• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber

    2022-06-29 09:17:54PeiZhang張沛KaharudinDimyatiBilalNizamaniMustafaNajmandHarun
    Chinese Physics B 2022年6期

    Pei Zhang(張沛) Kaharudin Dimyati Bilal Nizamani Mustafa M.Najm and S.W.Harun

    1School of Electrical and Information Engineering,Huaihua University,Huaihua 418008,China

    2Key Laboratory of Intelligent Control Technology for Wuling-Mountain Ecological Agriculture in Hunan Province,Huaihua University,Huaihua 418008,China

    3Department of Electrical Engineering,Faculty of Engineering,University of Malaya,Kuala Lumpur 50603,Malaysia

    4Faculty of Advanced Technology and Multidiscipline,Airlangga University,Surabaya 60115,Indonesia

    5Institute of Computer Science and Digital Innovation,UCSI University,Kuala Lumpur,Malaysia

    Keywords: all-fiber laser,Q-switched mode-locking,dark soliton,fiber saturable absorber

    Pulsed fiber lasers have attracted plentiful attention in various applications in the latest decades,due to the abundant advantages including low lasing threshold,simple configuration,high efficiency and low cost. Saturable absorber (SA) is the essential device to realize the pulsed fiber lasers. Various SAs,such as semiconductor saturable absorption mirror,[1]carbon nanotube,[2]graphene,[3]topological insulators,[4,5]black phosphorus,[6]and transition metal dichalcogenides,[7,8]have been studied to achieve mode-locking operation in fiber lasers.These materials are vulnerable to oxidization, which leads to short-term stability.[9]Meanwhile,thermal effects induced by optical power restrict the damage threshold of these SAs.[10]

    One of the most effective techniques to address these issues is to employ the doped fiber saturable absorber (DFSA)to realize all-fiber configuration in fiber lasers. In fact,DFSA, a segment of doped fiber inserted in the laser cavity, possesses long-time stability and high damage threshold due to the intrinsic feature of silica glass. Moreover, employing DFSA is the most practical method to manufacture all-fiber pulsed lasers because DFSA is more accessible and convenient to be fabricated massively. To date, DFSA is mostly employed forQ-switching pulse generation. For instance, the first all-fiber pulsed fiber laser with DFSA was demonstrated by utilizing 25 cm-long fiber SA doped with chromium,an element of transition metal.[11]Afterwards,DFSAs mainly consist of fibers doped with rare-earth elements,such as erbium,[12]samarium,[13]ytterbium,[14]thulium,[15]and holmium.[16]Recently, bismuth, an element of main group, doped in the fiber was reported as aQ-switcher in an all-fiber erbium-doped fiber laser(EDFL).[17]

    However, mode-locking operation in pulsed all-fiber lasers based on DFSA have only been reported in two papers. Mode-locking operation in an EDFL by using Tm–Ho co-doped fiber SA was firstly experimentally reported in 2013.Q-switching,Q-switched mode-locking and continuous mode-locking operations were observed with an external intervention of rotating the polarization controller.[18]Based on the same type of doped fiber,self-starting dual-wavelengthQswitching and mode-locking operations were obtained in an EDFL. The pulse duration was 128 ns at high pump power of 166 mW.[19]However, both all-fiber lasers did not obtain any soliton in mode-locking operation. On the basis of these results, we speculate that the relaxation time of DFSA is increased by the intensive interaction between thulium and holmium ions co-doped in the fiber, as thulium and holmium are collectively sharing similar absorption profile in gain spectrum of erbium.[20]

    In this paper,a 12 cm-long thulium doped fiber(TDF)SA is spliced in an EDFL cavity for pulse generation in all-fiber configuration. To the best of our knowledge, self-startingQswitching,Q-switched mode-locking, and mode-locking operation states are sequentially observed in the proposed fiber laser for the first time. In the mode-locking operation, dark soliton with a repetition rate of 0.99 MHz and signal-to-noise ratio of 65 dB is generated with DFSA.

    To demonstrate the optical properties of the TDF SA,the characterization of the TDF is shown in Fig. 1. The absorption loss of TDF is measured by a white light source and an optical spectrum analyzer,which is about 3 dB near 1570 nm in Fig. 1(a). The nonlinear saturable absorption of the TDF is measured by a balanced twin detector measurement technique.The modulation depth and the non-saturable absorption are 3.6% and 49%, respectively, as shown in Fig. 1(b). The modulation depth of TDF is relatively low,which may lead to strong pulse shaping and reliable self-starting.

    Fig.1. Characterization of TDF:(a)linear absorption profile,and(b)nonlinear saturable absorption curve.

    The experimental setup of the proposed EDFL with an all-fiber ring cavity configuration is illustrated in Fig. 2. A 2.4 m-long erbium-doped fiber(EDF,type I-25)is used as the gain medium and pumped by a 980 nm laser diode pump via a 980/1550 nm wavelength division multiplexer(WDM).The 200 m-long single mode fiber (SMF-28) is incorporated into the cavity to adjust the total cavity dispersion. The TDF is inserted in the cavity as a SA. The unidirectional laser pulse propagation is ensured by a polarization-independent isolator. The 90:10 coupler is inserted into the cavity between the WDM and the isolator. The polarization-dependent losses of couplers, WDM and optical isolator are less than 0.1 dB.Ten percent of generated pulses are drawn out by the coupler and monitored by an optical spectrum analyzer (YOKOGAWA:AQ6370B), an oscilloscope (Yokogawa:AQ6370B),an optical power meter (Thorlabs:PM100D) and a radio frequency spectrum analyzer (Anritsu:MS2683A), respectively.All the components are spliced in the pulsed fiber laser to realize all-fiber configuration. The group velocity dispersion(GVD) plays a crucial part of maintaining stability in modelocking operation. The GVD of the EDF is-20.3 ps/nm·km and that of the SMF is 16 ps/nm·km, at the wavelength of 1550 nm. In our case, the central wavelength is around 1570 nm, and thus the negligible difference of GVD can be ignored. The total length of the whole cavity is~205 m corresponding to the net cavity dispersion of-4.2 ps2.

    Fig.2.Schematic of all-fiber pulsed ring laser.LD,laser diode;WDM,wavelength division multiplexer; OC, optical coupler; EDF, erbium-doped fiber;SMF,single mode fiber;TDF,thulium-doped fiber;ISO,isolator.

    Fig.3. The Q-switched operation outputs at 23 mW.(a)Optical spectrum of the Q-switched operation,(b)typical Q-switched pulse train,(c)single pulse envelope,(d)the RF spectrum.

    The self-startedQ-switched pulses occur once the pump power increases to 13 mW,the threshold of continuous-wave lasing. TheQ-switched output spectrum at pump power of 23 mW is shown in Fig. 3. In Fig. 3(a), the operating central wavelength is located at 1569.7 nm, with 3 dB bandwidth of 0.6 nm. Figure 3(b)shows theQ-switched pulse train which consists of bright and dark pulses. The repetition rate is 4.05 kHz,corresponding to the time interval of 247 μs. From the profile of the single pulse in Fig.3(c),we can see that the output pulses have a full width at half-maximum of 34.2 μs with an unsymmetric temporal profile.[21]The corresponding radio frequency (RF) spectrum is measured with a resolution bandwidth of 10 Hz, as shown in Fig. 3(d). The fundamental frequency is 4.05 kHz, which consistently agrees with the pulse repetition rate. The signal-to-noise ratio (SNR) is over 50 dB,indicating the high stability of the laser output.

    Figure 4 depicts the evolution ofQ-switching pulse performance as the pump power increases from 13 mW to 23 mW.The evolution of the repetition rate and pulse width with pump power is shown in Fig.4(a). The pulse width decreases from 55 μs to 34 μs while the repetition rate of theQ-switched pulses increases from 2 kHz to 4 kHz consistently. The average output power and the pulse energy increase from 0.1 mW to 0.46 mW and from 51 nJ to 113 nJ with the rise of pump power,respectively,as noted in Fig.4(b).

    Fig. 4. (a) The pulse duration and repetition rate versus pump power. (a)Average output power and pulse energy versus pump power.

    Once the pump power exceeds 23 mW, theQ-switching operation becomes unstable. Further increasing the pump power leads the fiber laser intoQ-switched mode-locking(QML) operation, and theQ-switching operation can be recovered again just by decreasing the pump power. The QML pulses are composed of multiple mode-locked pulses which are uniformly sequenced to appear in largeQ-switching envelopes. The optical spectrum of QML operation can be seen in Fig.5(a). The central wavelength is 1570.9 nm with a 3 dB bandwidth of 1 nm.Figure 5(b)shows the QML pulse trains at the pump power of 29 mW.As can be seen,the envelope of the QML pulse train displays a shape similar to theQ-switching pulse in Fig.3(b). Figure 5(c)shows the typical mode-locking pulses zoomed-in from the image of the QML pulse shown in Fig. 5(b). It can be seen clearly that multiple mode-locking pulses are contained in theQ-switching envelope. The temporal width of theQ-switched envelope is~63.3 μs,and the time interval between the internal pulses is~505 ns.

    Fig. 5. (a) The QML optical spectrum. (b) Typical QML pulse trains at 29 mW.(c)Magnified view of the single QML pulse.

    By continuing to increase the pump power,the proposed fiber laser enters the mode-locking operation. The central wavelength of mode-locking optical spectrum is 1572 nm with 3 dB bandwidth of 0.8 nm, as shown in Fig. 6(a). It is noted that the optical spectrum becomes narrower, and the central wavelength shifts to longer wavelength during the sequential evolution of diverse operations. Due to the increase of pump power, the net increase in gain causes a minor shift in wavelength of about 1 nm towards the longer wavelength.

    Due to the cross-phase coupling enhanced by the ascent of pump power, a mode-locking dark pulse train is formed in the cavity. The mode-locking operation can sustain up to the pump power of 41 mW. Figure 6(b) plots the corresponding pulse train which is displayed as intensity dips in an otherwise continuous wave beam of laser emission. Based on numerical simulations, the dark pulse formation is a result of the dark soliton shaping in the fiber laser.[22]As the birefringence is caused by inserting the TDF, the propagating light splits into two orthogonal components. The adjustment of pump power changes the phase difference between the two orthogonal components. The formation of dark soliton derives from the overlap between these two components.[23]Unfortunately, owing to the low repetition rate of the dark pulses,delicate autocorrelation trace cannot be detected in a conventional autocorrelator,and a cross-correlation measurement technique is required.The magnified view of dark pulse is presented in Fig.6(c).The pulse-to-pulse interval is 1.01 μs,corresponding to the fundamental pulse repetition rate of 0.99 MHz. It is evident that the single pulse envelope only contains dark dip rather than bright pulse. The stability of the dark pulse is further monitored by a RF spectrum analyzer. As shown in Fig. 6(d), the SNR is measured to be around 65 dB at the fundamental frequency of 0.99 MHz. High SNR and multiple harmonics demonstrate the good stability of mode-locking operation. Compared with bright pulses,researchers have stated that dark pulses are less affected by the power loss and background noise in fiber optical propagation.[24–26]Therefore, dark pulse mode-locking fiber lasers possess great potential for the application in optical communication systems and signal processing.[27,28]. Further increasing the pump power beyond 41 mW leads to unstable pulses which eventually disappear when the laser switches back to continuous wave operation. It is indicated that the SA is oversaturated by the enhancement of pump power.

    Fig.6. The mode-locked operation outputs at 41 mW.(a)Optical spectrum of the mode-locked operation, (b) typical mode-locked dark pulse train, (c)magnified view of the dark pulses,(d)the RF spectrum.

    Fig.7. Output power development against pump power.

    The output power development against pump power of proposed all-fiber laser is represented in Fig. 7. The experimental results include three different regimes:Q-switching,QML and mode-locking operations. During the rise period of pump power,the output powers are directly proportional to the pump power and increases linearly without any fluctuation between different regimes. Thus, the slope efficiency of three operation regimes is calculated as same as 4%. Furthermore,the proposed fiber laser has been working steadily for several hours without any interruption in the lab. Different regimes can be operated back and forth while the pump power shuttles slowly between 13 mW and 41 mW.

    In summary, we have demonstrated self-starting diverse operations in an EDFL incorporated with DFSA which is prepared by a piece of TDF for the first time.By adjusting the low pump power,Q-switching,QML and mode-locking operations are realized sequentially at 1570 nm region. The output dark soliton with SNR of 65 dB is generated in the mode-locking operation at repetition rate of 0.99 MHz. The experimental results contribute to the development of DFSA in all-fiber modelocking laser which could find applications in optical communication and signal processing system.

    Acknowledgment

    This work was supported by the Science and Technology Innovation Program of Hunan Province, China (Grant No.2021RC5012).

    午夜免费观看性视频| 三级国产精品欧美在线观看| 久久99热这里只有精品18| 国产精品爽爽va在线观看网站| 国产淫语在线视频| 午夜福利在线观看免费完整高清在| 亚洲自偷自拍三级| 草草在线视频免费看| 一级爰片在线观看| 在线亚洲精品国产二区图片欧美 | 我的老师免费观看完整版| 91久久精品电影网| 日韩av在线免费看完整版不卡| 交换朋友夫妻互换小说| 亚洲激情五月婷婷啪啪| 午夜日本视频在线| 在线观看免费日韩欧美大片 | 欧美日本视频| 夜夜看夜夜爽夜夜摸| 在线观看免费日韩欧美大片 | 日产精品乱码卡一卡2卡三| 国产男女内射视频| 午夜激情福利司机影院| 国产毛片在线视频| 婷婷色综合大香蕉| 91在线精品国自产拍蜜月| 久久人人爽人人片av| h视频一区二区三区| 永久网站在线| 男女边吃奶边做爰视频| 欧美精品亚洲一区二区| 久热这里只有精品99| 午夜福利网站1000一区二区三区| 国产精品人妻久久久影院| 18禁裸乳无遮挡免费网站照片| 直男gayav资源| 欧美激情极品国产一区二区三区 | 欧美一级a爱片免费观看看| 亚洲成人av在线免费| 国产伦精品一区二区三区视频9| 日日摸夜夜添夜夜爱| 蜜桃亚洲精品一区二区三区| 人妻制服诱惑在线中文字幕| 在线观看一区二区三区| 久久午夜福利片| av线在线观看网站| 最近中文字幕2019免费版| 精品久久久久久电影网| 在现免费观看毛片| 久久婷婷青草| 国产亚洲5aaaaa淫片| 久久影院123| a级毛色黄片| 日韩成人伦理影院| 哪个播放器可以免费观看大片| 精品少妇久久久久久888优播| 性色av一级| 欧美人与善性xxx| av播播在线观看一区| 深爱激情五月婷婷| 国产深夜福利视频在线观看| 男女免费视频国产| 噜噜噜噜噜久久久久久91| 亚洲精品第二区| kizo精华| 男女下面进入的视频免费午夜| 国产免费视频播放在线视频| 老熟女久久久| 欧美xxⅹ黑人| 狂野欧美激情性xxxx在线观看| 少妇熟女欧美另类| 国产精品99久久久久久久久| 少妇人妻一区二区三区视频| av国产久精品久网站免费入址| 精品人妻一区二区三区麻豆| 交换朋友夫妻互换小说| 天美传媒精品一区二区| 又爽又黄a免费视频| 亚洲成人av在线免费| 色吧在线观看| 97精品久久久久久久久久精品| 亚洲人成网站在线观看播放| 国产精品偷伦视频观看了| 免费大片18禁| 亚洲精品一区蜜桃| av网站免费在线观看视频| 国国产精品蜜臀av免费| 妹子高潮喷水视频| 老司机影院毛片| 久久久久久伊人网av| 美女cb高潮喷水在线观看| 成人美女网站在线观看视频| 永久免费av网站大全| 国国产精品蜜臀av免费| 欧美极品一区二区三区四区| 制服丝袜香蕉在线| 深爱激情五月婷婷| 精品亚洲成a人片在线观看 | 三级国产精品片| 国产精品99久久久久久久久| 亚洲一级一片aⅴ在线观看| 久久国内精品自在自线图片| 欧美老熟妇乱子伦牲交| 日韩制服骚丝袜av| 亚洲欧美一区二区三区国产| 岛国毛片在线播放| 丰满人妻一区二区三区视频av| 中文字幕精品免费在线观看视频 | 啦啦啦视频在线资源免费观看| 国产爽快片一区二区三区| 99精国产麻豆久久婷婷| 多毛熟女@视频| 建设人人有责人人尽责人人享有的 | 欧美区成人在线视频| 国产一区亚洲一区在线观看| 麻豆精品久久久久久蜜桃| 国产探花极品一区二区| 五月玫瑰六月丁香| 婷婷色av中文字幕| 99精国产麻豆久久婷婷| 在线观看国产h片| 极品教师在线视频| 成人毛片60女人毛片免费| 激情五月婷婷亚洲| 国产v大片淫在线免费观看| 女性生殖器流出的白浆| 久久人人爽人人爽人人片va| 美女视频免费永久观看网站| 色网站视频免费| 又粗又硬又长又爽又黄的视频| 狂野欧美激情性bbbbbb| 伦理电影大哥的女人| 亚洲丝袜综合中文字幕| 精品视频人人做人人爽| 亚洲最大成人中文| 你懂的网址亚洲精品在线观看| 亚洲成人中文字幕在线播放| 久久久精品94久久精品| 亚洲av免费高清在线观看| 亚洲图色成人| 欧美+日韩+精品| 亚洲精品自拍成人| 中文精品一卡2卡3卡4更新| 久久午夜福利片| 中文字幕免费在线视频6| 国产伦理片在线播放av一区| 1000部很黄的大片| 亚洲国产精品专区欧美| 免费观看性生交大片5| 国产精品嫩草影院av在线观看| av线在线观看网站| 嘟嘟电影网在线观看| 在线观看免费高清a一片| 久久久久网色| 国产深夜福利视频在线观看| 伦精品一区二区三区| 永久网站在线| 一区二区av电影网| 亚洲精品国产成人久久av| 一级毛片我不卡| 欧美成人精品欧美一级黄| 亚洲av中文字字幕乱码综合| 欧美日韩一区二区视频在线观看视频在线| 国产精品国产三级专区第一集| 777米奇影视久久| videossex国产| 午夜精品国产一区二区电影| 少妇的逼水好多| 日韩人妻高清精品专区| av又黄又爽大尺度在线免费看| 韩国av在线不卡| 亚洲色图av天堂| 久久久国产一区二区| 国产69精品久久久久777片| 免费av不卡在线播放| 一级片'在线观看视频| 妹子高潮喷水视频| 边亲边吃奶的免费视频| 免费观看无遮挡的男女| 国产成人午夜福利电影在线观看| 七月丁香在线播放| 亚洲av综合色区一区| 日本免费在线观看一区| 亚洲精品久久午夜乱码| 成人一区二区视频在线观看| 亚洲国产av新网站| 国产无遮挡羞羞视频在线观看| 亚洲成人av在线免费| av一本久久久久| 亚洲图色成人| 国产黄色免费在线视频| 99久国产av精品国产电影| 亚洲国产精品999| 少妇人妻久久综合中文| a级毛色黄片| 人体艺术视频欧美日本| 国产黄片视频在线免费观看| 国产在线男女| 黑人高潮一二区| 久久精品久久久久久久性| 大陆偷拍与自拍| 91久久精品国产一区二区三区| 久久久久久人妻| 欧美精品人与动牲交sv欧美| 亚洲成人手机| 欧美人与善性xxx| 亚洲自偷自拍三级| 亚洲精品乱码久久久v下载方式| 中文天堂在线官网| 成人无遮挡网站| 亚洲欧美成人精品一区二区| 在线观看三级黄色| 日日啪夜夜爽| 国产精品国产三级专区第一集| 一区二区三区免费毛片| 不卡视频在线观看欧美| 国产视频首页在线观看| 免费少妇av软件| 日本色播在线视频| 最近的中文字幕免费完整| 波野结衣二区三区在线| 久久精品久久精品一区二区三区| 久久毛片免费看一区二区三区| 亚洲国产精品专区欧美| 久久久久久久大尺度免费视频| 午夜福利网站1000一区二区三区| 18禁在线无遮挡免费观看视频| 少妇的逼水好多| 少妇人妻久久综合中文| 久久久久久久大尺度免费视频| 永久网站在线| 激情五月婷婷亚洲| 精品一区二区三区视频在线| 一区二区三区四区激情视频| 日韩 亚洲 欧美在线| 国产 一区 欧美 日韩| 国产白丝娇喘喷水9色精品| 日本色播在线视频| 深爱激情五月婷婷| 最近的中文字幕免费完整| 久久久欧美国产精品| 亚洲一区二区三区欧美精品| xxx大片免费视频| 久久久久精品性色| 午夜视频国产福利| 久久精品人妻少妇| 一级毛片 在线播放| 能在线免费看毛片的网站| 亚洲国产精品国产精品| 一个人看的www免费观看视频| 3wmmmm亚洲av在线观看| 久久 成人 亚洲| 中文字幕免费在线视频6| 成人亚洲精品一区在线观看 | 国产av国产精品国产| 日韩欧美一区视频在线观看 | 欧美日韩国产mv在线观看视频 | 久久青草综合色| 丝瓜视频免费看黄片| 亚洲电影在线观看av| 少妇人妻一区二区三区视频| 视频区图区小说| 国语对白做爰xxxⅹ性视频网站| 亚洲精品国产av蜜桃| 国产在线免费精品| 日本与韩国留学比较| 欧美另类一区| 人妻系列 视频| 成人综合一区亚洲| 草草在线视频免费看| 欧美一区二区亚洲| 国产久久久一区二区三区| 夜夜看夜夜爽夜夜摸| 又粗又硬又长又爽又黄的视频| 中文乱码字字幕精品一区二区三区| 91精品一卡2卡3卡4卡| 哪个播放器可以免费观看大片| 黄色怎么调成土黄色| 久久国产精品男人的天堂亚洲 | 亚州av有码| 一区二区三区免费毛片| 亚洲av综合色区一区| 黄色一级大片看看| 亚洲美女视频黄频| 我要看黄色一级片免费的| av专区在线播放| 久久99蜜桃精品久久| 日韩免费高清中文字幕av| 久久精品熟女亚洲av麻豆精品| av在线观看视频网站免费| 好男人视频免费观看在线| 久久精品国产a三级三级三级| 全区人妻精品视频| 免费av中文字幕在线| 国产精品伦人一区二区| 国产一区二区三区综合在线观看 | 欧美精品亚洲一区二区| 97超碰精品成人国产| 亚洲精品日韩av片在线观看| 老司机影院成人| 国产在线视频一区二区| xxx大片免费视频| 美女高潮的动态| 国产精品一区二区性色av| 青青草视频在线视频观看| 婷婷色av中文字幕| 久久久亚洲精品成人影院| 精品少妇久久久久久888优播| 国产乱人偷精品视频| 国产精品一区二区性色av| 91久久精品国产一区二区三区| 国产久久久一区二区三区| 久久热精品热| 18禁在线无遮挡免费观看视频| 精品视频人人做人人爽| 只有这里有精品99| 欧美成人一区二区免费高清观看| 成人午夜精彩视频在线观看| 少妇被粗大猛烈的视频| 在现免费观看毛片| 岛国毛片在线播放| 亚洲av福利一区| 亚洲av免费高清在线观看| 人人妻人人爽人人添夜夜欢视频 | av国产免费在线观看| 在线 av 中文字幕| 精品酒店卫生间| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久久国产电影| 久久人妻熟女aⅴ| 亚洲,一卡二卡三卡| 在线观看免费视频网站a站| 只有这里有精品99| 18禁在线无遮挡免费观看视频| 亚洲av中文字字幕乱码综合| 精华霜和精华液先用哪个| 日韩亚洲欧美综合| 99re6热这里在线精品视频| 亚洲精品视频女| 久久精品久久精品一区二区三区| 九九爱精品视频在线观看| 亚洲无线观看免费| 亚洲av福利一区| 热re99久久精品国产66热6| 大话2 男鬼变身卡| 免费观看无遮挡的男女| 小蜜桃在线观看免费完整版高清| 2022亚洲国产成人精品| 亚洲精品久久午夜乱码| 观看免费一级毛片| 国产免费一级a男人的天堂| 亚洲国产精品一区三区| 中文字幕亚洲精品专区| 国产精品久久久久久久电影| 亚洲精品国产成人久久av| 亚洲精品乱码久久久v下载方式| 午夜福利在线观看免费完整高清在| 在线观看国产h片| 日日啪夜夜爽| 身体一侧抽搐| 黄色怎么调成土黄色| 精品亚洲成国产av| 国产永久视频网站| 久久99热这里只频精品6学生| 伊人久久国产一区二区| 国产精品一区二区性色av| 久久精品久久精品一区二区三区| 少妇精品久久久久久久| 亚洲美女黄色视频免费看| 国产美女午夜福利| 国产爱豆传媒在线观看| 乱系列少妇在线播放| 永久网站在线| 国产老妇伦熟女老妇高清| 日本黄大片高清| 国产精品熟女久久久久浪| 身体一侧抽搐| 欧美xxxx性猛交bbbb| 日韩av不卡免费在线播放| 国产成人aa在线观看| 亚洲精品乱码久久久久久按摩| 97精品久久久久久久久久精品| 午夜日本视频在线| 国产无遮挡羞羞视频在线观看| 国产 一区精品| 国产v大片淫在线免费观看| 美女主播在线视频| av线在线观看网站| 一本—道久久a久久精品蜜桃钙片| 少妇精品久久久久久久| 精品久久国产蜜桃| 在线播放无遮挡| 亚洲av电影在线观看一区二区三区| 免费看不卡的av| 青春草亚洲视频在线观看| 尾随美女入室| 久久 成人 亚洲| 久久鲁丝午夜福利片| 久久国产亚洲av麻豆专区| 网址你懂的国产日韩在线| av卡一久久| 色网站视频免费| 高清欧美精品videossex| av天堂中文字幕网| 久久久色成人| 日日啪夜夜撸| 久久久久久久大尺度免费视频| 欧美bdsm另类| 国产日韩欧美亚洲二区| 国产精品一及| 免费人成在线观看视频色| 国产精品三级大全| 日日摸夜夜添夜夜添av毛片| 成人漫画全彩无遮挡| 亚洲久久久国产精品| 国精品久久久久久国模美| 久久女婷五月综合色啪小说| 在现免费观看毛片| 国产永久视频网站| 婷婷色av中文字幕| 久久久成人免费电影| 国产高清三级在线| 欧美另类一区| 国产一区二区三区综合在线观看 | 国产精品99久久99久久久不卡 | 人体艺术视频欧美日本| 麻豆成人午夜福利视频| 自拍偷自拍亚洲精品老妇| 国产无遮挡羞羞视频在线观看| 日韩伦理黄色片| 直男gayav资源| 黑人高潮一二区| 99久久精品一区二区三区| 国产精品爽爽va在线观看网站| 人人妻人人爽人人添夜夜欢视频 | 国产淫片久久久久久久久| 国产免费福利视频在线观看| 秋霞在线观看毛片| 在线观看一区二区三区| 在线观看一区二区三区激情| 亚洲国产欧美人成| 日韩国内少妇激情av| 91精品伊人久久大香线蕉| 国产av码专区亚洲av| 亚洲国产精品成人久久小说| 黄片无遮挡物在线观看| 国产精品蜜桃在线观看| 亚洲欧美成人综合另类久久久| 久久久a久久爽久久v久久| 一级a做视频免费观看| 欧美日本视频| 观看美女的网站| 黄色配什么色好看| 男男h啪啪无遮挡| 插逼视频在线观看| 国产老妇伦熟女老妇高清| 国产黄色免费在线视频| 国产91av在线免费观看| 大码成人一级视频| 亚洲国产精品999| 在线观看免费高清a一片| 久久人妻熟女aⅴ| 少妇人妻精品综合一区二区| 久久精品久久久久久噜噜老黄| 一个人免费看片子| 如何舔出高潮| 国内少妇人妻偷人精品xxx网站| 天堂俺去俺来也www色官网| 99热国产这里只有精品6| 免费黄频网站在线观看国产| 日韩强制内射视频| 三级经典国产精品| 国产人妻一区二区三区在| av在线观看视频网站免费| 欧美高清性xxxxhd video| av又黄又爽大尺度在线免费看| 国产成人午夜福利电影在线观看| 91久久精品国产一区二区成人| 国产熟女欧美一区二区| 秋霞在线观看毛片| 国产伦精品一区二区三区视频9| 黄色欧美视频在线观看| 在线观看美女被高潮喷水网站| 夫妻性生交免费视频一级片| 日韩 亚洲 欧美在线| 成人黄色视频免费在线看| 尤物成人国产欧美一区二区三区| 国产亚洲午夜精品一区二区久久| 国产一区二区三区综合在线观看 | 亚洲精品,欧美精品| 99久久人妻综合| 啦啦啦在线观看免费高清www| 91狼人影院| 一区二区三区免费毛片| 亚洲精品视频女| 狠狠精品人妻久久久久久综合| 国产男人的电影天堂91| 亚洲在久久综合| 亚洲精品国产av成人精品| 亚洲精品日韩在线中文字幕| 美女视频免费永久观看网站| 国产精品国产三级国产av玫瑰| 在线观看免费视频网站a站| 最近中文字幕高清免费大全6| 一级毛片黄色毛片免费观看视频| 青春草国产在线视频| 视频区图区小说| 青春草视频在线免费观看| 综合色丁香网| 欧美日韩综合久久久久久| 亚洲国产色片| 欧美日韩精品成人综合77777| 国产精品麻豆人妻色哟哟久久| 青春草亚洲视频在线观看| 久久国产精品大桥未久av | 久久久欧美国产精品| 91精品伊人久久大香线蕉| 欧美精品一区二区大全| 女的被弄到高潮叫床怎么办| 国产国拍精品亚洲av在线观看| 不卡视频在线观看欧美| 老司机影院成人| 亚洲精品日韩av片在线观看| 夜夜爽夜夜爽视频| av国产精品久久久久影院| 三级国产精品欧美在线观看| 欧美成人精品欧美一级黄| 自拍欧美九色日韩亚洲蝌蚪91 | 26uuu在线亚洲综合色| 日韩视频在线欧美| 久久久久久久精品精品| 午夜福利在线观看免费完整高清在| 欧美3d第一页| 国产欧美另类精品又又久久亚洲欧美| 赤兔流量卡办理| 亚洲成人手机| 日日啪夜夜撸| 在线观看人妻少妇| 观看美女的网站| 寂寞人妻少妇视频99o| 蜜桃亚洲精品一区二区三区| 国产亚洲欧美精品永久| 亚洲中文av在线| 欧美精品亚洲一区二区| 菩萨蛮人人尽说江南好唐韦庄| 免费看不卡的av| 丰满少妇做爰视频| 日本与韩国留学比较| 亚洲国产毛片av蜜桃av| 免费观看性生交大片5| 纵有疾风起免费观看全集完整版| 中文字幕免费在线视频6| 亚洲国产欧美人成| 久久国产精品大桥未久av | 国产又色又爽无遮挡免| 国模一区二区三区四区视频| 免费高清在线观看视频在线观看| 国产 一区 欧美 日韩| 观看美女的网站| 人妻夜夜爽99麻豆av| 久久久久久久国产电影| av一本久久久久| 大陆偷拍与自拍| 美女高潮的动态| 在线观看三级黄色| 成人免费观看视频高清| 99热全是精品| 亚州av有码| 黄色配什么色好看| 97精品久久久久久久久久精品| 美女国产视频在线观看| 国产精品99久久久久久久久| 成年人午夜在线观看视频| 国产一区二区在线观看日韩| 成人综合一区亚洲| 国产免费视频播放在线视频| 亚洲精品自拍成人| 一个人免费看片子| 亚洲,一卡二卡三卡| 男女边摸边吃奶| 精品亚洲成国产av| 免费观看性生交大片5| 精品人妻偷拍中文字幕| 精品亚洲成a人片在线观看 | 天堂中文最新版在线下载| 欧美日韩亚洲高清精品| 伦理电影免费视频| 亚洲第一区二区三区不卡| 欧美 日韩 精品 国产| 一级毛片电影观看| 夜夜看夜夜爽夜夜摸| 久久久久久久大尺度免费视频| a级毛片免费高清观看在线播放| 精品国产一区二区三区久久久樱花 | 久久久a久久爽久久v久久| 观看美女的网站| 精品人妻偷拍中文字幕| 国产亚洲av片在线观看秒播厂| 日韩成人av中文字幕在线观看| 国产爱豆传媒在线观看| 国产日韩欧美亚洲二区| av国产精品久久久久影院| 亚洲一区二区三区欧美精品| 少妇精品久久久久久久| 国产免费视频播放在线视频| 免费高清在线观看视频在线观看| 黄色欧美视频在线观看| 精品久久久久久久末码| 欧美精品一区二区免费开放| 午夜免费观看性视频| 夜夜骑夜夜射夜夜干| 在线观看一区二区三区| 国产伦理片在线播放av一区| 国产精品久久久久久精品电影小说 | 性色av一级|