• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8

    2022-06-29 08:56:10KangqiaoCheng程康橋BinjieZhou周斌杰CuixiangWang王翠香ShuoZou鄒爍YupengPan潘宇鵬XiaoboHe何曉波JianZhang張健FangjunLu盧方君LeWang王樂YouguoShi石友國andYongkangLuo羅永康
    Chinese Physics B 2022年6期
    關(guān)鍵詞:張健康橋石友

    Kangqiao Cheng(程康橋) Binjie Zhou(周斌杰) Cuixiang Wang(王翠香) Shuo Zou(鄒爍) Yupeng Pan(潘宇鵬)Xiaobo He(何曉波) Jian Zhang(張健) Fangjun Lu(盧方君) Le Wang(王樂)Youguo Shi(石友國) and Yongkang Luo(羅永康)

    1Wuhan National High Magnetic Field Center and School of Physics,Huazhong University of Science and Technology,Wuhan 430074,China

    2Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    3School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    4Shenzhen Institute for Quantum Science and Engineering,and Department of Physics,

    Southern University of Science and Technology,Shenzhen 518055,China

    Keywords: heavy-fermion compounds,Kondo effect,RKKY interaction,quantum critical point

    1. Introduction

    Manipulation and control of the ground states near a quantum critical point (QCP) have attracted tremendous interests in recent decades.[1–11]QCP, the point that separates the quantum-ordered and -disordered states on the phase diagram of a material, is generally achieved by terminating a phase transition continuously at absolute zero, through the application of a certain non-thermal external control parameter, e.g., magnetic field (B), chemical doping (x), physical pressure (p), etc [Fig. 1(a)]. In the vicinity of QCPs, many emergent quantum phenomena may appear, such as heavyelectron, strange metal [or non-Fermi liquid (NFL)], unconventional superconductivity, quantum spin liquid and so on.Heavy-fermion Kondo lattice compounds span a large material basis for exploring QCPs and investigating their unique nature.[1,3–6,8,10,12–14]In this context, the ground state of the system is typically determined by a competition between Kondo effect and Ruderman–Kittel–Kasuya–Yosida (RKKY)interaction:[15]while the RKKY exchange (JRKKY) prefers a long-range magnetic ordering,[16–18]the Kondo effect (TK)tends to screen and quench magnetic moments and thus stabilizes a non-magnetic ground state.[19]A QCP is expected whenJRKKYequals toTK.

    Natural questions concern whether a QCP can be realized in a one-dimensional (1D) or quasi-1D system, and what the nature of such QCPs is if they exist. They remain elusive,because (i) it is generally believed that long-range magnetic order is hard to condensate in 1D systems,[20,21]the concept of QCP therefore seems“meaningless”;(ii)Fermi liquid also breaks down in the 1D limit,[22,23]so it is unclear what the ground state will be on the quantum disordered side;(iii)even in a relatively relax condition where long-range magnetic order might appear, i.e., quasi-1D system, the Kondo coupling between local moments and conduction electrons is weakened due to the incomplete screening network,and furthermore,the inter-chain communication among single-ion Kondo singlets is also severely reduced,[24]therefore, whether sufficiently strong Kondo effect can develop to compete against the RKKY interaction is still an open question;and(iv)so far most of the known heavy-fermion Kondo lattices are three-dimensional or quasi-two-dimensional,while examples of 1D or quasi-1D are rare.[10,25,26]Extensive material basis and proper tuning on the existing candidates are both required to address these issues.

    Recently, Wanget al.reported the synthesis and physical properties of a new quasi-1D candidate Kondo lattice CeCo2Ga8,[27]which crystallizes in the YbCo2Al8-type orthorhombic structure.[28]Most interestingly,the cerium atoms in this compounds form individual chains along thecaxis,and each chain is surrounded by five polyhedral CoGa9cages in theabplane, cf Fig. 1(b). Since the inter-chain Ce–Ce distances(6.5 °A and 7.5 °A)are much longer than the intra-chain distance (4.05 °A), the compound is deemed as a candidate of quasi-1D Kondo lattice. Indeed, further resistivity measurements revealed that coherent Kondo scattering is only observed for electric current parallel toc(ρc),while bothρa(bǔ)andρbremain incoherent down to 2 K, indicating the realization of Kondo chain in CeCo2Ga8,[24]see also in the inset to Fig.2.Specific heat,magnetic susceptibility and μSR measurements confirmed the absence of long-range magnetic ordering down to 70 mK.[27,29]Moreover,NFL behavior appears at low temperature as evidenced by the linear resistivity [ρc(T)~T]and logarithmic specific heat[C/T~–lnT].[27]At sub-Kelvin,C/Ttends to level off,suggesting that Fermi liquid potentially gets restored with a large renormalized effective mass at ultralow temperature, and this is further supported by resistivity and specific heat measurements under pressure or magnetic field. Taken together, these features suggest that CeCo2Ga8likely sits nearby but slightly on the quantum-disordered side of a QCP, seeing the blue dash line in the schematic phase diagram in Fig.1(a). This provides a possible platform to investigate the nature of QCP in the quasi-1D limit.

    In this work, we employed the uniaxial stress (σ) as a control parameter to this quasi-1D Kondo lattice using a set of piezoelectric actuators,[30]and electric transport and thermodynamic properties were studied as a function of strain(ε).Compared to conventional hydrostatic pressure effect that is essentially isotropic,the stress tuning possesses several advantages. First, because the stress effect is uniaxial, presumably it is more straightforward to change the intra-chain distance in such quasi-1D compounds and thus to tune the physical properties more efficiently. Second,one can apply either compressive or tensile stress by a controllable voltage, which enablesin-situtuning either to approach or to depart the QCP.

    2. Experimental details

    Single crystalline CeCo2Ga8was grown by a Ga selfflux method as described previously.[27]The as-grown samples mostly are needle-like with typical length~3 mm alongc-axis,and about 1.5×1.5 mm2in cross-section.Four samples(S1–S4)were prepared in this work. S1 and S2 were carefully polished to make the long side alongc- anda-axes, for measurements of electrical resistivityρcandρa(bǔ),respectively. The forces were applied uniaxially along the electric current by Razorbill Instruments Cryogenic stress cell (FC100), and the magnitude of stress was measured using a pre-calibrated capacitive dilatometer. Heat capacity of CeCo2Ga8under stress was measure by an AC calorimetric method,[31,32]on samples S3 and S4,and the stress was applied alongaandbaxes,respectively. Chromel-Au99.93%Fe0.07%thermocouple was used to measure the heat-temperature response.[33,34]

    3. Results and discussion

    We start from resistivity measurements with compressive stress applied incaxis, which is the same direction as Ce–Ce chain. In this configuration,a compressive stress shortens the intra chain Ce–Ce distance,but slightly increases the inter chain distances. This can be seen from the Hooke’s law for a crystal

    whereσis the stress tensor,Cis the elastic moduli tensor,andεis the strain tensor. We obtained the elastic moduli by resonant ultrasound spectroscopy(RUS)measurements,[35]

    where the irrelevant shear moduli are not shown here. More details about the RUS results on CeCo2Ga8will be published separately.[36]With these parameters, we are able to convert the stress into strain as labeled in the legends of Fig.2. Note that the sign“-”in strain means compression.

    As the intra-chain distance shortens, naively, one expects that the communications among single-ion Kondo singlets strengthen and thus the coherent Kondo effect enhances.However, on the other hand, since the RKKY interactionJRKKY∝cos(2kFr)/r3(whereris the distance between local moments, andkFis the Fermi wave vector),[16–18]it is hard to predict who will increase faster with strain. If the Kondo effect wins,the system should move further into the quantumdisordered region; otherwise, it should approach closer to QCP.Figure 2 displays the temperature dependence ofρcunder various strains. At ambient,ρc(T)initially decreases upon cooling, and then turns up below~100 K where the incoherent Kondo effect sets in (see the inset to Fig. 2). A broad peak forms at about 24 K, characteristic of the onset of coherent Kondo scattering and the development of renormalized heavy electron bands.[27]The coherent Kondo temperature is defined as the position whereρcmaximizes. It should be mentioned that theTccohin this work is relatively higher than that previously reported,[24,27]probably due to sample quality dependence. One then clearly finds thatTccohincreases monotonically with compressive strainεc, with an increasing rate~20 K/%. This manifests that the Kondo effect dominates in this process, and thus CeCo2Ga8moves farther away from QCP.In other words,the correct way to tune it to QCP should be to stretch it alongc. However, we noticed that this crystal is rather brittle to tension,even a little tensile force causes theρcmeasurements to fail.

    An alternate attempt is to compress the crystal within theabplane, and presumably this is to elongate the intra-chain distance. In this configuration,the intra-chain coupling is expected to be weakened at the expense of some enhancement in inter-chain coupling. We assume the latter is less crucial. This idea is firstly testified by theρa(bǔ)measurements with stress applied inaaxis(For technical reason, it is difficult to measureρcin this configuration). The ratio ofεcandεais determined by the Poison’s ratioν13≡-S13/S11≈0.21, whereS11andS13are the elements of elastic compliance tensorS,

    Figure 3(a) displaysρa(bǔ)as a function ofTmeasured at differentεa. Unlikeρc(T), the resistivity forI ‖ ais semiconducting-like without any trace of Kondo coherence(see the inset to Fig.2). We noticed that all theρa(bǔ)(T)curves essentially overlap only except for below~6 K whereσaweakly suppressesρa(bǔ). This implies that compressing alongatends to promote coherent Kondo scatting ina,which is not surprising.However,we should also point out that the uniaxial stress effect alongais much weaker than that alongc, manifesting that elastic-electronic coupling and thus the tunability are very anisotropic,and this provides additional evidence for the quasi-1D nature of CeCo2Ga8.

    Since resistivity is a tensor quantity,ρa(bǔ)does not reflect much information about the intra-chain electronic correlation effect, we therefore turn to the bulk property measurements,viz.AC heat capacity (Cac), and the results are shown in Fig. 3(b). This provides a semi-quantitative measure for the strain dependent electronic correlation. Here we compare the data forεa=0 and-0.12%, and the latter corresponds to a small expansion strain alongc,εc=0.026%. Between 10 K and 20 K,Cac/Tis linear inT2due to the phonon contribution.[37]A notable feature is that the slope ofCac/Tvs.T2increases and hence the Debye temperature decreases in the presence ofσa. We obtain the phonon contribution by fittingCacto a DebyeT3law between 10 K and 20 K, and extrapolate this to the lowerTrange. After subtracting this phonon contribution,the electronic contribution to the specific heat,Cel/T,is displayed in the inset to Fig.3(b). Apart from a plausible upturn below 3 K which is due to a calibration issue of the chromel-Au99.93%Fe0.07%thermocouple used,[33,34]the most prominent feature is thatCel/Tdiverges more rapidly at low temperature underεc=0.026%. This signifies that the effective mass of quasiparticles is further increased upon tensileεc,and is in agreement with the behavior when approaching a QCP (e.g., see review [38]). It should be noted that at present we can not fully exclude the possibility that the rapid increase inCel/Tat low temperature originates from an underlying magnetic ordering whose transition temperature is below our base temperature~1.7 K.Such a situation might appear if the system has been over-tuned to the quantum-ordered phase[cf Fig.1(a)]. However,this scenario is not very likely considering the rather smallεcwe have reached in this experiment,and no magnetic transition was observed down to 70 mK at ambient.[27,29]Sub-Kelvin measurements are needed to clarify this problem. Similar trend is also observed when the uniaxial stress is applied alongbaxis,see Fig.4.

    According to the global phase diagram theory,[12,39]the quantum critical points in heavy-fermion materials are generally classified in two types: a conventional spin-densitywave (SDW) type QCP[40,41]and an unconventional Kondodestruction type QCP.[42–44]Across the Kondo-destruction type QCP,accompanied with the disappearance of long-range magnetic ordering, the 4f electrons undergo a localized–delocalized transition, therefore, the Fermi surface topology changes sharply.[5,6,45,46]Other important features of the Kondo-destruction type QCP include anω/Tscaling of dynamic spin susceptibility, a modified Curie–Weiss form of static spin susceptibility, and strange metal (NFL) behavior with divergent quasiparticle effective mass.[42,47–49]Since Kondo destruction generically requires a large frustration parameter and spin fluctuations, it thus favors lower dimensionality.[12]Whether these phenomena will also appear in this quasi-1D system needs further confirmation. In particular, different kinds of magnetic fluctuations (ferromagnetic(FM) or antiferromagnetic (AFM)) with different dimensionalities (2D or 3D) lead to different sorts of NFL behaviors,characterized by the different forms of temperature dependent measurables like resistivity, spin susceptibility, specific heat,spin-lattice relaxation rate and so on. For instance,in Moriya and Takimoto’s theory,[50]2D and 3D AFM fluctuations yield specific heatCm/Tobeying-logTandγ0–aT1/2, respectively, while 2D FM fluctuations result inCm/T~T-1/3.[51]Slightly away from QCP, in the Fermi-liquid regime,Cm/Tconforms to log(1/r),-r1/2andr1/2for 2D-AFM,3D-AFM and 2D-FM types of QCPs,respectively,wherer ≡δ-δcparameterizes the“distance”to QCP(refer to Ref.[52]for more details). How the strange metal behaves near a QCP in the quasi-1D limit remains unclear. The stress-tuned CeCo2Ga8thus provides a new access to these peculiar quantum critical phenomena. In our AC heat capacity experiment (which is semi-quantitative), we confirmed thatCel/Tincreases nearly logarithmically between 3 K and 10 K, and this trend retains when approaching QCP(see the insets to Figs.2 and 3). Because of some uncertainty in the measurements below~3 K as mentioned above,it is premature to draw a full conclusion before more precise measurements down to lower temperatures can be done. Furthermore, it is also unknown whether ferromagnetic or antiferromagnetic long-range order will be established if the system is over-tuned across the QCP. More systematic physical-property measurements at milli-Kelvin range in the presence of even more powerful stress cell are required in the future. Some relevant works have been on the way.

    4. Summary

    On the example of quasi-1D heavy-fermion Kondo lattice CeCo2Ga8, we systematically studied the uniaxial stress effect by anisotropic transport and thermodynamic properties measurements. The results manifest that a tensile intra-chain strain(εc >0)pushes CeCo2Ga8closer to a quantum critical point, while a compression intra-chain strain (εc <0) likely causes departure. Our work provides a rare paradigm of manipulation near a quantum critical point in a quasi-1D Kondo lattice by uniaxial stress,and paves the way for further investigations on the unique feature of quantum criticality in the quasi-1D limit.

    Acknowledgments

    Y.Shi acknowledges Beijing Natural Science Foundation,China(Grant No.Z180008)and K.C.Wong Education Foundation(Grant No. GJTD-2018-01).

    猜你喜歡
    張健康橋石友
    本期石友通訊錄
    寶藏(2021年7期)2021-08-28 08:18:14
    本期石友通訊錄
    寶藏(2021年6期)2021-07-20 06:12:30
    本期石友通訊錄
    寶藏(2021年11期)2021-01-01 06:17:42
    石友天地
    寶藏(2020年10期)2020-11-19 01:47:58
    張健書法作品
    廣告大觀(2020年3期)2020-10-20 12:34:00
    “雨巷詩人”與“康橋詩人”
    張健的傳銷邪教
    鄭州康橋悅?cè)貓@新中式院墅
    “勾股定理”之我見
    會(huì)說話的樹
    嘟嘟电影网在线观看| 日韩,欧美,国产一区二区三区 | 成人永久免费在线观看视频| 三级国产精品欧美在线观看| 日韩人妻高清精品专区| 色综合亚洲欧美另类图片| 嫩草影院新地址| 熟女人妻精品中文字幕| 精品久久久久久久久久久久久| 久久鲁丝午夜福利片| 欧美又色又爽又黄视频| 99在线人妻在线中文字幕| 日韩高清综合在线| 一卡2卡三卡四卡精品乱码亚洲| 日韩在线高清观看一区二区三区| 高清午夜精品一区二区三区 | 大又大粗又爽又黄少妇毛片口| 国产高清不卡午夜福利| av国产免费在线观看| 久久久久久大精品| 麻豆国产av国片精品| 亚洲天堂国产精品一区在线| 国产精品.久久久| 色哟哟哟哟哟哟| 久久中文看片网| 亚洲高清免费不卡视频| 成人亚洲精品av一区二区| 亚洲欧美成人精品一区二区| 人妻夜夜爽99麻豆av| 国产精品人妻久久久影院| 最后的刺客免费高清国语| 亚洲美女搞黄在线观看| 日韩,欧美,国产一区二区三区 | 嫩草影院新地址| 久久久国产成人精品二区| 免费av观看视频| 国内少妇人妻偷人精品xxx网站| 亚洲18禁久久av| 欧美zozozo另类| 久久精品国产99精品国产亚洲性色| 97超碰精品成人国产| 精品人妻偷拍中文字幕| 欧美精品国产亚洲| 亚洲五月天丁香| 亚洲人成网站在线播| 少妇熟女aⅴ在线视频| 免费看a级黄色片| 亚洲国产欧美人成| 在线免费十八禁| 国产成人a区在线观看| 高清午夜精品一区二区三区 | 免费人成在线观看视频色| 你懂的网址亚洲精品在线观看 | 欧美xxxx黑人xx丫x性爽| 性欧美人与动物交配| 啦啦啦观看免费观看视频高清| 插逼视频在线观看| 日日撸夜夜添| 国产成人影院久久av| 级片在线观看| 小说图片视频综合网站| 久久99热这里只有精品18| 99久久无色码亚洲精品果冻| 亚洲人成网站在线播| 三级经典国产精品| 精品国产三级普通话版| 色播亚洲综合网| 成熟少妇高潮喷水视频| www.av在线官网国产| 精华霜和精华液先用哪个| 校园人妻丝袜中文字幕| 国产一级毛片在线| 天天一区二区日本电影三级| 精华霜和精华液先用哪个| 欧美激情在线99| 一卡2卡三卡四卡精品乱码亚洲| 白带黄色成豆腐渣| 最新中文字幕久久久久| 69av精品久久久久久| 亚洲av不卡在线观看| 欧美激情久久久久久爽电影| 久久精品久久久久久噜噜老黄 | 亚洲第一电影网av| 欧美最新免费一区二区三区| 久久久成人免费电影| 成人无遮挡网站| 高清在线视频一区二区三区 | 日日啪夜夜撸| 乱人视频在线观看| 三级毛片av免费| 国产成人午夜福利电影在线观看| 男人舔奶头视频| 国产一区二区三区在线臀色熟女| 一级黄片播放器| 国产亚洲精品av在线| 自拍偷自拍亚洲精品老妇| 偷拍熟女少妇极品色| 极品教师在线视频| 大香蕉久久网| 草草在线视频免费看| 精品久久久久久久末码| 国产av一区在线观看免费| 欧美区成人在线视频| 在线免费观看的www视频| 一本一本综合久久| 成人一区二区视频在线观看| 国产乱人视频| 乱人视频在线观看| 老司机福利观看| 网址你懂的国产日韩在线| 精品一区二区免费观看| 日本一二三区视频观看| 美女被艹到高潮喷水动态| 午夜精品国产一区二区电影 | 嫩草影院精品99| 亚洲一区高清亚洲精品| 免费看光身美女| 一区福利在线观看| 中国美女看黄片| 十八禁国产超污无遮挡网站| 国产免费一级a男人的天堂| 国产视频首页在线观看| 国产亚洲欧美98| 亚洲欧美日韩东京热| 久久这里只有精品中国| 性色avwww在线观看| 久久久久久久久久久丰满| 在线天堂最新版资源| 长腿黑丝高跟| 成年免费大片在线观看| 黄色配什么色好看| 九九久久精品国产亚洲av麻豆| 日本欧美国产在线视频| 国产欧美日韩精品一区二区| 国产午夜精品久久久久久一区二区三区| 69人妻影院| 国产精品久久电影中文字幕| 国产精品1区2区在线观看.| 精品午夜福利在线看| 精品欧美国产一区二区三| 波多野结衣巨乳人妻| 国产 一区精品| 少妇猛男粗大的猛烈进出视频 | 99九九线精品视频在线观看视频| 亚洲人成网站在线播| 日本-黄色视频高清免费观看| 精品久久久久久久久av| 国产中年淑女户外野战色| 国产探花极品一区二区| av国产免费在线观看| 午夜免费激情av| 国产久久久一区二区三区| 精品熟女少妇av免费看| 国产成人精品婷婷| 欧美xxxx性猛交bbbb| 熟妇人妻久久中文字幕3abv| 久久亚洲精品不卡| 国产老妇伦熟女老妇高清| 国产激情偷乱视频一区二区| 久久人人精品亚洲av| 国产成人a∨麻豆精品| 久久久久久久亚洲中文字幕| 一进一出抽搐gif免费好疼| 少妇裸体淫交视频免费看高清| 内地一区二区视频在线| 亚洲中文字幕一区二区三区有码在线看| 国产精品日韩av在线免费观看| 啦啦啦啦在线视频资源| 在线a可以看的网站| 少妇的逼好多水| 亚洲精品456在线播放app| 黄色日韩在线| 长腿黑丝高跟| 91精品国产九色| 成年女人看的毛片在线观看| or卡值多少钱| 欧美另类亚洲清纯唯美| 亚洲第一区二区三区不卡| 听说在线观看完整版免费高清| 91精品国产九色| 精品熟女少妇av免费看| 深爱激情五月婷婷| 亚洲国产精品国产精品| 久久久久久九九精品二区国产| 两个人视频免费观看高清| 国产成人精品一,二区 | 国产久久久一区二区三区| 欧美精品一区二区大全| 天美传媒精品一区二区| 如何舔出高潮| 日本-黄色视频高清免费观看| 一级二级三级毛片免费看| 色尼玛亚洲综合影院| 身体一侧抽搐| 久久综合国产亚洲精品| 国产乱人偷精品视频| 男的添女的下面高潮视频| 99国产精品一区二区蜜桃av| 亚洲欧美日韩高清在线视频| 黄片无遮挡物在线观看| 能在线免费看毛片的网站| 国产av麻豆久久久久久久| 在线观看一区二区三区| 老司机影院成人| 伊人久久精品亚洲午夜| 久久人人爽人人爽人人片va| 男人狂女人下面高潮的视频| 午夜福利在线观看免费完整高清在 | 一级av片app| 国产亚洲精品久久久久久毛片| 欧美性猛交黑人性爽| 内地一区二区视频在线| 国产精品综合久久久久久久免费| 亚洲av第一区精品v没综合| 国产色爽女视频免费观看| 欧美日韩在线观看h| 男人的好看免费观看在线视频| 麻豆一二三区av精品| 男女下面进入的视频免费午夜| 好男人在线观看高清免费视频| 内射极品少妇av片p| 国产精品一及| 久久精品久久久久久久性| 欧美三级亚洲精品| 听说在线观看完整版免费高清| 在线播放国产精品三级| 国产精品久久久久久亚洲av鲁大| 亚洲精品影视一区二区三区av| 久久这里有精品视频免费| 少妇丰满av| 亚洲成人久久爱视频| 亚洲欧美日韩东京热| 亚洲精品日韩av片在线观看| 69av精品久久久久久| 国产高清有码在线观看视频| av在线播放精品| 婷婷色av中文字幕| 啦啦啦韩国在线观看视频| 国产成人精品一,二区 | 中文亚洲av片在线观看爽| 少妇人妻一区二区三区视频| 亚洲无线在线观看| 免费电影在线观看免费观看| 国产av一区在线观看免费| 日本三级黄在线观看| 国产伦一二天堂av在线观看| 日本黄大片高清| 在线免费观看的www视频| 中国美女看黄片| 国产精品蜜桃在线观看 | 免费无遮挡裸体视频| 只有这里有精品99| 久久精品综合一区二区三区| 性插视频无遮挡在线免费观看| 成年免费大片在线观看| 91精品一卡2卡3卡4卡| 亚洲精品久久久久久婷婷小说 | 国内揄拍国产精品人妻在线| 国产精品三级大全| 亚洲最大成人手机在线| 国产视频内射| 亚洲无线观看免费| 欧美又色又爽又黄视频| 夜夜爽天天搞| 99热这里只有是精品50| 国产精品乱码一区二三区的特点| 午夜精品国产一区二区电影 | 精品久久久久久久久久免费视频| 日韩欧美国产在线观看| 久久久久久九九精品二区国产| 久久久久久久久久黄片| videossex国产| 久久人妻av系列| ponron亚洲| 亚洲一级一片aⅴ在线观看| 亚洲va在线va天堂va国产| 天堂网av新在线| 欧美日韩在线观看h| 国产成人a∨麻豆精品| 亚洲丝袜综合中文字幕| 国产精品久久久久久亚洲av鲁大| 少妇裸体淫交视频免费看高清| 国产久久久一区二区三区| 日日摸夜夜添夜夜添av毛片| 国产精品综合久久久久久久免费| 日韩欧美三级三区| 亚洲精品国产av成人精品| 成熟少妇高潮喷水视频| 国产精品一区二区三区四区免费观看| 亚洲欧美精品专区久久| 综合色av麻豆| 禁无遮挡网站| 国产乱人偷精品视频| 小说图片视频综合网站| 久久这里只有精品中国| 91久久精品国产一区二区成人| 中文字幕制服av| 波野结衣二区三区在线| 草草在线视频免费看| 禁无遮挡网站| 亚洲av二区三区四区| 偷拍熟女少妇极品色| a级一级毛片免费在线观看| 久久久久久久久久黄片| 久久精品国产亚洲av天美| 日韩欧美精品v在线| 亚洲成人久久爱视频| 夜夜看夜夜爽夜夜摸| 日韩av在线大香蕉| 伊人久久精品亚洲午夜| 一级二级三级毛片免费看| 波多野结衣巨乳人妻| 久久人人爽人人爽人人片va| 十八禁国产超污无遮挡网站| 日韩欧美一区二区三区在线观看| 美女高潮的动态| 久久欧美精品欧美久久欧美| 免费观看的影片在线观看| 老熟妇乱子伦视频在线观看| 亚洲七黄色美女视频| 97超碰精品成人国产| 变态另类丝袜制服| 国产高清三级在线| 成人国产麻豆网| 成熟少妇高潮喷水视频| 成人三级黄色视频| 国产视频内射| av天堂在线播放| 能在线免费观看的黄片| 国产一级毛片七仙女欲春2| 一区二区三区免费毛片| 亚洲经典国产精华液单| av在线播放精品| 99热精品在线国产| 成人国产麻豆网| 精品免费久久久久久久清纯| 久久草成人影院| 国产免费男女视频| 热99在线观看视频| 亚洲欧美日韩卡通动漫| 国产单亲对白刺激| 国产成人一区二区在线| 九九久久精品国产亚洲av麻豆| 国产精品嫩草影院av在线观看| 青春草视频在线免费观看| 亚洲自拍偷在线| 一区二区三区免费毛片| 欧美潮喷喷水| 亚洲国产精品sss在线观看| videossex国产| 成人欧美大片| 哪个播放器可以免费观看大片| 亚洲婷婷狠狠爱综合网| 一级毛片aaaaaa免费看小| 人人妻人人澡欧美一区二区| 男女视频在线观看网站免费| 国产日韩欧美在线精品| av在线观看视频网站免费| 最后的刺客免费高清国语| 人人妻人人看人人澡| 男女那种视频在线观看| 亚洲图色成人| av.在线天堂| 国产精品精品国产色婷婷| 国内久久婷婷六月综合欲色啪| 国产精品久久久久久久电影| 哪里可以看免费的av片| 国产日本99.免费观看| 人妻制服诱惑在线中文字幕| 国产私拍福利视频在线观看| 能在线免费观看的黄片| 成人高潮视频无遮挡免费网站| 国产一区亚洲一区在线观看| 亚洲av一区综合| 日本在线视频免费播放| 天天躁夜夜躁狠狠久久av| 日韩av在线大香蕉| 亚洲国产日韩欧美精品在线观看| 中国国产av一级| 97超碰精品成人国产| 欧美性猛交╳xxx乱大交人| 小蜜桃在线观看免费完整版高清| a级毛片免费高清观看在线播放| 99精品在免费线老司机午夜| 国产高清视频在线观看网站| 久久久久久久亚洲中文字幕| 色吧在线观看| 中文在线观看免费www的网站| avwww免费| 精品日产1卡2卡| 97人妻精品一区二区三区麻豆| 少妇熟女欧美另类| 亚洲精品日韩在线中文字幕 | 在线a可以看的网站| videossex国产| 国产精品.久久久| 69av精品久久久久久| 亚洲最大成人中文| av在线天堂中文字幕| 欧美变态另类bdsm刘玥| 成人特级av手机在线观看| 亚洲av中文字字幕乱码综合| 精品久久久久久久久av| 小蜜桃在线观看免费完整版高清| 成人特级av手机在线观看| av专区在线播放| 亚洲18禁久久av| 联通29元200g的流量卡| 中文精品一卡2卡3卡4更新| 观看免费一级毛片| 97超视频在线观看视频| 国产大屁股一区二区在线视频| 草草在线视频免费看| 亚洲不卡免费看| 国产不卡一卡二| 中文字幕免费在线视频6| 26uuu在线亚洲综合色| 99久国产av精品| 婷婷色综合大香蕉| 精品久久久久久成人av| 久久精品国产亚洲av香蕉五月| 亚洲国产精品久久男人天堂| av免费在线看不卡| 国产精品麻豆人妻色哟哟久久 | 身体一侧抽搐| av女优亚洲男人天堂| 一进一出抽搐gif免费好疼| 亚洲欧美中文字幕日韩二区| 国产高潮美女av| 国产片特级美女逼逼视频| 日本黄大片高清| 99在线视频只有这里精品首页| 亚洲成人久久性| 人妻系列 视频| 亚洲成人中文字幕在线播放| 校园春色视频在线观看| 国产精品免费一区二区三区在线| 美女被艹到高潮喷水动态| av在线天堂中文字幕| 九草在线视频观看| 亚洲精品国产av成人精品| 成人毛片a级毛片在线播放| 欧美色欧美亚洲另类二区| 婷婷色综合大香蕉| 中文在线观看免费www的网站| 精品午夜福利在线看| 国产午夜精品一二区理论片| 免费观看人在逋| 人人妻人人澡人人爽人人夜夜 | 变态另类丝袜制服| 亚洲性久久影院| 夜夜爽天天搞| 人妻夜夜爽99麻豆av| 免费在线观看成人毛片| 在线观看一区二区三区| 精品久久久久久久久久免费视频| 亚洲美女视频黄频| 午夜久久久久精精品| 欧美精品国产亚洲| 欧美高清成人免费视频www| 两个人视频免费观看高清| 在线观看免费视频日本深夜| 亚洲欧美中文字幕日韩二区| 美女大奶头视频| 中文字幕人妻熟人妻熟丝袜美| 精品午夜福利在线看| 日韩在线高清观看一区二区三区| 一个人观看的视频www高清免费观看| 久久精品91蜜桃| 久久久国产成人免费| 亚洲精品久久久久久婷婷小说 | 啦啦啦韩国在线观看视频| 美女xxoo啪啪120秒动态图| 一个人看的www免费观看视频| 久久午夜亚洲精品久久| 国产av在哪里看| 一卡2卡三卡四卡精品乱码亚洲| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费观看a级毛片全部| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区激情短视频| 麻豆成人av视频| 国模一区二区三区四区视频| 日韩一本色道免费dvd| 国产精品蜜桃在线观看 | 高清毛片免费看| 哪里可以看免费的av片| 免费看光身美女| 亚洲精品国产av成人精品| 男人舔奶头视频| 亚洲久久久久久中文字幕| 国产成人精品婷婷| 伊人久久精品亚洲午夜| 亚洲av免费高清在线观看| 自拍偷自拍亚洲精品老妇| 久久精品国产鲁丝片午夜精品| 精品久久国产蜜桃| 99热精品在线国产| 少妇的逼好多水| 免费看日本二区| 亚洲无线观看免费| 国国产精品蜜臀av免费| 午夜精品一区二区三区免费看| av免费在线看不卡| 国产精品永久免费网站| 欧美bdsm另类| 免费黄网站久久成人精品| 一区福利在线观看| 国产久久久一区二区三区| 婷婷六月久久综合丁香| 99热这里只有精品一区| 少妇丰满av| 日本三级黄在线观看| 99久久精品热视频| 欧美高清性xxxxhd video| 最新中文字幕久久久久| 亚洲美女搞黄在线观看| 精品一区二区免费观看| 国产精品永久免费网站| 日日撸夜夜添| 久久久久久久亚洲中文字幕| 国产精品一区二区三区四区久久| 精品久久久久久久久久免费视频| 精品午夜福利在线看| 联通29元200g的流量卡| 亚洲欧洲日产国产| 国产亚洲精品av在线| 亚洲av一区综合| 亚洲欧美日韩东京热| 免费观看人在逋| 国产老妇女一区| 日韩一区二区三区影片| 久久久久久伊人网av| 日韩成人伦理影院| 日本一二三区视频观看| 亚洲欧美日韩无卡精品| 国内精品久久久久精免费| 国产黄片视频在线免费观看| 两个人的视频大全免费| 亚洲久久久久久中文字幕| 久久久久久国产a免费观看| 久久久久久久久久久免费av| 午夜激情福利司机影院| 久久久久久久久大av| 中国美白少妇内射xxxbb| 亚洲精品国产av成人精品| 亚洲乱码一区二区免费版| 日本一本二区三区精品| 69人妻影院| 一区二区三区高清视频在线| 国产精品一二三区在线看| 99热只有精品国产| 久久鲁丝午夜福利片| 国产人妻一区二区三区在| 亚洲美女视频黄频| 91精品一卡2卡3卡4卡| 亚洲欧美清纯卡通| 97人妻精品一区二区三区麻豆| 日韩大尺度精品在线看网址| 欧美在线一区亚洲| 日本免费一区二区三区高清不卡| 少妇的逼好多水| 色综合色国产| 精品无人区乱码1区二区| 菩萨蛮人人尽说江南好唐韦庄 | 免费一级毛片在线播放高清视频| 美女内射精品一级片tv| 亚洲真实伦在线观看| 中文在线观看免费www的网站| 免费大片18禁| 悠悠久久av| 国产久久久一区二区三区| 中国国产av一级| 天堂中文最新版在线下载 | 亚洲av中文av极速乱| 中文在线观看免费www的网站| 超碰av人人做人人爽久久| 国产午夜福利久久久久久| 欧美极品一区二区三区四区| 国产一区二区激情短视频| 亚洲成人av在线免费| 日本撒尿小便嘘嘘汇集6| 国产一区亚洲一区在线观看| 婷婷亚洲欧美| 久久精品国产亚洲网站| 精品午夜福利在线看| 白带黄色成豆腐渣| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区三区四区久久| 成年版毛片免费区| 国产中年淑女户外野战色| 亚洲av免费在线观看| 色综合色国产| 人妻系列 视频| 欧美精品国产亚洲| .国产精品久久| 夜夜夜夜夜久久久久| 五月玫瑰六月丁香| 国产精品一区二区三区四区免费观看| 非洲黑人性xxxx精品又粗又长| 亚洲av男天堂| 国产精品99久久久久久久久| 熟女人妻精品中文字幕| 国产精品免费一区二区三区在线| 久久久久国产网址| 最近的中文字幕免费完整| 久久久久久久亚洲中文字幕| 女同久久另类99精品国产91| 三级毛片av免费| 国产成年人精品一区二区| 三级经典国产精品| 美女高潮的动态| 亚州av有码| 亚洲av二区三区四区| 一级av片app|