 国产精品av视频在线免费观看| 亚洲四区av| 91精品一卡2卡3卡4卡| 亚洲精品成人久久久久久| 精品久久久久久久末码| 亚洲成av人片在线播放无| 五月伊人婷婷丁香| 精品人妻熟女av久视频| 三级经典国产精品| 男女边吃奶边做爰视频| 亚洲美女搞黄在线观看| 又粗又爽又猛毛片免费看| 一区二区三区四区激情视频 | 亚洲美女视频黄频| 秋霞在线观看毛片| 成人特级黄色片久久久久久久| 亚洲欧洲日产国产| 高清在线视频一区二区三区 | 亚洲成人中文字幕在线播放| 国产片特级美女逼逼视频| 久久久久免费精品人妻一区二区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲婷婷狠狠爱综合网| 一级毛片aaaaaa免费看小| 成人三级黄色视频| 国产精华一区二区三区| 国产亚洲精品av在线| 久久精品久久久久久噜噜老黄 | av在线老鸭窝| 欧美高清成人免费视频www| 国产亚洲av嫩草精品影院| 成年av动漫网址| 国产伦理片在线播放av一区 | 男人舔奶头视频| 亚洲精品国产成人久久av| 好男人在线观看高清免费视频| 桃色一区二区三区在线观看| 联通29元200g的流量卡| 亚洲一区二区三区色噜噜| 高清日韩中文字幕在线| 日韩av在线大香蕉| 一卡2卡三卡四卡精品乱码亚洲| 国产探花极品一区二区| www日本黄色视频网| 最近中文字幕高清免费大全6| 青春草国产在线视频 | 亚洲精品亚洲一区二区| 色综合站精品国产| 午夜激情福利司机影院| 波多野结衣巨乳人妻| 精品一区二区三区人妻视频| 亚洲18禁久久av| 禁无遮挡网站| 国内精品久久久久精免费| 亚洲第一区二区三区不卡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 91麻豆精品激情在线观看国产| 免费观看的影片在线观看| 亚洲人成网站在线观看播放| 久久久久久久久久黄片| 亚洲av不卡在线观看| 12—13女人毛片做爰片一| 亚洲七黄色美女视频| 亚洲在线观看片| 免费观看a级毛片全部| 久久久色成人| 欧美最新免费一区二区三区| 在线观看美女被高潮喷水网站| 亚洲天堂国产精品一区在线| 日韩中字成人| 国产亚洲欧美98| 免费观看在线日韩| 国产精品女同一区二区软件| 久久人妻av系列| 久久99精品国语久久久| 亚洲成人久久爱视频| 黄色日韩在线| 狠狠狠狠99中文字幕| 国产探花在线观看一区二区| 久久久久久伊人网av| 99热这里只有是精品在线观看| 在线天堂最新版资源| 深爱激情五月婷婷| av专区在线播放| 午夜a级毛片| 国产中年淑女户外野战色| 成人亚洲欧美一区二区av| 中国国产av一级| av在线老鸭窝| 男人舔女人下体高潮全视频| 美女 人体艺术 gogo| 插逼视频在线观看| 天美传媒精品一区二区| 亚洲人成网站在线观看播放| 国产av不卡久久| 欧洲精品卡2卡3卡4卡5卡区| 91aial.com中文字幕在线观看| 99久久精品国产国产毛片| 内射极品少妇av片p| 久久精品影院6| 校园春色视频在线观看| 日本五十路高清| 国内精品宾馆在线| 人体艺术视频欧美日本| 日日摸夜夜添夜夜爱| 久久久欧美国产精品| 日日撸夜夜添| 日本在线视频免费播放| 18禁黄网站禁片免费观看直播| 久99久视频精品免费| 婷婷精品国产亚洲av| 一级二级三级毛片免费看| 啦啦啦观看免费观看视频高清| 26uuu在线亚洲综合色| 国产黄色视频一区二区在线观看 | 国产精品一及| 精品99又大又爽又粗少妇毛片| 波多野结衣高清无吗| 午夜免费激情av| 伊人久久精品亚洲午夜| 欧美一区二区国产精品久久精品| 国产成人a区在线观看| 看非洲黑人一级黄片| 建设人人有责人人尽责人人享有的| 国产成人精品久久久久久| 高清不卡的av网站| 亚洲国产日韩一区二区| 色视频在线一区二区三区| 国产av一区二区精品久久| 色婷婷av一区二区三区视频| 精品99又大又爽又粗少妇毛片| 久久99精品国语久久久| 国产乱来视频区| 我的老师免费观看完整版| 毛片一级片免费看久久久久| 免费大片黄手机在线观看| 激情五月婷婷亚洲| 考比视频在线观看| 国产亚洲欧美精品永久| 精品一区二区三卡| 18禁裸乳无遮挡动漫免费视频| 三上悠亚av全集在线观看| 免费人妻精品一区二区三区视频| 色婷婷久久久亚洲欧美| 午夜福利在线观看免费完整高清在| 亚洲精品av麻豆狂野| kizo精华| 久久影院123| 秋霞伦理黄片| 国产男女内射视频| 少妇精品久久久久久久| 97超视频在线观看视频| 97在线人人人人妻| 亚洲av男天堂| 涩涩av久久男人的天堂| 亚洲av男天堂| 91成人精品电影| 亚洲美女视频黄频| 三上悠亚av全集在线观看| 街头女战士在线观看网站| 黄色视频在线播放观看不卡| 久久久久久久久久久久大奶| 亚洲欧美一区二区三区国产| 男女啪啪激烈高潮av片| 少妇 在线观看| 国产免费一级a男人的天堂| 午夜福利影视在线免费观看| 精品国产一区二区三区久久久樱花| 一二三四中文在线观看免费高清| 九草在线视频观看| av国产精品久久久久影院| 另类亚洲欧美激情| av天堂久久9| 秋霞伦理黄片| 一级毛片电影观看| 两个人免费观看高清视频| 中文精品一卡2卡3卡4更新| 一个人免费看片子| 国产伦精品一区二区三区视频9| 美女视频免费永久观看网站| 制服诱惑二区| 亚洲av综合色区一区| 亚洲精品亚洲一区二区| 韩国av在线不卡| 91久久精品电影网| 高清欧美精品videossex| 亚洲成人av在线免费| 日日爽夜夜爽网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日本黄色日本黄色录像| 视频中文字幕在线观看| 99国产精品免费福利视频| 国产精品女同一区二区软件| 亚洲在久久综合| 国产综合精华液| 亚洲无线观看免费| 国产成人av激情在线播放 | 高清av免费在线| 国产色婷婷99| 男女边吃奶边做爰视频| 一区二区日韩欧美中文字幕 | 最近中文字幕高清免费大全6| 国产成人一区二区在线| 久久青草综合色| 免费看光身美女| 欧美性感艳星| 亚洲精品美女久久av网站| 天堂8中文在线网| 人人妻人人爽人人添夜夜欢视频| 久久青草综合色| 欧美日本中文国产一区发布| 美女福利国产在线| 久久女婷五月综合色啪小说| 午夜福利影视在线免费观看| 在线看a的网站| 国产片特级美女逼逼视频| 成人毛片60女人毛片免费| 热99国产精品久久久久久7| 永久网站在线| 男人爽女人下面视频在线观看| 寂寞人妻少妇视频99o| 中文字幕精品免费在线观看视频 | 国产欧美另类精品又又久久亚洲欧美| 夜夜爽夜夜爽视频| 久久久精品94久久精品| 亚洲性久久影院| 国产综合精华液| a级片在线免费高清观看视频| 少妇被粗大猛烈的视频| 亚洲精品456在线播放app| 亚洲熟女精品中文字幕| 国产爽快片一区二区三区| 亚洲av成人精品一二三区| 欧美成人午夜免费资源| 色吧在线观看| 国产色婷婷99| 国产亚洲最大av| 中国美白少妇内射xxxbb| 成人漫画全彩无遮挡| 在线播放无遮挡| 成人18禁高潮啪啪吃奶动态图 | 大片电影免费在线观看免费| 另类亚洲欧美激情| 观看美女的网站| 国产一区二区三区综合在线观看 | 欧美 日韩 精品 国产| 最黄视频免费看| 九九爱精品视频在线观看| 亚洲国产av新网站| 99久久人妻综合| 中国三级夫妇交换| 青春草视频在线免费观看| 男女边吃奶边做爰视频| 人妻一区二区av| 啦啦啦中文免费视频观看日本| 五月开心婷婷网| 91精品伊人久久大香线蕉| 国产白丝娇喘喷水9色精品| 毛片一级片免费看久久久久| 亚洲第一区二区三区不卡| 男人爽女人下面视频在线观看| 夫妻性生交免费视频一级片| 色婷婷久久久亚洲欧美| 最新的欧美精品一区二区| 亚洲成人一二三区av| 国产极品粉嫩免费观看在线 | 哪个播放器可以免费观看大片| 999精品在线视频| 最黄视频免费看| 久久精品国产鲁丝片午夜精品| 中国三级夫妇交换| 考比视频在线观看| 日本爱情动作片www.在线观看| 九草在线视频观看| 最近手机中文字幕大全| 久久免费观看电影| 啦啦啦啦在线视频资源| 国产欧美日韩综合在线一区二区| 国产亚洲精品第一综合不卡 | 一二三四中文在线观看免费高清| 全区人妻精品视频| 亚洲欧美中文字幕日韩二区| 两个人的视频大全免费| 在线观看www视频免费| 久久精品久久久久久噜噜老黄| 伊人久久国产一区二区| 精品久久蜜臀av无| 国产精品国产av在线观看| 免费大片18禁| 黄色配什么色好看| 最近手机中文字幕大全| 亚洲精品亚洲一区二区| 18禁动态无遮挡网站| 哪个播放器可以免费观看大片| 女的被弄到高潮叫床怎么办| 亚洲av.av天堂| 精品人妻一区二区三区麻豆| 一区二区av电影网| 久久狼人影院| 人人澡人人妻人| 免费大片黄手机在线观看| 亚洲国产最新在线播放| 国产永久视频网站| 91精品国产九色| 亚洲美女视频黄频| 国产淫语在线视频| 黄色怎么调成土黄色| 免费av不卡在线播放| 一区二区三区乱码不卡18| 制服丝袜香蕉在线| 一边摸一边做爽爽视频免费| 少妇丰满av| 欧美精品高潮呻吟av久久| 久久久精品94久久精品| 黄色一级大片看看| 免费日韩欧美在线观看| 成人手机av| 亚洲精品乱码久久久v下载方式| 18禁裸乳无遮挡动漫免费视频| 成人午夜精彩视频在线观看| av在线播放精品| 99视频精品全部免费 在线| 国产精品一区www在线观看| 午夜av观看不卡| 极品少妇高潮喷水抽搐| 国产片内射在线| 欧美激情极品国产一区二区三区 | 国产亚洲精品第一综合不卡 | 国产乱来视频区| 免费播放大片免费观看视频在线观看| 男人添女人高潮全过程视频| 观看美女的网站| 99视频精品全部免费 在线| 狂野欧美激情性bbbbbb| 婷婷色综合大香蕉| av在线老鸭窝| 成人影院久久| 国产男女超爽视频在线观看| 日本欧美国产在线视频| 日本av免费视频播放| 18禁观看日本| 搡女人真爽免费视频火全软件| 天堂8中文在线网| 韩国高清视频一区二区三区| 久久99一区二区三区| 最后的刺客免费高清国语| 最近中文字幕2019免费版| av国产精品久久久久影院| 精品人妻熟女毛片av久久网站| 国产成人av激情在线播放 | 伦精品一区二区三区| 亚洲av电影在线观看一区二区三区| 免费少妇av软件| 国产一区二区在线观看av| 蜜桃久久精品国产亚洲av| 美女主播在线视频| 91精品国产九色| 婷婷色综合大香蕉| 亚洲av不卡在线观看| 精品国产乱码久久久久久小说| 女的被弄到高潮叫床怎么办| 亚洲精品aⅴ在线观看| 中文字幕av电影在线播放| 欧美激情极品国产一区二区三区 | 十分钟在线观看高清视频www| 久久久久久人妻| 国产国语露脸激情在线看| 国产深夜福利视频在线观看| 国产成人91sexporn| 久久精品国产鲁丝片午夜精品| 亚洲国产精品专区欧美| 久久精品国产鲁丝片午夜精品| 精品一区二区免费观看| 亚洲美女搞黄在线观看| 国产成人免费观看mmmm| 一个人免费看片子| 午夜激情久久久久久久| 天天影视国产精品| 精品久久久久久久久av| 伦理电影大哥的女人| 黄色视频在线播放观看不卡| 久久久久精品久久久久真实原创| 在线观看免费视频网站a站| 啦啦啦视频在线资源免费观看| 国产成人精品无人区| 18禁动态无遮挡网站| 大片电影免费在线观看免费| 国产精品一区二区三区四区免费观看| 黄色视频在线播放观看不卡| 草草在线视频免费看| 久久久欧美国产精品| 午夜91福利影院| 只有这里有精品99| 国产高清三级在线| 久久久久久久精品精品| 国产免费福利视频在线观看| 亚洲国产成人一精品久久久| 一级片'在线观看视频| 国产成人精品福利久久| 最近的中文字幕免费完整| 菩萨蛮人人尽说江南好唐韦庄| 午夜视频国产福利| 丝袜美足系列| 免费人妻精品一区二区三区视频| 国产高清三级在线| av在线播放精品| 精品人妻偷拍中文字幕| 亚洲国产精品国产精品| 美女xxoo啪啪120秒动态图| 日本免费在线观看一区| 亚洲精品中文字幕在线视频| 又粗又硬又长又爽又黄的视频| 大香蕉久久网| 狂野欧美白嫩少妇大欣赏| 美女国产视频在线观看| 日日摸夜夜添夜夜添av毛片| 一本大道久久a久久精品| 欧美日韩视频精品一区| 大又大粗又爽又黄少妇毛片口| 啦啦啦中文免费视频观看日本| 亚洲av欧美aⅴ国产| 各种免费的搞黄视频| 色5月婷婷丁香| 色婷婷久久久亚洲欧美| 日韩不卡一区二区三区视频在线| 亚洲精品一二三| 免费观看的影片在线观看| 亚洲美女黄色视频免费看| 亚洲欧美色中文字幕在线| 一级二级三级毛片免费看| 国产免费福利视频在线观看| 国产爽快片一区二区三区| 国产高清国产精品国产三级| 成年美女黄网站色视频大全免费 | 自拍欧美九色日韩亚洲蝌蚪91| 欧美激情极品国产一区二区三区 | 午夜福利,免费看| 中文乱码字字幕精品一区二区三区| 日韩不卡一区二区三区视频在线| 欧美老熟妇乱子伦牲交| 老司机影院成人| 国产精品秋霞免费鲁丝片| 人妻一区二区av| 曰老女人黄片| 日韩制服骚丝袜av| 亚洲人成网站在线观看播放| 春色校园在线视频观看| 免费观看a级毛片全部| av视频免费观看在线观看| 最近手机中文字幕大全| 欧美bdsm另类| 久久亚洲国产成人精品v| 亚洲精品日本国产第一区| 日韩制服骚丝袜av| 在线精品无人区一区二区三| 简卡轻食公司| 日本vs欧美在线观看视频| 精品人妻熟女毛片av久久网站| 最近2019中文字幕mv第一页| 国产精品秋霞免费鲁丝片| 国产伦理片在线播放av一区| 国产片特级美女逼逼视频| 色婷婷av一区二区三区视频| 国产在线视频一区二区|