• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mg-doped layered oxide cathode for Na-ion batteries

    2022-06-29 08:56:40YuejunDing丁月君FeixiangDing丁飛翔XiaohuiRong容曉暉YaxiangLu陸雅翔andYongShengHu胡勇勝
    Chinese Physics B 2022年6期

    Yuejun Ding(丁月君) Feixiang Ding(丁飛翔) Xiaohui Rong(容曉暉)Yaxiang Lu(陸雅翔) and Yong-Sheng Hu(胡勇勝)

    1Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences,Beijing 100190,China

    Keywords: copper redox,layered oxide,cathode,Na-ion batteries,energy storage

    1. Introduction

    Li-ion batteries (LIBs) are the optimum choice for portable electronic devices and electric vehicles due to the high energy density and energy conversion efficiency. However,the energy density is not the primary consideration when it comes to large-scale or stationary electrical energy storage systems. Instead,Na-ion batteries(NIBs)as a helpful complement have drawn increasing interest owing to the abundance and low cost of sodium resources, as well as the similar Na+storage mechanism to that of the LIBs.[1,2]Extensive efforts have been made and improve the comprehensive performance of NIBs.[3–5]It is of great importance for the improvement of the performance of NIBs to explore electrode materials with high capacity, high voltage, and excellent cycle stability.[6,7]Layered transition metal(TM)oxides(NaxTMO2)are an important type of cathode materials due to their easy synthesis,remarkable Na+intercalation/deintercalation reversibility,excellent diffusion kinetics, and high theoretical capacity.[8–10]Driven by the urgent demand for electrode materials with high energy density,long-cycling stability and low-cost in the commercial application of NIBs,many cathode materials with superior electrochemical performance have been designed and developed in recent years.[6,11,12]

    Cu2+was firstly found to be electrochemically active in P2-Na0.68Cu0.34Mn0.66O2compound.[13]Compared with other reported redox couple of +2/+3 valence in layered oxides, such as Ni3+/Ni2+, the advantage of Cu3+/Cu2+redox couple lies in its higher reaction potential and relatively low-cost. Subsequently, a series of Cu-containing layered oxides have been developed.[14–31]It was found that the Cu2+substitution not only contributes to charge compensation,[14,15,17,20,21]but also improves cycling performance via suppressing phase transition,[22,23,25,26]or mitigating TM dissolution,[27,28]which enhance Na+diffusion kinetics and promote the rate performance of the cathode materials.[29–31]However, among the Cu-contained materials reported above, only part of the Cu3+/Cu2+redox couple participated in the redox reaction, and the activity of Cu3+/Cu2+redox for this type of materials needs to be further improved. The previous studies showed that Mg2+substitution generally contributes to stabilizing the crystal structure. For example, Na[Ni4/9Mn1/3Mg1/18Ti1/6]O2goes through more continuous phase transitions and lattice parameter variation than the undoped one;[32]Mg dopant in O3-NaMg0.05[Ni1/3Fe1/3Mn1/3]0.95O2suppresses the occurrence of irreversible phase transitions as well as structural degradation;[33]Mg doped P3-Na2/3Ni1/4Mg1/12Mn2/3O2is stable against water and air.[34]However, to date, there is yet to be a systematic study on the effect of Mg-doping on the electronic structure of the layered oxides cathode.

    Compared with the P2-type layered oxides, the O3-type layered oxides have a considerably higher initial interlayer Na+content and thus can provide more reversible Na+de-intercalation and higher initial Coulombic efficiency. This is crucial for improving the reversible capacity of the Na-ion full-cell.[35]Herein, we report a novel Mg-doped O3-type Cu–Fe–Mn based layered oxide,O3-Na0.90Mg0.08Cu0.22Fe0.30Mn0.40O2(abbreviated as NMCFM), with more reversible intercalation/deintercalation of Na+compared with undoped O3-Na0.90Cu0.22Fe0.30Mn0.48O2(abbreviated as NCFM).[36]This work reveals, for the first time, that Mg2+doping could effectively promote the electrochemistry of the Cu3+/Cu2+redox,thus increasing the discharge voltage in O3-type materials. Based on the analysis ofin situx-ray diffraction (XRD) result, we found that the irreversible phase transition occurring at higher-voltage gives rise to the significantly increased polarization and capacity fading.By reducing the charge cutoff voltage to 3.85 V,we found that NMCFM still delivered a reversible capacity of 100 mAh/g with long-cycling stability.

    2. Experimental details

    2.1. Materials synthesis

    The O3-Na0.90Mg0.08Cu0.22Fe0.30Mn0.40O2and the referential sample O3-Na0.90Cu0.22Fe0.30Mn0.48O2were synthesized by a simple solid-state reaction at 850°C in air atmosphere using precursors of Na2CO3(Alfa, 99.5%), MgO(Aladdin, 99.9%), CuO (Aladdin, 99.9%), Fe2O3(Aladdin,99.8%),and MnO2(Aladdin,99.5%).

    2.2. Structure and morphology characterization

    The XRD patterns were collected on a Bruker-AXS D8 Advance instrument using CuKαradiation. The structural refinement was performed by Rietveld refinements using the Fullprof suite. The special cell forin situXRD experiment during the first charge and discharge was assembled with the Al foil as the x-ray window and current collector. The actual chemical composition of the final materials was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES, Shimadzu, ICPS-8100). Scanning electron microscopy (SEM) measurements were carried out on a Hitachi S-4800(10 kV).

    2.3. Electrochemical characterization

    The working cathodes were fabricated by mixing active material with carbon nanotube and polytetrafluoroethylene(in a weight ratio of 8:1:1),which were rolled into thin films with the loading mass of the active material of 4–7 mg/cm2. The prepared electrodes were dried at 100°C under vacuum for 12 h and then were fabricated into CR2032 coin-type cells in an argon-filled glove box(H2O,O2<0.1 ppm). Commercial glass fibers and sodium metal were employed as the separator and counter/reference electrode,respectively. 1 M NaClO4in propylene carbonate/ethylene carbonate/dimethyl carbonate(PC/EC/DMC=1:1:1 in volume) with fluoroethylene carbonate (FEC, 2% in volume) was used as the electrolyte. The galvanostatic charge and discharge measurements were carried out on a Neware CT4000 battery test system in various voltage ranges and current rates under room temperature,and a rate of 1 C corresponding to 100 mA/g. The CV tests were performed on an electrochemical workstation CHI 760e in the voltage range of 2.4–3.9 V or 2.4–4.5 V vs.Na+/Na at various scan rates. GITT was measured by applying the repeated current pulses for 30 min at a current density of 15 mA/g followed by relaxation for 2 h. The electrochemical impedance spectroscopy(EIS)of the coin cells was recorded by electrochemical workstation CHI 760e in the discharged state of 2.4 V at room temperature between 1 MHz and 10 mHz with an AC voltage of 5 mV.

    3. Results and discussion

    The Mg2+doped NMCFM could be synthesized by means of solid-state reaction at 850°C in air atmosphere. As shown in Fig.1(a),NMCFM was characterized as a typicalα-NaFeO2structure,belonging to theR-3mspace group,similar to NCFM.A few weak diffraction peaks in XRD spectrum of NMCFM corresponded to CuO impurities. According to the XRD refinement result, part of the Mn3+with a smaller ion radius was replaced by Mg2+with a larger ion radius(0.62 °A vs. 0.72 °A). The lattice parametera=2.96877 °A increased whilec=16.20971 °A decreased comparing with the lattice parameter of NCFM(a=2.9587 °A,c=16.3742 °A).The ICP results confirmed that stoichiometric ratio of various elements was nearly the same as the designed one. Moreover,the chemical valence state of Mn in the material could be calculated to be +4 based on the electroneutrality principle. Evidently,the design objective material with free of Mn3+was achieved,demonstrating that the Mg2+was a good alternative to replace Mn3+.

    Furthermore, the size and morphology of NMCFM particles were studied by SEM, showing a particle size ranged from 1 μm to 3 μm. Meanwhile,almost all the particles were polyhedral and plate-like with smooth surfaces. Based on the energy dispersive spectroscopy(EDS)results(Fig.1(b)), Cu,Fe, Mn and Mg elements were uniformly distributed in the material bulk, indicating that Mg ions were uniformly doped into NMCFM.

    Galvanostatic charge–discharge test was carried out on NMCFM at a current rate of 0.2 C in Na-ion half-cells.The first-cycles of charging and discharging curves at different voltage intervals were compared, as shown in Fig. 2(a),showing that the initial Coulombic efficiency decreases as the charge cut-off voltage increases. In addition, the polarization in a narrow voltage range is significantly reduced in comparison to that in a wider voltage window. It is possibly related to the irreversible migration of Fe4+into the Na+layer upon increasing Fe3+/Fe4+redox reaction,which deteriorates the Na+diffusion dynamics.[20,37]Besides,when the charging voltage was above 4.0 V,a second voltage platform appeared,indicating another phase transformation occurred in the highvoltage range after the O3-P3 two-phase reaction. In consequence,both the reactions mentioned above may directly lead to the increase of polarization.

    Cyclic voltammetry (CV) was employed to compare the kinetics property of these two oxide electrodes. As shown in Fig. 2(b), both oxide cathodes were tested with the potential ranges of 2.4–3.9 V using scan rates of 0.08 mV/s, demonstrating good reversibility in the first two cycles. A pair of reversible redox peaks(at 3.203 V and 3.014 V)are shown in the cyclic voltammogram of NCMFM, and a similar pair of reversible redox peaks(at 3.160 V and 2.941 V)are also displayed for NCFM.The redox peak potentials of NMCFM are higher than those of NCFM,indicating that Mg doping could increase the reaction potential of the oxide cathode. Furthermore, the electrochemical polarization (0.189 V) calculated between the redox peaks of NMCFM is also smaller than that of NCFM(0.219 V),indicating that Mg doping could enhance the phase stability as well.

    It can be seen from Figs. 2(c) and 2(d), NMCFM delivers a reversible capacity of 107 mAh/g in the voltage range of 2.4–3.9 V, corresponding to the reversible intercalation/deintercalation of 0.43 Na+,with high initial Coulombic efficiency of 92%. Whereas within the same voltage interval, NCFM only delivers a reversible capacity of 80 mAh/g,corresponding to the reversible intercalation/deintercalation of 0.32 Na+. Similarly, in the voltage range of 2.4–4.0 V,NMCFM and NCFM respectively deliver a reversible capacity of 117.7 mAh/g and 90 mAh/g, corresponding to the reversible intercalation/deintercalation of 0.47 and 0.37 Na+ions. Therefore, compared to NCFM, additional 0.10 Na+ions are available for NMCFM, resulting in the specific energy of 347.9 Wh/kg and 262.6 Wh/kg in the voltage range of 2.4–3.9 V,as well as 394.4 Wh/kg and 295.9 Wh/kg in the voltage range of 2.4–4.0 V for NMCFM and NCFM, respectively.As shown in Fig.2(e),the NMCFM cathode can deliver a highly reversible capacity of~100 mAh/g in the voltage range of 2.4–3.85 V.As for the rate performances in the voltage range of 2.4–3.9 V, the reversible capacities of NMCFM are 107.3 mAh/g, 101.4 mAh/g, 93.3 mAh/g, 86.1 mAh/g,79 mAh/g and 65 mAh/g at 0.1 C,0.2 C,0.5 C,1 C,2 C and 5 C(Fig.3(a)),respectively. In comparison,the reversible capacities of NCFM are 88.1 mAh/g,83.6 mAh/g,77.3 mAh/g,74.2 mAh/g,71 mAh/g and 64.1 mAh/g at 0.1 C,0.2 C,0.5 C,1 C,2 C and 5 C(Fig.3(b)),respectively. As a result,it could be concluded that Mg2+doping contributes to the improvement of the electrochemical activity of Cu3+/Cu2+redox.Furthermore,as shown in Figs.3(c)–3(d),NMCFM exhibited outstanding cyclability with capacity retention of 88% after 200 cycles at 0.2 C in 2.4–3.85 V; even at the higher rate of 1 C,75%capacity was still retained after 500 cycles.[11]

    In situx-ray diffraction characterization was performed in order to capture the structural evolution process of NMCFM during the Na+insertion and extraction process. The correspondingin situXRD spectra were collected during the initial charge and discharge process at the rate of 0.1 C in the voltage range of 2.4–4.0 V and are shown in Fig. 4. When Na+extraction amountxwas lower than 0.1,or between 0.22 and 0.45,the material maintained O3 and P3 phase structures,respectively. Meanwhile, the diffraction peak(00l)shifted to a lower angle as the charging voltage increased. Evidently,along with the content of interlayered Na+decreased,the electrostatic repulsion between TMO2layers would increase,leading to an increase in the interlayer spacing along thec-axis.The single-phase solid solution reaction was consistent with electrochemical behavior in the corresponding interval of voltage. When the Na+extraction amountxwas in the range from 0.12 to 0.22, the intensity of (003), (006) and (104) diffraction peaks that belonged to O3 phase declined gradually; in the meantime, the (003), (006) and (105) diffraction peaks that belonged to P3 phase started to appear,which implies O3 phase and P3 phase coexist in this process.[38]When the deintercalated Na+ion amount exceeded 0.45,the(00l)diffraction peaks moved towards a higher angle.[38]This might be due to the crystal structure starting to shrink upon the formation of more Na+vacancies. Furthermore,the(002)diffraction peak belonging to a new phase was found,which was identified as the OP2-like phase.[32]What is more, the intensities of various diffraction peaks dramatically decreased with peak-width broadening,which is due to a larger cubic deformation of OP2-like phase. Moreover, either the lattice distortion or the irreversible migration of Fe4+to the Na+layer could hinder the Na+diffusion,which is consistent with the finding of the significant decline ofDNa+calculated by GITT.In short,during the initial charge process,the layered oxide cathode underwent the phase transformation of O3→P3→OP2-like, meanwhile the discharge process displayed an opposite phase transformation. However, when it was discharged to 2.4 V, the (003)diffraction peak angle of reformed O3 phase was lower than that of the pristine sample,which implies the Na+ion content reduced slightly after the initial insertion and extraction cycle.

    GITT is a common electrochemical technique that is used for analyzing the diffusion ability of Na+in electrode materials. As can be seen in Fig. 5(a), the apparent diffusion coefficientDNa+is little changed in the voltage range of 2.4–3.9 V, reasonably maintaining at the 10-12cm2/s order of magnitudes.[39]However,DNa+declines sharply in the voltage window ranged from 3.9 V to 4.5 V,which decreases to below 10-13cm2/s especially when it is charged to above 4.15 V.The reason is that Na+diffusion is severely hampered due to the generation of a new phase.[40]Furthermore,EIS of the fabricated coin cells consisting of NMCFM electrodes was measured and analyzed after the first cycle in the voltage ranges of 2.4–3.85 V and 2.4–4.5 V,respectively. It is obvious that the electrode cycled in the voltage range of 2.4–3.85 V exhibits lower resistance than the electrode cycled in the voltage range of 2.4–4.5 V,suggesting the reduced Na+diffusion resistance and charge-transfer resistance when cycled in narrow voltage range. These results suggest that Mg2+doping stabilizes the layered structures in a suitable voltage range, thus enhancing the electrochemical properties of the layered oxides. Our findings from the systematic studies on the influence of doping metal are instructive and will stimulate further research for enhancing the structural stability and electrochemical performance of the O3-type layered oxide cathode at higher voltages.

    We also assembled full cells with hard carbon (HC) as the anode to demonstrate the excellent electrochemical performance of the NMCFM cathode. Figures 6(a) and 6(b) show that a reversible storage capacity of~92 mAh/g(based on the mass of cathode active material in the cell)was achieved in the voltage range of 0.5–3.85 V at 0.1 C.The specific energy density was calculated to be 262 Wh/kg based on the total mass of cathode and anode active materials. The reversible capacities were 70 mAh/g and 47 mAh/g at the rates of 2 C and 5 C(Fig.6(a)),respectively. The cell also presented excellent cycling stability and the capacity retention was 96% after 80 cycles at 1 C rate. Thus,the high energy density and cycle stability revealed in the full cells stand a good chance to meet the practical applications and commercial demands henceforward.

    4. Conclusions

    In summary, we reported an O3-type Mg2+-doped NMCFM (Na0.90Mg0.08Cu0.22Fe0.30Mn0.40O2) cathode material without Mn3+. The XRD and ICP results indicated that Mg2+is a good alternative to replace Mn3+, which is helpful to increase the reversible specific capacity.Both the SEM and EDS results further illustrated the doped element Mg2+was distributed uniformly. Thein situXRD data demonstrated a reversible O3→P3→OP2-like phase→P3→O3 transformation during the initial charge and discharge process in the voltage range of 2.4–4.0 V.Combined with the GITT analysis,the formation of OP2-like phase at high voltage probably contributes to the reduction ofDNa+, leading to the reversibility of Na+intercalation/deintercalation fading eventually. In the voltage range of 2.4–4.0 V, NMCFM delivered a reversible capacity of 118 mAh/g at 0.2 C,which is significantly higher than that of undoped NCFM.Through limiting the voltage within 2.4–3.85 V,the NMCFM cathode exhibited the capacity retention of 88%after 200 cycles at 0.2 C,75%after 500 cycles at 1 C.As a result,considering the involvement of Cu3+/Cu2+redox couple in the charge/discharge process, it can be concluded that Mg2+doping contributes to improve the electrochemical activity of Cu3+/Cu2+. In full cells, it provides a reversible storage capacity of around~92 mAh/g, achieving a specific energy density of 262 Wh/kg with the capacity retention of 96% after 80 cycles at the rate of 1 C. The NMCFM with high specific capacity and good cycling stability stands a good chance to meet the practical applications and commercial demands henceforward.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 51725206, 52122214, and 52072403), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA21070500),Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2020006), and Beijing Municipal Natural Science Foundation, China (Grant No.2212022).

    69av精品久久久久久| 国产伦精品一区二区三区视频9 | 精品乱码久久久久久99久播| 99热只有精品国产| 变态另类丝袜制服| 国产精品精品国产色婷婷| 超碰av人人做人人爽久久 | 在线观看免费午夜福利视频| 久久久国产成人免费| 亚洲国产精品成人综合色| 国内毛片毛片毛片毛片毛片| 搡老妇女老女人老熟妇| 久久香蕉国产精品| 亚洲欧美一区二区三区黑人| 亚洲精华国产精华精| 国产精华一区二区三区| 久99久视频精品免费| 久久午夜亚洲精品久久| 欧美色欧美亚洲另类二区| 午夜福利成人在线免费观看| 日本一本二区三区精品| 欧美绝顶高潮抽搐喷水| 国产极品精品免费视频能看的| 免费看a级黄色片| 国产免费av片在线观看野外av| 亚洲无线在线观看| 国产精品日韩av在线免费观看| 狠狠狠狠99中文字幕| 精品久久久久久久末码| 1024手机看黄色片| 国产精品嫩草影院av在线观看 | 脱女人内裤的视频| 国产伦精品一区二区三区四那| 一级毛片高清免费大全| 少妇熟女aⅴ在线视频| 精品不卡国产一区二区三区| 国产高潮美女av| 人人妻人人澡欧美一区二区| 91麻豆精品激情在线观看国产| 男女视频在线观看网站免费| 国产精品 欧美亚洲| www日本在线高清视频| 2021天堂中文幕一二区在线观| 九九热线精品视视频播放| 国产真实乱freesex| 人妻丰满熟妇av一区二区三区| 国产一级毛片七仙女欲春2| 久久精品国产清高在天天线| 真人一进一出gif抽搐免费| 国产 一区 欧美 日韩| 欧美区成人在线视频| 精品国产美女av久久久久小说| 夜夜爽天天搞| 久久国产精品人妻蜜桃| 大型黄色视频在线免费观看| 午夜福利免费观看在线| 久久草成人影院| 特级一级黄色大片| 91av网一区二区| 免费大片18禁| 亚洲国产中文字幕在线视频| 日本黄色视频三级网站网址| 久久久久久国产a免费观看| 熟女人妻精品中文字幕| 国产伦在线观看视频一区| 女人高潮潮喷娇喘18禁视频| av视频在线观看入口| 成人18禁在线播放| 国产黄片美女视频| 岛国视频午夜一区免费看| 日本一二三区视频观看| 真实男女啪啪啪动态图| 91字幕亚洲| 久久精品综合一区二区三区| 女人被狂操c到高潮| 免费看光身美女| 中文字幕人成人乱码亚洲影| 国产精品久久久久久人妻精品电影| 亚洲国产中文字幕在线视频| 夜夜看夜夜爽夜夜摸| 美女高潮喷水抽搐中文字幕| 热99re8久久精品国产| 在线播放无遮挡| 男女午夜视频在线观看| 国产精品久久视频播放| 免费观看精品视频网站| 99国产极品粉嫩在线观看| 亚洲熟妇熟女久久| 非洲黑人性xxxx精品又粗又长| 午夜日韩欧美国产| 啦啦啦免费观看视频1| 69av精品久久久久久| 国产久久久一区二区三区| 亚洲av二区三区四区| 国产欧美日韩一区二区三| 十八禁人妻一区二区| 国产色爽女视频免费观看| 我的老师免费观看完整版| 床上黄色一级片| 国产麻豆成人av免费视频| 免费av观看视频| 亚洲美女黄片视频| 欧美激情在线99| 国产精品永久免费网站| 国产亚洲精品综合一区在线观看| 在线观看免费视频日本深夜| 此物有八面人人有两片| 中文字幕人成人乱码亚洲影| 亚洲av免费在线观看| 97超视频在线观看视频| 日本a在线网址| 18禁裸乳无遮挡免费网站照片| 精品熟女少妇八av免费久了| 老司机福利观看| 99久久精品一区二区三区| 亚洲国产精品合色在线| 我的老师免费观看完整版| 国产一区二区在线观看日韩 | 少妇人妻精品综合一区二区 | 全区人妻精品视频| 一个人免费在线观看的高清视频| 亚洲精品乱码久久久v下载方式 | 99久久精品国产亚洲精品| 亚洲无线观看免费| 国产精品一及| 国产中年淑女户外野战色| 久久精品亚洲精品国产色婷小说| 国产精品免费一区二区三区在线| 老司机午夜十八禁免费视频| 亚洲专区国产一区二区| 亚洲无线在线观看| 欧美极品一区二区三区四区| 12—13女人毛片做爰片一| 90打野战视频偷拍视频| 亚洲不卡免费看| 亚洲成人免费电影在线观看| 精品久久久久久久毛片微露脸| 国产单亲对白刺激| av福利片在线观看| 国产精品爽爽va在线观看网站| 成年女人毛片免费观看观看9| 国产精品影院久久| 国产精品三级大全| 精品久久久久久成人av| 三级国产精品欧美在线观看| 99re6热这里在线精品视频| 欧美日韩在线观看h| 亚洲欧美日韩卡通动漫| 国产亚洲av片在线观看秒播厂 | 夫妻午夜视频| 久久精品久久久久久久性| 少妇高潮的动态图| 久久久久久伊人网av| 国内精品宾馆在线| 亚洲最大成人中文| 国产国拍精品亚洲av在线观看| 在线免费观看不下载黄p国产| 十八禁网站网址无遮挡 | 国产成人午夜福利电影在线观看| 看非洲黑人一级黄片| 久久国内精品自在自线图片| 伊人久久精品亚洲午夜| 又粗又硬又长又爽又黄的视频| 韩国av在线不卡| 免费无遮挡裸体视频| 国产一区亚洲一区在线观看| 国产一级毛片在线| av网站免费在线观看视频 | 午夜免费男女啪啪视频观看| 亚洲怡红院男人天堂| 中文乱码字字幕精品一区二区三区 | 天天躁日日操中文字幕| 中文字幕av在线有码专区| 国产真实伦视频高清在线观看| 精品久久久久久久末码| 色5月婷婷丁香| 99久久精品热视频| 青春草国产在线视频| 伦理电影大哥的女人| 亚洲18禁久久av| 亚洲精品成人av观看孕妇| 久久久久久久久久久免费av| 色综合站精品国产| 熟妇人妻不卡中文字幕| 国产免费福利视频在线观看| 久久精品久久精品一区二区三区| av黄色大香蕉| 天天躁夜夜躁狠狠久久av| 欧美一区二区亚洲| 午夜激情欧美在线| 免费观看精品视频网站| 最近中文字幕2019免费版| 婷婷色综合大香蕉| 国产黄片视频在线免费观看| 麻豆乱淫一区二区| av在线老鸭窝| 国产高清不卡午夜福利| 日韩精品有码人妻一区| 最近中文字幕高清免费大全6| 免费在线观看成人毛片| 国产淫语在线视频| 欧美不卡视频在线免费观看| av国产免费在线观看| 欧美性感艳星| 99热6这里只有精品| 一级爰片在线观看| 国产老妇女一区| 久久精品国产自在天天线| 一级毛片久久久久久久久女| 青春草视频在线免费观看| 亚洲熟女精品中文字幕| 免费黄色在线免费观看| 欧美三级亚洲精品| 免费观看无遮挡的男女| 亚洲精品一二三| 久久久久久久久大av| 97精品久久久久久久久久精品| 人人妻人人澡人人爽人人夜夜 | av线在线观看网站| 日日啪夜夜撸| 久久久色成人| 美女脱内裤让男人舔精品视频| 欧美性猛交╳xxx乱大交人| 老女人水多毛片| 国产一区二区三区av在线| 亚洲最大成人手机在线| 国产黄片美女视频| 久久久精品94久久精品| 欧美极品一区二区三区四区| 国产精品国产三级专区第一集| 男女视频在线观看网站免费| 国产午夜精品论理片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩av在线大香蕉| 成年av动漫网址| 精品酒店卫生间| 精品国产三级普通话版| 一区二区三区免费毛片| 国产日韩欧美在线精品| 日韩av在线免费看完整版不卡| 18禁在线播放成人免费| 欧美 日韩 精品 国产| 久久久久久久久久久免费av| 我的女老师完整版在线观看| 精品欧美国产一区二区三| 少妇的逼水好多| 婷婷色综合大香蕉| 国语对白做爰xxxⅹ性视频网站| 成人综合一区亚洲| 久久久久久九九精品二区国产| 国产亚洲最大av| 少妇人妻精品综合一区二区| 欧美高清成人免费视频www| 精品一区二区三区人妻视频| 国产精品久久久久久精品电影| 欧美成人一区二区免费高清观看| 日本三级黄在线观看| 国产成人精品福利久久| 国产精品av视频在线免费观看| 搡老妇女老女人老熟妇| 秋霞在线观看毛片| 日韩在线高清观看一区二区三区| 国产三级在线视频| 国产精品女同一区二区软件| 蜜桃亚洲精品一区二区三区| 国产精品一区二区三区四区免费观看| 少妇丰满av| 18禁在线无遮挡免费观看视频| 国产亚洲av片在线观看秒播厂 | 日韩精品有码人妻一区| 国产精品.久久久| 国产免费福利视频在线观看| 亚洲熟妇中文字幕五十中出| 亚洲人与动物交配视频| 亚洲,欧美,日韩| 日韩伦理黄色片| 婷婷色综合www| 99久久精品一区二区三区| 亚洲成人精品中文字幕电影| 色播亚洲综合网| 国产亚洲av片在线观看秒播厂 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 人人妻人人澡欧美一区二区| 亚洲国产欧美人成| 国产精品美女特级片免费视频播放器| 国产在线男女| 亚洲乱码一区二区免费版| 欧美激情在线99| 亚洲不卡免费看| 国产男女超爽视频在线观看| 草草在线视频免费看| 午夜福利视频精品| 在线观看人妻少妇| 亚洲国产精品sss在线观看| 欧美xxxx性猛交bbbb| 夜夜看夜夜爽夜夜摸| 日韩av在线大香蕉| 高清视频免费观看一区二区 | 人妻一区二区av| 国产亚洲午夜精品一区二区久久 | 寂寞人妻少妇视频99o| av卡一久久| 伊人久久精品亚洲午夜| 嫩草影院新地址| 97超碰精品成人国产| 国产亚洲91精品色在线| 国产综合懂色| 我的女老师完整版在线观看| 国产大屁股一区二区在线视频| 最新中文字幕久久久久| 中文字幕制服av| 黄片无遮挡物在线观看| 欧美3d第一页| 黄片无遮挡物在线观看| 女人被狂操c到高潮| 国产黄色免费在线视频| 免费黄色在线免费观看| 婷婷色麻豆天堂久久| 男人爽女人下面视频在线观看| 你懂的网址亚洲精品在线观看| 欧美zozozo另类| 国产伦在线观看视频一区| 91久久精品国产一区二区三区| 精品国内亚洲2022精品成人| 国产国拍精品亚洲av在线观看| 十八禁国产超污无遮挡网站| 亚洲精品乱久久久久久| 亚洲在线观看片| 99热网站在线观看| 国产 一区 欧美 日韩| 日韩制服骚丝袜av| 青春草国产在线视频| 国产黄片美女视频| 18禁在线无遮挡免费观看视频| 免费av观看视频| 婷婷六月久久综合丁香| 国产单亲对白刺激| 3wmmmm亚洲av在线观看| 欧美高清性xxxxhd video| 日本午夜av视频| 一级av片app| 亚洲真实伦在线观看| 51国产日韩欧美| 纵有疾风起免费观看全集完整版 | 波野结衣二区三区在线| 日韩欧美精品免费久久| 一级毛片黄色毛片免费观看视频| 国产亚洲av嫩草精品影院| 高清午夜精品一区二区三区| 国产亚洲精品久久久com| 精品国产一区二区三区久久久樱花 | 联通29元200g的流量卡| 高清av免费在线| 联通29元200g的流量卡| 国产精品日韩av在线免费观看| 男女那种视频在线观看| 亚洲精品乱久久久久久| 精品一区二区三卡| 色综合站精品国产| 日日摸夜夜添夜夜添av毛片| 我要看日韩黄色一级片| 亚洲在久久综合| 欧美一区二区亚洲| 内射极品少妇av片p| 成人漫画全彩无遮挡| 亚洲精品一二三| 亚洲最大成人av| 亚洲人成网站在线观看播放| 乱人视频在线观看| 亚洲无线观看免费| 国产av国产精品国产| 人妻制服诱惑在线中文字幕| 亚洲aⅴ乱码一区二区在线播放| 大香蕉久久网| 在线观看免费高清a一片| 久久久久国产网址| 国产免费视频播放在线视频 | 禁无遮挡网站| 国产一级毛片七仙女欲春2| 免费观看的影片在线观看| 夜夜看夜夜爽夜夜摸| 亚洲精品国产av成人精品| 精品国产露脸久久av麻豆 | 国产黄片美女视频| 亚洲国产最新在线播放| 亚洲第一区二区三区不卡| 最后的刺客免费高清国语| 国产老妇女一区| 婷婷色综合www| 亚洲国产高清在线一区二区三| 一区二区三区乱码不卡18| 欧美日韩一区二区视频在线观看视频在线 | xxx大片免费视频| 免费少妇av软件| 777米奇影视久久| 可以在线观看毛片的网站| 亚洲熟妇中文字幕五十中出| 啦啦啦韩国在线观看视频| 国产男人的电影天堂91| 成人午夜精彩视频在线观看| 亚洲精品国产成人久久av| 免费看不卡的av| 舔av片在线| 亚洲国产日韩欧美精品在线观看| 国产黄色小视频在线观看| 久久鲁丝午夜福利片| 日本爱情动作片www.在线观看| 不卡视频在线观看欧美| 嫩草影院入口| 亚洲电影在线观看av| 在线 av 中文字幕| 日韩精品青青久久久久久| 青春草国产在线视频| 中文欧美无线码| 成人亚洲精品av一区二区| 在线观看一区二区三区| 日日啪夜夜爽| 国产亚洲91精品色在线| 看黄色毛片网站| 成人漫画全彩无遮挡| 国产午夜精品论理片| 一区二区三区四区激情视频| 免费av不卡在线播放| av国产久精品久网站免费入址| 免费观看在线日韩| 国产成人aa在线观看| 亚洲精品,欧美精品| 成人二区视频| 成人国产麻豆网| 国产 一区 欧美 日韩| 国产成年人精品一区二区| 啦啦啦韩国在线观看视频| or卡值多少钱| 人妻制服诱惑在线中文字幕| 国产在视频线精品| 永久免费av网站大全| 国产片特级美女逼逼视频| 男女边摸边吃奶| 青春草国产在线视频| 97人妻精品一区二区三区麻豆| 日日啪夜夜撸| 特级一级黄色大片| 777米奇影视久久| 女的被弄到高潮叫床怎么办| 一个人看的www免费观看视频| 国产亚洲最大av| 国产精品麻豆人妻色哟哟久久 | 免费黄网站久久成人精品| 久久这里只有精品中国| 中文字幕人妻熟人妻熟丝袜美| 一级毛片 在线播放| 国产探花在线观看一区二区| 91久久精品国产一区二区三区| 亚洲无线观看免费| 色播亚洲综合网| 亚洲电影在线观看av| 老司机影院成人| 国产极品天堂在线| 亚洲精品中文字幕在线视频 | 免费在线观看成人毛片| 美女主播在线视频| 亚洲人成网站高清观看| 国产视频首页在线观看| www.av在线官网国产| videossex国产| 免费观看在线日韩| 麻豆精品久久久久久蜜桃| 亚洲精品日韩av片在线观看| 又爽又黄a免费视频| 日本猛色少妇xxxxx猛交久久| 欧美高清成人免费视频www| 亚洲欧美日韩卡通动漫| 国产熟女欧美一区二区| 午夜爱爱视频在线播放| 精华霜和精华液先用哪个| 亚洲美女搞黄在线观看| 午夜激情久久久久久久| 麻豆成人av视频| 卡戴珊不雅视频在线播放| 熟女电影av网| 三级国产精品片| 国产一区二区在线观看日韩| 真实男女啪啪啪动态图| 亚洲最大成人av| 久久久久国产网址| 国产精品嫩草影院av在线观看| 亚洲激情五月婷婷啪啪| 国产精品伦人一区二区| 免费不卡的大黄色大毛片视频在线观看 | 国产免费福利视频在线观看| 人妻少妇偷人精品九色| 黄片wwwwww| 十八禁国产超污无遮挡网站| 亚洲精品国产成人久久av| 国产精品一区二区三区四区免费观看| 18禁裸乳无遮挡免费网站照片| 永久网站在线| 女人被狂操c到高潮| 国产伦精品一区二区三区视频9| 国产淫语在线视频| 午夜亚洲福利在线播放| 国产高清不卡午夜福利| 最近2019中文字幕mv第一页| 少妇人妻一区二区三区视频| 国产综合懂色| 欧美性感艳星| 国产高清不卡午夜福利| 一级黄片播放器| 国产不卡一卡二| 亚洲在线自拍视频| 美女xxoo啪啪120秒动态图| 欧美不卡视频在线免费观看| 亚洲欧美中文字幕日韩二区| 国产真实伦视频高清在线观看| 老师上课跳d突然被开到最大视频| 日本猛色少妇xxxxx猛交久久| 亚洲,欧美,日韩| 最近手机中文字幕大全| 男女边摸边吃奶| 中文字幕免费在线视频6| 九色成人免费人妻av| 中文资源天堂在线| 美女内射精品一级片tv| 神马国产精品三级电影在线观看| 18禁动态无遮挡网站| 久久人人爽人人爽人人片va| 国产伦在线观看视频一区| 婷婷色综合www| 蜜臀久久99精品久久宅男| 18禁动态无遮挡网站| 久久久国产一区二区| 欧美激情国产日韩精品一区| 亚洲四区av| 只有这里有精品99| 日韩欧美国产在线观看| 偷拍熟女少妇极品色| 成人亚洲欧美一区二区av| 免费在线观看成人毛片| 久久99热这里只有精品18| 亚洲丝袜综合中文字幕| 色播亚洲综合网| 国产高潮美女av| 亚洲久久久久久中文字幕| 亚洲av福利一区| 亚洲,欧美,日韩| 日本欧美国产在线视频| 只有这里有精品99| 一级爰片在线观看| 少妇裸体淫交视频免费看高清| 日本免费在线观看一区| 麻豆精品久久久久久蜜桃| www.色视频.com| 亚洲天堂国产精品一区在线| 美女黄网站色视频| 蜜桃久久精品国产亚洲av| 街头女战士在线观看网站| 久久精品夜色国产| 国产女主播在线喷水免费视频网站 | 99久国产av精品| 亚洲熟女精品中文字幕| 如何舔出高潮| 国产伦精品一区二区三区视频9| 精品亚洲乱码少妇综合久久| av国产免费在线观看| 国产精品国产三级国产专区5o| freevideosex欧美| 99热全是精品| 神马国产精品三级电影在线观看| 麻豆精品久久久久久蜜桃| 国产黄色免费在线视频| 免费在线观看成人毛片| 亚洲精品久久久久久婷婷小说| 亚洲欧美一区二区三区国产| 在线观看av片永久免费下载| 水蜜桃什么品种好| 久久热精品热| 亚洲成人久久爱视频| 亚洲精品视频女| 色视频www国产| 街头女战士在线观看网站| 一级av片app| 国产 一区精品| 中文字幕亚洲精品专区| 又大又黄又爽视频免费| 99久久人妻综合| av免费在线看不卡| 国产激情偷乱视频一区二区| 午夜老司机福利剧场| 人人妻人人澡欧美一区二区| 欧美97在线视频| 久久6这里有精品| ponron亚洲| 久久久久久久久久久丰满| 嫩草影院精品99| 欧美xxⅹ黑人| 特大巨黑吊av在线直播| 久久精品综合一区二区三区| 在线a可以看的网站| 啦啦啦啦在线视频资源| 日本猛色少妇xxxxx猛交久久| 人人妻人人澡人人爽人人夜夜 | 男的添女的下面高潮视频| 亚洲精品乱码久久久v下载方式| 国产精品精品国产色婷婷| 欧美三级亚洲精品| 晚上一个人看的免费电影| 久久久精品94久久精品| 国产熟女欧美一区二区| 午夜福利成人在线免费观看| 色综合站精品国产| 精品熟女少妇av免费看| 亚洲精品456在线播放app| 国产一区二区亚洲精品在线观看| 老司机影院毛片| 久久精品久久久久久久性|