• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4

    2022-06-29 08:56:10ChunyanWang王春艷QilongGao高其龍AndreaSansonandYuJia賈瑜
    Chinese Physics B 2022年6期

    Chunyan Wang(王春艷) Qilong Gao(高其龍) Andrea Sanson and Yu Jia(賈瑜)

    1Key Laboratory of Materials Physics of Ministry of Education,International Laboratory for Quantum Functional Materials of Henan,and School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450052,China

    2Key Laboratory of Special Functional Materials of Ministry of Education,and School of Materials Science and Engineering,Henan University,Kaifeng 475004,China

    3Key Laboratory for Quantum Materials and Center for Topological Functional Materials,Henan University,Kaifeng 475004,China

    4Department of Physics and Astronomy,University of Padova,Padova I-35131,Italy

    Keywords: negative thermal expansion,Prussian blue analogues,crystal structure,phonons

    After the discovery that ZrW2O8displays strong negative thermal expansion (NTE) over a wide temperature range,[1,2]the interest in NTE has increased considerably due to its promising applications in different engineering fields from fiber optics coatings, high performance fuel cell cathodes to tooth fillings.[3,4]Since then different NTE materials were found out[5–8]and classified into two classes according to the NTE mechanism:[9–13]phonons driven open-framework materials, such as oxides,[1,3,14,15]fluorides,[16,17]cyanides/Prussian blue analogues (PBAs)[18–21]and MOFs;[22,23]electronic-related driven materials,such as magnetovolume effect in manganese nitrides[24,25]and Invar alloys,[26,27]ferroelectrovolume effect in PbTiO3,[28]charge transfer in BiNiO3,[29]metal–insulating transition in Ca2RuO4.[30]Other examples can be found in the review papers.[5,7,31,32]

    The isotropic NTE materials are very interesting since they can reduce the thermal stress in composites,but,unfortunately,their number is very limited. ZrW2O8and ScF3are the most popular isotropic NTE materials. Their structural flexibility, directly connected to the transverse thermal vibrations of bridging atoms,plays a key role in NTE behavior.[33,34]Interestingly, Sanson[6]related the behavior of the transverse thermal vibrations and therefore of thermal expansion to the length of the crystallographic lattice parameter. Recently,Gaoet al.[35]adopted the concept of “average atomic volume(AAV)”to evaluate the structural flexibility and to qualitatively predict the thermal expansion behavior. Based on these ideas, some new negative and zero thermal expansion materials[36,37]were found out,including the CuB(CN)4NTE material presented in this work.

    NTE in open-framework materials is typically related to the presence of low-frequency phonons with negative Gr¨uneisen parameters, but intriguing differences, based on their structural features, characterize each material and some aspects remain controversial. This is the case, for example,of zirconium tungstate ZrW2O8, where the origin of NTE has been widely debated in the years,[28,38]or the case ofMII(CN)2(M=Zn, Cd) cyanides, where two dominant optical modes seem to contribute mainly to NTE,[39]in contrast to other studies where NTE is attributed to transverse acoustic modes.[40]The isotropic NTE behavior of cubic CuB(CN)4was recently reported in Ref. [30], but no information is known about the origin of NTE. From the structure analysis reported in 2005 by Togoet al.,[41]the AAV of CuB(CN)4is close to the value 16 °A3, which is the critical point from positive to negative thermal expansion reported in Ref. [30]. CuB(CN)4is isostructural with AgB(CN)4and belongs to the Zn(CN)2-type structure. The C and N atoms in CuB(CN)4form linear B–C≡N–Cu linkages, a suitable condition that favors the NTE mechanism. In this work,we aim to shed light on the isotropic NTE mechanism observed in CuB(CN)4through a joint study of high-resolution synchrotron x-ray diffraction(SXRD),temperature-dependent Raman spectroscopy and first principles calculations based on density functional theory.

    The crystal structure of CuB(CN)4was investigated by high-resolution SXRD (the detailed sample characterizations in supporting information) and the refined structure indicates that CuB(CN)4has a cubic structure with space groupP-43m(215) and lattice parametera= 5.40555(8) °A at 300 K, in agreement with a previous study.[36]Similar to AgB(CN)4,the CuB(CN)4structure is formed by CuN4and BC4tetrahedra,bridged through CN units(Fig.1). The value of the AAV for CuB(CN)4,calculated by equation AAV=V/(Z×N)whereVis the unit cell volume(V=157.95 °A3),Z is the cell formula units(Z=1)andNis the number of atoms in the chemical formula(N=10),is estimated to be about 15.8 °A3,hence close to the critical point for the switch from negative to positive thermal expansion.[30]

    The thermal expansion of CuB(CN)4was determined by temperature-dependent SXRD.Interestingly,it displays an isotropic NTE behavior with linear thermal expansion coefficientαl=-9.15×10-6K-1in the temperature range 100–400 K. This experimental result is consistent with our DFT calculations,as shown in Fig.2(a). It can be observed that the NTE of CuB(CN)4is much weaker than that of isostructural AgB(CN)4(-40×10-6K-1,100–600 K),in agreement with the smaller value of the AAV.

    It is widely accepted that the NTE in open-framework materials is driven by the transverse thermal vibrations of bridging atoms.[4]Here, the atomic mean-square displacements(MSDs)parallel(‖)and perpendicular(⊥)to the Cu–N≡C–B bond direction have been determined by SXRD analysis for the C and N atoms. As shown in Fig. 2(b), the perpendicular MSDs⊥of both N and C atoms are much larger than the parallel MSDs‖ones, thus indicating the presence of large anisotropy.In particular,the perpendicular MSDs⊥of N atoms are larger than that of C atoms. This suggests that the NTE in CuB(CN)4mainly comes from the transverse thermal vibrations of N atoms, similarly to other NTE PBAs such as TiCo(CN)6[42]and YFe(CN)6.[10]

    Additional information on the lattice dynamics and NTE mechanism can be obtained by temperature-dependent Raman spectroscopy combined with first-principles calculations. On the basis of the factor group analysis, 2A1+2E+2F1+5F2vibrational modes at theΓ-point of the Brillouin zone are expected,where the F1and F2modes are triple degenerate modes and the E modes are double degenerate modes. The E and A1modes are Raman active, whereas the F2modes are both infrared and Raman active and the remaining F1modes are inactive (silent). Accordingly, nine Raman active modes are expected in CuB(CN)4. Figure 3(a) shows the (unpolarized)Raman spectrum collected in CuB(CN)4at 300 K,Table 1 reports the calculated phonon frequencies at theΓ-point.

    According to our first-principles calculations, the experimental Raman peaks at about 160 cm-1and 277 cm-1correspond to the symmetric and anti-symmetric rocking vibrations of N-BC4groups, respectively, while the Raman peaks at about 200 cm-1, 508 cm-1and 520 cm-1correspond to the in-plane bending of B–C≡N bonds. The Raman peaks at~572 cm-1and~951/958/989 cm-1refer to the symmetric and anti-symmetric stretching vibrations of B-C bonds,respectively,and,finally,the two Raman peaks at about 2300 cm-1can be attributed to the stretching vibrations of the C≡N bonds. We guess here that the presence of three Raman peaks at 951/958/989 cm-1,also observed in Ref.[36],is the result of the degeneracy removal of the F2(R,IR)mode calculated at~941 cm-1. This statement is corroborated by the IR bands observed at the same frequency position.[43]Analogous conclusion can be hypothesized for the weak Raman peak detected at~2209 cm-1, also visible in Ref. [36], since at the same position there is again an IR peak. A very small peak seems visible also at~2228 cm-1in the lowest-temperature spectra.

    Table 1. Calculated and observed vibrational modes of CuB(CN)4 at the Γ-point. The quantity has been estimated from the temperature dependence of Raman spectra,while the Gr¨uneisen parameters γi have been determined from first-principles calculations.

    Table 1. Calculated and observed vibrational modes of CuB(CN)4 at the Γ-point. The quantity has been estimated from the temperature dependence of Raman spectra,while the Gr¨uneisen parameters γi have been determined from first-principles calculations.

    Strengthened by the fact that our DFPT calculations reproduce satisfactorily the experimental Raman modes, both in frequency and intensity, we have calculated the phonon dispersion curves and the Gr¨uneisen parameters in the entire Brillouin zone to further investigate the NTE mechanism of CuB(CN)4(the detailed computational methods in supporting information). Figure 4(a)shows the phonon dispersion curves calculated along the high-symmetry directions of the Brillouin zone. No negative frequencies are observed, thus indicating that CuB(CN)4is dynamically stable. In the low-frequency region (<300 cm-1), the projected density of states (PDOS)of CuB(CN)4is strongly related to the phonon vibrations of N atoms and,albeit to a lesser extent,to C and Cu atoms.

    The modes Gr¨uneisen parameters atΓ(0 0 0) point is shown in Fig. 4(b). Due to the high symmetry of the space group, the number of phonon modes atΓ(0 0 0) point is much smaller. One can clearly observe that there are three phonon modes with negative Gr¨uneisen parameters: the lowest frequency phonon mode with the largest value of negative Gr¨uneisen parameters(90 cm-1,-5.6),is shown in the insert of Fig.4(b),which displays the same vibrations direction of N and C atoms; the second one is located at 337 cm-1with the opposite vibration directions of N and C atoms; the phonon mode at around 500 cm-1with small negative Gr¨uneisen parameter is corresponding toδBCNmode, it is consistent with results of temperature-dependent Raman spectra. Compared with the value of Gr¨uneisen parameters of the same and opposite transverse vibration direction of N and C atoms, it indicates that the NTE comes from the transverse vibration direction of N and C atoms,especially the same transverse vibration ones.

    However, the number of phonon modes with negative Gr¨uneisen parameters atΓ(0 0 0) point is still smaller than that of phonon modes with positive Gr¨uneisen parameters.Figure 4(c) shows the mode Gr¨uneisen parameters along all the high-symmetry directions in BZ.One can observe that the acoustic modes atX(0.5 0 0)andM(0.5 0.5 0)besides optical mode atR(0.5 0.5 0.5) also have larger negative Gr¨uneisen parameters. It suggests that the acoustic modes also play a critical role in driving the NTE behavior, similarly found also in other materials such as Zn(CN)2,[40]Cu2O,[45]MOF-5[22]and Ni2W(CN)8.[46]The typical eigenvectors of vibrational modes with larger negative Gr¨uneisen parameters have been illustrated in Fig. 4(d). The vibrational mode with negative Gr¨uneisen parameters atRpoint is similar to that atΓpoint, while these atXandMare mainly the acoustic vibration of Cu atoms caused by the collective torsion of all atoms in CuB(CN)4.

    In conclusion,CuB(CN)4displays isotropic NTE and the origin of its thermal expansion behavior has been investigated by SXRD,Raman spectroscopy and the first-principles calculations. The presence of large transverse thermal vibrations of C and N atoms is the driving force for NTE of CuB(CN)4,especially those of N atoms. The analysis of the vibrational modes reveals that both the acoustic and low-frequency optical phonon modes give the main contribution to NTE. This work shed light on the NTE mechanism of CuB(CN)4,a new isotropic NTE material.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 22071221, 21905252, and 11774078), Natural Science Foundation of Henan Province,China (Grant No. 212300410086), and Innovation Scientists and Technicians Troop Construction Projects of Henan Province, China (No. 10094100510025). All calculations were supported by National Supercomputing Center in Zhengzhou.

    建设人人有责人人尽责人人享有的| 久久狼人影院| 亚洲国产精品国产精品| 另类精品久久| 亚洲精品成人av观看孕妇| 99九九在线精品视频| 啦啦啦中文免费视频观看日本| 高清不卡的av网站| 激情视频va一区二区三区| 国产成人精品一,二区| 岛国毛片在线播放| 制服丝袜香蕉在线| 国产一区二区激情短视频 | 国产免费又黄又爽又色| 男女啪啪激烈高潮av片| 亚洲精品自拍成人| 亚洲精品视频女| 日本与韩国留学比较| 最新的欧美精品一区二区| 亚洲av中文av极速乱| 亚洲av欧美aⅴ国产| 国产成人精品福利久久| 亚洲精品视频女| 自拍欧美九色日韩亚洲蝌蚪91| 国产免费视频播放在线视频| 成年av动漫网址| 日韩在线高清观看一区二区三区| 视频在线观看一区二区三区| 久久ye,这里只有精品| 国产片特级美女逼逼视频| 新久久久久国产一级毛片| 久久久国产精品麻豆| 午夜av观看不卡| 国产精品三级大全| 麻豆乱淫一区二区| 国产成人一区二区在线| 波多野结衣一区麻豆| 夫妻午夜视频| 亚洲精品成人av观看孕妇| 日本91视频免费播放| 成人午夜精彩视频在线观看| 亚洲一码二码三码区别大吗| 国产有黄有色有爽视频| 亚洲av男天堂| 欧美激情极品国产一区二区三区 | 天堂俺去俺来也www色官网| 欧美性感艳星| 久久人人爽人人爽人人片va| 国产极品粉嫩免费观看在线| 婷婷色麻豆天堂久久| 日韩熟女老妇一区二区性免费视频| 日韩成人伦理影院| 亚洲丝袜综合中文字幕| 国产一区有黄有色的免费视频| 国产成人欧美| 午夜免费观看性视频| 免费av不卡在线播放| 18在线观看网站| 桃花免费在线播放| 毛片一级片免费看久久久久| 女人被躁到高潮嗷嗷叫费观| 亚洲精品美女久久av网站| 国产女主播在线喷水免费视频网站| 国产欧美日韩综合在线一区二区| 久久久久人妻精品一区果冻| 五月天丁香电影| 亚洲国产成人一精品久久久| 日本黄色日本黄色录像| 超色免费av| 777米奇影视久久| 日日摸夜夜添夜夜爱| 久久久久国产精品人妻一区二区| 精品视频人人做人人爽| 中文天堂在线官网| 日本vs欧美在线观看视频| 精品第一国产精品| a级毛片黄视频| 亚洲av在线观看美女高潮| 国产精品不卡视频一区二区| 男女免费视频国产| 国产一区亚洲一区在线观看| 99久久综合免费| 99热6这里只有精品| 国产高清三级在线| 亚洲欧美精品自产自拍| 亚洲精品乱久久久久久| 少妇猛男粗大的猛烈进出视频| 啦啦啦啦在线视频资源| 欧美+日韩+精品| 成人毛片a级毛片在线播放| 亚洲欧洲国产日韩| 亚洲精品av麻豆狂野| 男人舔女人的私密视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲欧美日韩另类电影网站| 亚洲国产看品久久| 久久99一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 青青草视频在线视频观看| 日韩 亚洲 欧美在线| 精品一区二区三卡| 伊人亚洲综合成人网| 女人精品久久久久毛片| 午夜91福利影院| 亚洲国产欧美日韩在线播放| 国产欧美亚洲国产| 99香蕉大伊视频| 成人18禁高潮啪啪吃奶动态图| 国产精品一区www在线观看| 新久久久久国产一级毛片| 伦理电影大哥的女人| 黄片无遮挡物在线观看| 欧美另类一区| 亚洲五月色婷婷综合| 在线观看一区二区三区激情| 欧美xxⅹ黑人| 国产一区亚洲一区在线观看| a 毛片基地| 国产av一区二区精品久久| 免费女性裸体啪啪无遮挡网站| 国产一区二区在线观看av| 国产片内射在线| 欧美日韩国产mv在线观看视频| 天美传媒精品一区二区| 国产高清三级在线| 欧美日韩亚洲高清精品| 日本免费在线观看一区| 波野结衣二区三区在线| 免费观看在线日韩| av网站免费在线观看视频| 免费观看av网站的网址| 国产有黄有色有爽视频| 国产免费一级a男人的天堂| 日韩熟女老妇一区二区性免费视频| 精品国产一区二区三区久久久樱花| 全区人妻精品视频| 亚洲成色77777| 巨乳人妻的诱惑在线观看| av在线播放精品| www.熟女人妻精品国产 | 9热在线视频观看99| 亚洲精品第二区| 蜜桃国产av成人99| 老熟女久久久| 97在线人人人人妻| 在线观看人妻少妇| 亚洲国产看品久久| 国产毛片在线视频| 色94色欧美一区二区| 大话2 男鬼变身卡| av.在线天堂| 欧美97在线视频| av又黄又爽大尺度在线免费看| 这个男人来自地球电影免费观看 | 久久ye,这里只有精品| 久久久久久久精品精品| 成人影院久久| 久久 成人 亚洲| 国产在视频线精品| 亚洲五月色婷婷综合| 18禁动态无遮挡网站| 在线观看人妻少妇| 18+在线观看网站| 久久久亚洲精品成人影院| 大码成人一级视频| 9热在线视频观看99| 免费人成在线观看视频色| 国产福利在线免费观看视频| 夫妻午夜视频| 51国产日韩欧美| 亚洲精品久久成人aⅴ小说| 永久免费av网站大全| 亚洲内射少妇av| 五月天丁香电影| 一个人免费看片子| 边亲边吃奶的免费视频| 日本猛色少妇xxxxx猛交久久| 曰老女人黄片| 熟女av电影| 香蕉国产在线看| 看免费av毛片| 18禁观看日本| 精品国产露脸久久av麻豆| 免费不卡的大黄色大毛片视频在线观看| 国语对白做爰xxxⅹ性视频网站| 极品少妇高潮喷水抽搐| 国产女主播在线喷水免费视频网站| 国产男女内射视频| 欧美精品亚洲一区二区| 成人午夜精彩视频在线观看| 日本与韩国留学比较| 日韩三级伦理在线观看| 久久久久久久精品精品| 捣出白浆h1v1| 婷婷成人精品国产| 久久人人爽人人片av| 伊人久久国产一区二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲欧美成人精品一区二区| 精品少妇黑人巨大在线播放| 精品人妻偷拍中文字幕| 亚洲一级一片aⅴ在线观看| 国产一区二区三区av在线| 亚洲av欧美aⅴ国产| 久久99一区二区三区| 亚洲精品久久久久久婷婷小说| 亚洲国产av影院在线观看| 免费不卡的大黄色大毛片视频在线观看| 啦啦啦在线观看免费高清www| 亚洲欧美中文字幕日韩二区| 亚洲精华国产精华液的使用体验| 成人手机av| 久久精品久久精品一区二区三区| 老女人水多毛片| 天堂中文最新版在线下载| 久久久国产一区二区| 免费黄色在线免费观看| 性高湖久久久久久久久免费观看| 啦啦啦在线观看免费高清www| 欧美日韩av久久| 赤兔流量卡办理| 国产黄频视频在线观看| 久久午夜福利片| tube8黄色片| 波多野结衣一区麻豆| 日本猛色少妇xxxxx猛交久久| 国产乱来视频区| 尾随美女入室| 免费播放大片免费观看视频在线观看| 一本大道久久a久久精品| 日本欧美视频一区| 汤姆久久久久久久影院中文字幕| 亚洲精品久久午夜乱码| 老熟女久久久| 精品人妻偷拍中文字幕| 久久 成人 亚洲| videos熟女内射| 国产精品久久久av美女十八| 免费人妻精品一区二区三区视频| 91精品伊人久久大香线蕉| 一个人免费看片子| av网站免费在线观看视频| 人人澡人人妻人| 熟妇人妻不卡中文字幕| 午夜福利在线观看免费完整高清在| 国产男女内射视频| 国产精品嫩草影院av在线观看| 亚洲国产欧美日韩在线播放| 国产又爽黄色视频| 久久精品国产亚洲av涩爱| 91午夜精品亚洲一区二区三区| 一区在线观看完整版| 90打野战视频偷拍视频| 久久精品久久久久久久性| 日本91视频免费播放| 久久久精品免费免费高清| 国产爽快片一区二区三区| 五月天丁香电影| 国产日韩欧美视频二区| 九九爱精品视频在线观看| h视频一区二区三区| 亚洲成人av在线免费| 亚洲熟女精品中文字幕| 亚洲成国产人片在线观看| 97精品久久久久久久久久精品| 国产一区二区三区综合在线观看 | 日韩免费高清中文字幕av| 黑人巨大精品欧美一区二区蜜桃 | 啦啦啦视频在线资源免费观看| 亚洲伊人色综图| 日本-黄色视频高清免费观看| 天天躁夜夜躁狠狠久久av| 亚洲精品乱码久久久久久按摩| 五月天丁香电影| 热re99久久国产66热| 秋霞在线观看毛片| 97在线人人人人妻| 国产高清三级在线| 黄色一级大片看看| 国产免费一级a男人的天堂| 亚洲欧美成人综合另类久久久| av国产久精品久网站免费入址| 亚洲美女搞黄在线观看| a级毛片在线看网站| 久久99热这里只频精品6学生| 国产欧美日韩一区二区三区在线| 精品国产露脸久久av麻豆| 国产精品三级大全| 韩国精品一区二区三区 | 久久99精品国语久久久| 91精品国产国语对白视频| 成人综合一区亚洲| 超色免费av| 美女内射精品一级片tv| 18禁国产床啪视频网站| 成人国产av品久久久| 在线亚洲精品国产二区图片欧美| 寂寞人妻少妇视频99o| 久久综合国产亚洲精品| 国产精品一二三区在线看| 亚洲久久久国产精品| 制服诱惑二区| 久久97久久精品| 99久久人妻综合| 国产成人精品在线电影| 精品久久久久久电影网| 麻豆精品久久久久久蜜桃| 欧美最新免费一区二区三区| 欧美少妇被猛烈插入视频| 成人二区视频| 天堂中文最新版在线下载| 丰满迷人的少妇在线观看| 黑人巨大精品欧美一区二区蜜桃 | 高清欧美精品videossex| 18禁国产床啪视频网站| 久久这里只有精品19| 欧美精品亚洲一区二区| 伦理电影大哥的女人| 有码 亚洲区| 中文字幕制服av| 香蕉丝袜av| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久久久免| 免费观看av网站的网址| av一本久久久久| 亚洲美女搞黄在线观看| 国产极品天堂在线| av电影中文网址| 宅男免费午夜| 99久久中文字幕三级久久日本| 丰满饥渴人妻一区二区三| 精品国产露脸久久av麻豆| 亚洲国产精品一区三区| 精品人妻一区二区三区麻豆| 国产女主播在线喷水免费视频网站| 91精品国产国语对白视频| 久久这里有精品视频免费| 免费播放大片免费观看视频在线观看| a 毛片基地| 日韩熟女老妇一区二区性免费视频| 七月丁香在线播放| 国产精品国产三级国产专区5o| 国产av一区二区精品久久| 国产一区二区三区av在线| a级毛片黄视频| 五月开心婷婷网| 国国产精品蜜臀av免费| 国产高清三级在线| 久久这里只有精品19| 欧美成人午夜精品| 亚洲国产精品一区二区三区在线| 美女福利国产在线| 欧美激情 高清一区二区三区| 七月丁香在线播放| 如何舔出高潮| 中文天堂在线官网| 最近手机中文字幕大全| av有码第一页| 亚洲国产精品一区三区| 免费人成在线观看视频色| 26uuu在线亚洲综合色| 国产成人aa在线观看| 久久国产精品大桥未久av| 黑人欧美特级aaaaaa片| 秋霞伦理黄片| 七月丁香在线播放| 中文字幕亚洲精品专区| 国产极品天堂在线| 欧美日韩av久久| 大陆偷拍与自拍| 人人妻人人添人人爽欧美一区卜| 亚洲人成网站在线观看播放| 亚洲精品色激情综合| 少妇人妻 视频| 黄网站色视频无遮挡免费观看| 成人亚洲欧美一区二区av| 国产高清国产精品国产三级| 国产xxxxx性猛交| 又大又黄又爽视频免费| 秋霞在线观看毛片| 精品福利永久在线观看| 日日摸夜夜添夜夜爱| 免费看光身美女| 国产男女内射视频| 国产成人精品一,二区| 最黄视频免费看| 免费黄色在线免费观看| 精品国产露脸久久av麻豆| 日本爱情动作片www.在线观看| 久久这里有精品视频免费| 91国产中文字幕| 久久99热这里只频精品6学生| 亚洲四区av| 成人手机av| 久久久亚洲精品成人影院| 十分钟在线观看高清视频www| 精品少妇久久久久久888优播| 国产69精品久久久久777片| 91精品三级在线观看| 午夜av观看不卡| 午夜免费鲁丝| 久久99热6这里只有精品| 日本黄色日本黄色录像| 中文字幕人妻熟女乱码| 97精品久久久久久久久久精品| 香蕉丝袜av| 亚洲,一卡二卡三卡| 亚洲人成网站在线观看播放| 啦啦啦在线观看免费高清www| 国产成人欧美| 中文欧美无线码| 水蜜桃什么品种好| 国产熟女欧美一区二区| 午夜老司机福利剧场| 在线天堂最新版资源| 久久久国产一区二区| 热re99久久精品国产66热6| 各种免费的搞黄视频| 久久精品久久久久久噜噜老黄| 久久国产亚洲av麻豆专区| 老女人水多毛片| h视频一区二区三区| 18在线观看网站| 国产成人a∨麻豆精品| tube8黄色片| 国产 一区精品| 在现免费观看毛片| 80岁老熟妇乱子伦牲交| 亚洲国产av新网站| 建设人人有责人人尽责人人享有的| av有码第一页| 欧美精品国产亚洲| 秋霞在线观看毛片| 国产白丝娇喘喷水9色精品| 亚洲综合色网址| 国产精品99久久99久久久不卡 | 国产一区二区三区综合在线观看 | 少妇熟女欧美另类| 赤兔流量卡办理| 久久精品国产自在天天线| 另类精品久久| 一区二区三区精品91| 少妇人妻精品综合一区二区| 人成视频在线观看免费观看| 大香蕉97超碰在线| 2022亚洲国产成人精品| 99热全是精品| 免费人妻精品一区二区三区视频| 丰满饥渴人妻一区二区三| 精品国产乱码久久久久久小说| 香蕉精品网在线| 免费观看a级毛片全部| 免费看av在线观看网站| 美女大奶头黄色视频| 国产69精品久久久久777片| 超色免费av| 99热全是精品| 国产黄色免费在线视频| 狂野欧美激情性bbbbbb| av网站免费在线观看视频| 国产精品久久久久久精品电影小说| 满18在线观看网站| 9热在线视频观看99| 欧美精品一区二区大全| 国产 精品1| 亚洲精品,欧美精品| 久久久久久久大尺度免费视频| 久久国产亚洲av麻豆专区| 久久国内精品自在自线图片| 欧美国产精品一级二级三级| 制服诱惑二区| 男女啪啪激烈高潮av片| 亚洲av成人精品一二三区| 国产精品嫩草影院av在线观看| 国产精品嫩草影院av在线观看| 一级黄片播放器| 亚洲国产成人一精品久久久| 国产又爽黄色视频| 午夜影院在线不卡| 国产在线视频一区二区| 国产高清不卡午夜福利| 在线天堂最新版资源| 欧美日韩综合久久久久久| 国产精品偷伦视频观看了| 国产麻豆69| 国产片内射在线| 亚洲av电影在线观看一区二区三区| 精品久久久精品久久久| 狂野欧美激情性bbbbbb| 国产精品久久久久久久久免| 国产成人午夜福利电影在线观看| 黄色配什么色好看| 22中文网久久字幕| 国产成人91sexporn| 校园人妻丝袜中文字幕| 欧美精品亚洲一区二区| 啦啦啦啦在线视频资源| 午夜免费观看性视频| 日本-黄色视频高清免费观看| 亚洲伊人久久精品综合| 久久97久久精品| 亚洲精品成人av观看孕妇| 在线观看一区二区三区激情| 人妻一区二区av| 不卡视频在线观看欧美| 一级片免费观看大全| 一边亲一边摸免费视频| 亚洲婷婷狠狠爱综合网| 亚洲美女搞黄在线观看| 亚洲第一av免费看| 99视频精品全部免费 在线| 极品人妻少妇av视频| 啦啦啦视频在线资源免费观看| 午夜老司机福利剧场| 欧美日韩亚洲高清精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 王馨瑶露胸无遮挡在线观看| 超碰97精品在线观看| 人妻一区二区av| 少妇人妻 视频| 免费观看无遮挡的男女| 亚洲国产精品国产精品| 亚洲成色77777| 国产精品久久久久久久电影| 亚洲伊人久久精品综合| 在线观看免费高清a一片| 亚洲精品国产av蜜桃| 国产成人精品在线电影| 最黄视频免费看| 久久韩国三级中文字幕| 亚洲精品一区蜜桃| 国产精品久久久av美女十八| 十八禁网站网址无遮挡| 久久久久精品久久久久真实原创| 久久午夜综合久久蜜桃| 午夜精品国产一区二区电影| 久久久国产精品麻豆| 搡女人真爽免费视频火全软件| 在线观看免费高清a一片| 国产色爽女视频免费观看| 永久免费av网站大全| 精品午夜福利在线看| 欧美人与性动交α欧美软件 | 成人午夜精彩视频在线观看| 一级,二级,三级黄色视频| 视频区图区小说| 又黄又粗又硬又大视频| 青春草视频在线免费观看| 18在线观看网站| 各种免费的搞黄视频| 午夜老司机福利剧场| av视频免费观看在线观看| 日韩av不卡免费在线播放| 亚洲欧洲精品一区二区精品久久久 | 亚洲一码二码三码区别大吗| 91久久精品国产一区二区三区| 婷婷色av中文字幕| 亚洲在久久综合| 亚洲国产精品专区欧美| 999精品在线视频| 中文字幕精品免费在线观看视频 | 90打野战视频偷拍视频| 久久午夜综合久久蜜桃| 日韩精品免费视频一区二区三区 | av在线播放精品| 亚洲国产精品999| 免费久久久久久久精品成人欧美视频 | 狂野欧美激情性bbbbbb| 肉色欧美久久久久久久蜜桃| 久久 成人 亚洲| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 午夜福利网站1000一区二区三区| av不卡在线播放| 免费女性裸体啪啪无遮挡网站| 中文字幕精品免费在线观看视频 | 人妻人人澡人人爽人人| 夫妻性生交免费视频一级片| 久久精品国产综合久久久 | av在线播放精品| 欧美激情极品国产一区二区三区 | 99re6热这里在线精品视频| 日韩成人av中文字幕在线观看| 亚洲欧美成人精品一区二区| 搡老乐熟女国产| 深夜精品福利| 欧美日韩视频高清一区二区三区二| 久久毛片免费看一区二区三区| 两个人看的免费小视频| 欧美日本中文国产一区发布| 黄色毛片三级朝国网站| 久久女婷五月综合色啪小说| 99九九在线精品视频| 黑丝袜美女国产一区| 日本欧美国产在线视频| 亚洲av日韩在线播放| a 毛片基地| 免费高清在线观看视频在线观看| 欧美 日韩 精品 国产| 极品人妻少妇av视频| 国产高清三级在线| 亚洲欧洲精品一区二区精品久久久 | 国产在线视频一区二区| 日日摸夜夜添夜夜爱| 黑丝袜美女国产一区| 99久国产av精品国产电影| 亚洲第一区二区三区不卡| 国产精品熟女久久久久浪| 国产女主播在线喷水免费视频网站| 97精品久久久久久久久久精品| 大香蕉久久成人网| 欧美亚洲日本最大视频资源| av免费观看日本| 老熟女久久久| 亚洲av福利一区| 久久精品aⅴ一区二区三区四区 |