• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber

    2022-06-29 08:53:46JianFeiLiao廖健飛DaoMingLu盧道明LiJunChen陳麗軍andTianYeHuang黃田野
    Chinese Physics B 2022年6期

    Jian-Fei Liao(廖健飛) Dao-Ming Lu(盧道明) Li-Jun Chen(陳麗軍) and Tian-Ye Huang(黃田野)

    1School of Mechanical and Electrical Engineering,Wuyi University,Wuyishan 354300,China

    2School of Mechanical Engineering and Electronic Information,China University of Geosciences(Wuhan),Wuhan 430074,China

    3College of Physics and Electronic Information,Gannan Normal University,Ganzhou 341000,China

    Keywords: surface plasmon resonance,holy fiber,fiber optics sensor

    1. Introduction

    In recent years,surface plasmon resonance(SPR)sensors based on photonic crystal fiber(PCF)or holey fiber(HF)have attracted considerable interests due to their excellent sensing characteristics including high detection accuracy, level-free and real-time detection.[1–11]In PCF-based SPR sensing technology,the crucial factor is that the phase matching condition between the fiber core mode and the surface plasmon mode is fulfilled. However,the phase matching condition is always difficult to achieve since the difference of the refractive index between these two modes is usually large. Furthermore, the sensing property is highly dependent on the plasmon active metal materials since the optical properties of the metal materials have a large influence on the sensing performance,and in general,gold and silver are adopted.[12–17]

    Nowadays, for the purpose of realizing the SPR effect and improving the sensing performance, a large number of PCF-SPR sensors with various novel designs have been investigated.Several PCF-based SPR sensors with typical structures are as follows. Rifatet al.designed a PCF-SPR sensor by employing a hexagonal-lattice structure.[18]Their simulation results showed that a maximum wavelength sensitivity of 3000 nm/refractive index unit(RIU)and a resolution of 2.4×10-5RIU was achieved. In 2014,Otupiriet al.designed a PCF-SPR sensor with a slotted structure.[19]The resolution values of thex-polarized andy-polarized modes were up to 5×10-5RIU and 6×10-5RIU, respectively. Moreover, the amplitude sensitivities of these two polarized modes can be as high as 3×10-5RIU and 4×10-5RIU,respectively. In 2015,Rifatet al.designed a new type of PCF-SPR sensor by keeping the metallic film outside of the sensor structure.[20]The refractive index resolution of the sensor can reach to 2.5×10-5RIU.In 2016, Huang designed a PCF-SPR sensor by using a Dshaped fiber structure.[21]The results showed that a high sensitivity of 6000 nm/RIU was realized through optimizing the sensor design. In 2017,Liuet al. designed a PCF-SPR sensor with two open-ring channels.[22]The resonance wavelength of the sensor lied in(2.55,2.9)μm.The sensor maximum resolution and average wavelength sensitivity were 7.69×10-6RIU and 5500 nm/RIU, respectively. In 2018, Tonget al. proposed a PCF-SPR sensor with muti-core design.[23]An average wavelength sensitivity of 3435 nm/RIU with a resolution of 2.91×10-6RIU was achieved. In 2020, Wanget al.designed a PCF-SPR sensor with dual fiber structure.[24]The maximum spectral sensitivity and index resolution were as high as 17500 nm/RIU and 5.71×10-6RIU correspondingly.However, in order to induce the efficient SPR effect, most of PCF-based SPR sensors are coated with gold or silver,which have several obvious limitations. On the one hand, the resonance bandwidth of these sensors coated with gold is always so broad that decreases the sensing performance because gold has a large absorption coefficient. Meanwhile,chemical properties of silver is unstable and is easily oxidized, which also destroys the detection accuracy.

    In this paper,with the aim of overcoming the above limitations, a new type of SPR sensor based on circle lattice HF coated with indium tin oxide (ITO) is designed. By using of the full-vector finite element method,the sensing characteristics of our proposed sensor including wavelength sensitivity,wavelength interrogation resolution,and amplitude sensitivity are numerically investigated carefully. The results show that the SPR effect can be efficiently enhanced by using a groove design,and the maximum wavelength interrogation sensitivity can reach to 1.76×104nm/RIU.

    2. Fiber design and theory

    The structure diagram of our proposed HF-based SPR sensor is given in Fig. 1. The proposed sensor design includes two layers of air holes arranged in a circular lattice and a groove. For the purpose of enhancing the interaction between the core-guided mode and the SPP mode, there is a layer of ITO film located at the bottom of the groove. The main parameters of our proposed sensor are inner air hole diameterd1, outer air hole diameterd2, the pitch in the inner ringR1,the pitch in the outer ringR2,the spacing between the bottom of the groove and the central of the HFh, the width of the groovew,and the thickness of the ITO layert. The refractive index (RI) of analyte isna. As the host material, the chromatic dispersion of silica is obtained by using the Sellmeier equation.[25]The permittivity of ITO is calculated by employing the Drude model[21]

    whereεis the permittivity of ITO,ε∞=3.9 is the high frequency permittivity,ωis the angular frequency,ωpis the plasma frequency,Γ=1.8×1014rad/s is the electron scattering rate,m*=0.35m0,m0=9.1×10-31kg is the rest mass of electrons,n= 1.8×1021cm-3is the carrier concentration of ITO, andeis the electron charge. Note that our proposed HF can be drawn by using the stack-and-draw technology while the groove structure can be achieved by using the focused ion-beam milling technology. The ITO layer can be deposited by employing the high-pressure chemical vapor deposition method.

    Fig.1. The cross-structure of the proposed HF-based SPR sensor.

    With the aim of investigating the sensing performance precisely, the sensor loss CL, wavelength sensitivitySλ, detectable index resolutionRand amplitude sensitivitySaare calculated by adopting the following formulas:[21]

    whereλand Im(neff) are the wavelength and the imaginary part of theneff, correspondingly. Δλpeakstands for the resonance wavelength variation. Δnadenotes the RI changes.Δλminis the wavelength resolution of the instrument. ΔCL is the sensor loss changes while CLinitialis the sensor loss at initial state.

    3. Simulation results and discussion

    For the purpose of calculating the electric field distribution and its modal effective index, we use a full-vector finite element method with the PML boundary conditions to solve Maxwell equations on the fiber structure and output the complex eigenvalues,and then the complex modal effective index can be obtained. The real part of the complex modal effective index(Re(neff))represents the modal dispersion property while the imaginary part of the complex modal effective index stands for the modal loss. Note that there are 118715 degrees of freedom over the whole holey fiber cross-section. Furthermore, the triangular and edge elements are 16934 and 1281,respectively. Firstly,we study the resonance properties of the sensor with parametersd1=1 μm,d2=2 μm,R1=2.5 μm,R2=5.5 μm,w=2.6 μm,h=2.86 μm,t=70 nm,na=1.34,and the simulation results indicate that onlyy-polarized fundamental mode can effectively interact with the surface plasmon polaritons (SPP) mode. Hence, the coupling properties between these two modes are investigated in this work. Figure 2 gives the modal profiles at different wavelength and dispersion properties of our proposed sensor. It is apparent from this figure that the real part of the refractive index of they-polarized mode (Re(ny)) is much smaller than that of the SPP mode(Re(nspp))in the short wavelength region. However,if the incident light wavelength increases to 1.555 μm,we can find that Re(ny)=Re(nspp)since the SPR effect can modulate the phase of the electromagnetic wave. It means the phase-matching condition of the sensor is met. This resonance phenomenon can also be proved by the loss curve of they-polarized mode,which exists a sharp loss peak at 1.555 μm. Moreover, the coupling property of the sensor can be studied from the mode distributions of they-polarized fundamental and SPP modes,which are inserted in Fig. 2. Such as whenλ= 1.47 μm,these two modes can not interact with each other because the phase-matching condition is not met. But at 1.555 μm, the mode energy of they-polarized mode is largely transferred into the SPP mode. Further increasing the light wavelength to 1.62 μm, these two modes become decoupled again since the coupling condition is destroyed.

    Fig. 2. The real parts of the effective indices and loss with na =1.34.Insets are the electronic field profiles of two resonance modes.

    Fig.3. Loss of the y-polarized fundamental mode by changing na from 1.31 to 1.33 when t=65 nm and 75 nm.

    Secondly,the effect ofton the sensing property with parametersd1=1 μm,d2=2 μm,R1=2.5 μm,R2=5.5 μm,w= 2.6 μm, andh= 2.86 μm is investigated. According to Fig. 3(a), it indicates that the resonance wavelength shifts to the longer wavelength by increasingnafrom 1.31 to 1.33 whent=65 nm. For instance, the resonance wavelength is 1.364 μm atna=1.31 while the resonance wavelength moves to 1.442 μm atna= 1.33. This is because Re(nspp) increases with the increment ofnawhile Re(ny) almost keeps unchanged. Thus the phase matching point moves to the longer wavelength region. On the contrary, the peak loss decreases with increasingnafrom 1.31 to 1.33 whentis equal to 65 nm. The reason is that the interaction strength between they-polarized fundamental mode and SPP mode decreases with the increment ofna, and then less mode energy of they-polarized mode is coupled into the SPP mode. Figure 3(b)gives the resonance property of our proposed sensor att=75 nm whennaincreases from 1.31 to 1.33. One can learn that the resonance and loss properties att=75 nm is similar to that of att=65 nm. However,compared Figs.3(a)with 3(b),it can be found that the resonance wavelength at the samenashifts to the longer wavelength iftchanges from 65 nm to 75 nm. According to Eq. (4), the wavelength sensitivities of 3800 nm/RIU and 4400 nm/RIU att=65 nm are obtained whennachanges from 1.31–1.32 and 1.32–1.33,respectively.But iftincreases to 75 nm,the wavelength sensitivities of the sensor increases to 4500 nm/RIU and 5500 nm/RIU whennachanges from 1.31–1.32 and 1.32–1.33,respectively.

    Besides wavelength interrogation sensitivity, amplitude sensitivity is another important factor to evaluate its sensing quality. Therefore, we study the influence ofton the amplitude sensitivity according to Eq.(6),and the numerical results are given in Fig.4. Note that the sensor parameters are set tod1=1 μm,d2=2 μm,R1=2.5 μm,R2=5.5 μm,w=2.6 μm andh=2.86 μm. It is apparent from this figure that the value of the amplitude sensitivity is almost unchanged iftvaries from 65 nm to 75 nm. For example,the maximum amplitude sensitivity is 83.29 RIU-1att=65 nm while the maximum amplitude sensitivity is 82.39 RIU-1att=75 nm. This is because iftvaries from 65 nm to 75 nm,the coupling efficiency between these two modes is almost unchanged except that the coupling wavelength shifts to the longer wavelength,which is proved by Fig. 3. Moreover, the amplitude sensitivity curves move to the longer wavelength when the thickness of ITO film increases from 65 nm to 75 nm. Similar phenomena can be found in Refs.[26,27].

    Fig.4. Influence of the thickness of ITO film on the amplitude sensitivity with na varying from 1.31 to 1.32.

    Table 1. Comparison of the sensing quality within na range from 1.31 to 1.36 when t=65 nm,70 nm and 75 nm,respectively.

    Table 2. Influence of h on the sensing quality when na varies from 1.31 to 1.36.

    For the purpose of further investigating the sensing property of our proposed sensor,Table 1 gives the summary of several performance indexes withinnarange from 1.31 to 1.36 whent=65 nm, 70 nm, and 75 nm, respectively. One can find from this Table thatthas large influence on the peak wavelength, wavelength sensitivities and wavelength for the maximum amplitude sensitivity, but has small influence on the peak loss and maximum amplitude sensitivities. The resonance wavelength and the wavelength sensitivity of the designed sensor increase with increasingtfrom 65 nm to 75 nm whennalies in (1.31, 1.36). Such as whennais equal to 1.35, the peak wavelength and the wavelength sensitivity att=65 nm are 1.569 μm and 9800 nm/RIU while the peak wavelength and the wavelength sensitivity att=75 nm are up to 1.706 μm and 17600 nm/RIU, respectively. By using Eq.(5),we can obtain that the detectable index resolution can reach up to 5.68×10-6RIU if the wavelength resolution of the instrument is 0.1 nm. Moreover, the changing trend of the wavelength for the maximum amplitude sensitivity is the same as that of the peak wavelength. The main reason is that the maximum amplitude sensitivity is proportional to the maximum ΔCL, which always happens nearby to the resonance wavelength. Benefiting from its excellent sensing property,our designed sensor should be very suitable for chemical and biological sensing applications.Note that the other parameters are set tod1=1 μm,d2=2 μm,R1=2.5 μm,R2=5.5 μm,w=2.6 μm,andh=2.86 μm.

    Finally, we study the effect ofhon the sensing performance with parametersd1=1 μm,d2=2 μm,R1=2.5 μm,R2=5.5 μm,w=2.6 μm, andt=70 μm whennavaries from 1.31 to 1.36, and the simulation results are given in Table 2. According to this Table,we can learn that the peak loss decreases with increasinghfrom 2.76 μm to 2.96 μm whennakeeps unchanged. The reason is that the interaction strength between these two modes becomes weaker ifhchanges from 2.76 μm to 2.96 μm. However,other performance parameters increase with the increment ofh, especially the wavelength sensitivity. For example, the wavelength sensitivity increases from 11900 nm/RIU to 13300 nm/RIU with the increment ofhfrom 2.76 μm to 2.96 μm whennachanges from 1.35 to 1.36.

    Table 3. Comparison of other PCF-SPR sensor sensitivity.

    Table 3 gives a comparison of other PCF-SPR sensor sensitivity. Commonly,high sensitivity and high-accuracy detection makes our proposed sensor much more competitive than these traditional PCF-based SPR sensors.[18,28]Compared to these grooved PCF-based SPR sensors coated with gold or silver film,[29–31]the cost of our proposed HF-based SPR sensor coated with ITO is much lower. Furthermore, although other designs including inner-coated PCF-based SPR sensors have high sensitivity,[32,33]our proposed open-groove structure has the obvious advantages that an open-groove design is easier to fabricate and has an open sensing channel, which makes it very suitable for the real-time sensing.

    4. Conclusion

    In this paper,a new type of SPR sensor based on circularlattice HF with an open sensing channel is proposed to achieve high sensitive sensing. The coupling resonance properties and sensing performance of our designed sensor are studied carefully. The research findings indicate that only theypolarized fundamental mode can effectively interact with the SPP mode,which can efficiently eliminate the crossing interference between two fundamental polarized core modes. Furthermore, the maximum wavelength sensitivity and the detectable index resolution can reach as high as 17600 nm/RIU and 5.68×10-6RIU, respectively. Benefiting from its excellent sensing characteristics,our proposed HF-based SPR sensor is of great potential for chemical and biological sensing applications.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 61765003) and the Scientific Research Foundation for the Wuyi University (Grant No.YJ202104).

    日日摸夜夜添夜夜添小说| 日韩欧美一区二区三区在线观看| 亚洲精品中文字幕一二三四区| 国产成人精品无人区| 两性夫妻黄色片| 亚洲成人国产一区在线观看| 岛国在线观看网站| 久久人妻av系列| 日日爽夜夜爽网站| 久久久久国产精品人妻aⅴ院| 一区二区三区高清视频在线| 国产成人系列免费观看| 在线观看免费视频日本深夜| 久久精品91蜜桃| 丁香欧美五月| 琪琪午夜伦伦电影理论片6080| 深夜精品福利| 中文字幕另类日韩欧美亚洲嫩草| 91成年电影在线观看| 国产成年人精品一区二区| 淫秽高清视频在线观看| 制服丝袜大香蕉在线| 欧美黑人巨大hd| 成年人黄色毛片网站| 久久久国产成人免费| 精品一区二区三区四区五区乱码| 精品欧美一区二区三区在线| 成人18禁在线播放| 一级毛片女人18水好多| 国产免费男女视频| 日韩精品青青久久久久久| 欧美激情极品国产一区二区三区| 欧美人与性动交α欧美精品济南到| 久久热在线av| 国内少妇人妻偷人精品xxx网站 | 亚洲专区国产一区二区| 久久久久久久久久黄片| 后天国语完整版免费观看| 最近最新中文字幕大全电影3 | 18禁美女被吸乳视频| 欧美丝袜亚洲另类 | 我的亚洲天堂| 男人舔奶头视频| 久久久久久国产a免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 啦啦啦观看免费观看视频高清| 欧美成人午夜精品| www.999成人在线观看| 国产亚洲av嫩草精品影院| 成人18禁高潮啪啪吃奶动态图| 国产视频一区二区在线看| 国产精品久久久久久精品电影 | 午夜视频精品福利| 欧美性猛交╳xxx乱大交人| 日本撒尿小便嘘嘘汇集6| 午夜日韩欧美国产| 日韩精品青青久久久久久| 久久久国产精品麻豆| 18禁黄网站禁片午夜丰满| 久久 成人 亚洲| 18禁观看日本| 性色av乱码一区二区三区2| 首页视频小说图片口味搜索| 757午夜福利合集在线观看| 美女免费视频网站| 这个男人来自地球电影免费观看| 国产99久久九九免费精品| 少妇粗大呻吟视频| 香蕉丝袜av| 亚洲一区高清亚洲精品| 曰老女人黄片| www.999成人在线观看| 麻豆成人午夜福利视频| 亚洲一区二区三区不卡视频| 国产又色又爽无遮挡免费看| 大香蕉久久成人网| 看黄色毛片网站| 国产av在哪里看| 少妇裸体淫交视频免费看高清 | 91老司机精品| 一a级毛片在线观看| 久久99热这里只有精品18| 俄罗斯特黄特色一大片| 日本一区二区免费在线视频| 看免费av毛片| 国产精品亚洲一级av第二区| 99re在线观看精品视频| 亚洲av第一区精品v没综合| 国产国语露脸激情在线看| 欧美久久黑人一区二区| 欧美激情久久久久久爽电影| 久久人人精品亚洲av| a级毛片a级免费在线| 黄频高清免费视频| x7x7x7水蜜桃| 夜夜躁狠狠躁天天躁| 久久久久国产精品人妻aⅴ院| 91成人精品电影| 90打野战视频偷拍视频| 欧美色视频一区免费| 久久久国产成人精品二区| 亚洲国产欧美网| 老熟妇仑乱视频hdxx| 国产av一区二区精品久久| 亚洲av熟女| 亚洲成a人片在线一区二区| 丰满人妻熟妇乱又伦精品不卡| 又黄又粗又硬又大视频| 午夜福利高清视频| 香蕉av资源在线| 亚洲成av人片免费观看| 国产亚洲精品综合一区在线观看 | 一个人免费在线观看的高清视频| 首页视频小说图片口味搜索| 精品国产超薄肉色丝袜足j| 黄色视频不卡| 欧美成人免费av一区二区三区| 免费无遮挡裸体视频| 亚洲激情在线av| 真人一进一出gif抽搐免费| 中文字幕高清在线视频| 搡老岳熟女国产| 最近最新免费中文字幕在线| 欧美最黄视频在线播放免费| 天天躁狠狠躁夜夜躁狠狠躁| 国产精华一区二区三区| 又黄又粗又硬又大视频| 久久婷婷人人爽人人干人人爱| 亚洲五月婷婷丁香| 久久久久免费精品人妻一区二区 | 日本撒尿小便嘘嘘汇集6| 欧美日韩瑟瑟在线播放| 免费在线观看完整版高清| 欧美日韩福利视频一区二区| 亚洲国产日韩欧美精品在线观看 | 欧美丝袜亚洲另类 | 在线天堂中文资源库| 91成年电影在线观看| 成人手机av| www.精华液| 成人永久免费在线观看视频| 久久久久久人人人人人| 国产免费av片在线观看野外av| 18禁美女被吸乳视频| 国内精品久久久久久久电影| 怎么达到女性高潮| 婷婷亚洲欧美| 亚洲成av片中文字幕在线观看| 真人一进一出gif抽搐免费| 9191精品国产免费久久| 免费av毛片视频| 国产欧美日韩一区二区精品| 老熟妇乱子伦视频在线观看| 女性生殖器流出的白浆| 亚洲国产中文字幕在线视频| 大型黄色视频在线免费观看| 一级片免费观看大全| 亚洲欧美日韩高清在线视频| 一级a爱片免费观看的视频| 18美女黄网站色大片免费观看| 怎么达到女性高潮| 日韩精品免费视频一区二区三区| 真人一进一出gif抽搐免费| 搡老熟女国产l中国老女人| 日韩精品免费视频一区二区三区| 三级毛片av免费| 女性被躁到高潮视频| 宅男免费午夜| 性欧美人与动物交配| 在线观看66精品国产| 99在线人妻在线中文字幕| 首页视频小说图片口味搜索| 黄色 视频免费看| 香蕉丝袜av| 级片在线观看| 婷婷精品国产亚洲av在线| 免费人成视频x8x8入口观看| 热re99久久国产66热| 精品国产一区二区三区四区第35| 国产极品粉嫩免费观看在线| 精品少妇一区二区三区视频日本电影| 久久人妻福利社区极品人妻图片| 中文在线观看免费www的网站 | 丝袜美腿诱惑在线| 我的亚洲天堂| 久久精品夜夜夜夜夜久久蜜豆 | 可以免费在线观看a视频的电影网站| 侵犯人妻中文字幕一二三四区| 国产三级黄色录像| 国产人伦9x9x在线观看| 日本五十路高清| 久久精品成人免费网站| 黑人操中国人逼视频| 两个人免费观看高清视频| 久久香蕉激情| 欧美精品亚洲一区二区| 久久久久久国产a免费观看| 国产精品久久电影中文字幕| 欧美又色又爽又黄视频| 国产精品久久视频播放| 国产亚洲精品综合一区在线观看 | 大香蕉久久成人网| 成人国产综合亚洲| 欧美性猛交╳xxx乱大交人| 亚洲欧洲精品一区二区精品久久久| 日本免费一区二区三区高清不卡| 国产成人精品无人区| 精品国内亚洲2022精品成人| 男女做爰动态图高潮gif福利片| 日韩有码中文字幕| 一边摸一边做爽爽视频免费| 久久天躁狠狠躁夜夜2o2o| 黄色毛片三级朝国网站| 久久精品国产清高在天天线| 特大巨黑吊av在线直播 | 亚洲一区高清亚洲精品| 国产一区二区三区视频了| 精品免费久久久久久久清纯| 午夜日韩欧美国产| 国产av不卡久久| 久久久国产成人精品二区| 动漫黄色视频在线观看| a级毛片在线看网站| 国内精品久久久久精免费| 丁香欧美五月| 免费在线观看亚洲国产| 亚洲熟女毛片儿| 午夜亚洲福利在线播放| 久久青草综合色| 国产精品香港三级国产av潘金莲| 桃色一区二区三区在线观看| 国产午夜福利久久久久久| 亚洲欧美一区二区三区黑人| 日日摸夜夜添夜夜添小说| 一区福利在线观看| 国产麻豆成人av免费视频| 精品少妇一区二区三区视频日本电影| 51午夜福利影视在线观看| 可以在线观看毛片的网站| 久热这里只有精品99| x7x7x7水蜜桃| 老司机靠b影院| 一个人观看的视频www高清免费观看 | 丁香欧美五月| 97超级碰碰碰精品色视频在线观看| 日本成人三级电影网站| 欧美日韩亚洲综合一区二区三区_| 欧美久久黑人一区二区| av欧美777| 免费在线观看亚洲国产| 天天躁夜夜躁狠狠躁躁| 成人手机av| 成人国产综合亚洲| 精品免费久久久久久久清纯| 香蕉久久夜色| 成人亚洲精品一区在线观看| 黄色a级毛片大全视频| av在线播放免费不卡| 美女 人体艺术 gogo| 午夜两性在线视频| 51午夜福利影视在线观看| 国产1区2区3区精品| 一区福利在线观看| 精品午夜福利视频在线观看一区| 午夜福利18| 国产真实乱freesex| 一二三四在线观看免费中文在| 极品教师在线免费播放| 真人做人爱边吃奶动态| 国产一卡二卡三卡精品| 国内久久婷婷六月综合欲色啪| 亚洲自拍偷在线| 亚洲人成电影免费在线| 欧美亚洲日本最大视频资源| 麻豆av在线久日| 欧美国产精品va在线观看不卡| 琪琪午夜伦伦电影理论片6080| 久久人妻av系列| 男女下面进入的视频免费午夜 | 一区二区三区高清视频在线| 大香蕉久久成人网| 熟女电影av网| a级毛片在线看网站| 中文字幕精品免费在线观看视频| 免费高清在线观看日韩| 成人一区二区视频在线观看| 天堂√8在线中文| 亚洲天堂国产精品一区在线| av欧美777| 欧美丝袜亚洲另类 | 国产成人欧美| 一本一本综合久久| 亚洲 欧美 日韩 在线 免费| 一级片免费观看大全| 免费在线观看视频国产中文字幕亚洲| 香蕉丝袜av| 亚洲中文日韩欧美视频| 国产午夜精品久久久久久| 最近最新中文字幕大全电影3 | 可以免费在线观看a视频的电影网站| 亚洲全国av大片| 在线观看免费日韩欧美大片| 国产精品亚洲一级av第二区| 又大又爽又粗| 国产精品亚洲一级av第二区| 母亲3免费完整高清在线观看| 又黄又粗又硬又大视频| 日韩欧美免费精品| 欧美日本视频| 天天添夜夜摸| 男男h啪啪无遮挡| 亚洲熟妇中文字幕五十中出| 午夜免费鲁丝| 亚洲,欧美精品.| 欧美国产日韩亚洲一区| 国产av一区二区精品久久| 99久久综合精品五月天人人| 国产真人三级小视频在线观看| e午夜精品久久久久久久| 天天躁夜夜躁狠狠躁躁| 三级毛片av免费| 欧美一区二区精品小视频在线| 大香蕉久久成人网| 妹子高潮喷水视频| 国产欧美日韩一区二区精品| 身体一侧抽搐| 久久久国产成人免费| 亚洲精品在线美女| 一本久久中文字幕| 日韩中文字幕欧美一区二区| 男人的好看免费观看在线视频 | 99热只有精品国产| 欧美大码av| 少妇被粗大的猛进出69影院| 黄色丝袜av网址大全| avwww免费| 午夜福利成人在线免费观看| 久久精品夜夜夜夜夜久久蜜豆 | 久久青草综合色| 欧美黑人欧美精品刺激| 怎么达到女性高潮| 亚洲精品国产精品久久久不卡| 我的亚洲天堂| 国产黄a三级三级三级人| 久久久久久久久免费视频了| 亚洲av美国av| 免费观看精品视频网站| 啦啦啦 在线观看视频| 中文字幕久久专区| 久久久久久国产a免费观看| 国产99久久九九免费精品| 亚洲精品美女久久久久99蜜臀| 91大片在线观看| 18禁国产床啪视频网站| 亚洲人成网站高清观看| 亚洲国产欧洲综合997久久, | 听说在线观看完整版免费高清| 中文字幕高清在线视频| 叶爱在线成人免费视频播放| av电影中文网址| av在线天堂中文字幕| 国产亚洲精品综合一区在线观看 | 桃色一区二区三区在线观看| 成人三级黄色视频| 国产精品久久电影中文字幕| 一进一出好大好爽视频| 观看免费一级毛片| 亚洲精品美女久久av网站| 亚洲 欧美一区二区三区| 久久久水蜜桃国产精品网| 免费在线观看日本一区| 视频区欧美日本亚洲| 一区二区三区国产精品乱码| 嫩草影院精品99| 黑人操中国人逼视频| 黄色视频,在线免费观看| 久久久久免费精品人妻一区二区 | 麻豆一二三区av精品| 国产亚洲欧美在线一区二区| 亚洲午夜理论影院| 精品免费久久久久久久清纯| 午夜激情av网站| 午夜老司机福利片| 日本五十路高清| 欧美丝袜亚洲另类 | 午夜福利18| 狂野欧美激情性xxxx| 18禁黄网站禁片免费观看直播| 人妻久久中文字幕网| av在线播放免费不卡| 国产单亲对白刺激| 国产主播在线观看一区二区| 中文字幕最新亚洲高清| 天堂动漫精品| 午夜日韩欧美国产| 亚洲欧美一区二区三区黑人| 国产精品免费视频内射| 国产色视频综合| 一区二区三区高清视频在线| 日韩一卡2卡3卡4卡2021年| 亚洲真实伦在线观看| 欧美丝袜亚洲另类 | 国产三级在线视频| 成人三级做爰电影| 1024香蕉在线观看| 国产激情欧美一区二区| 成在线人永久免费视频| 亚洲国产精品合色在线| 日韩高清综合在线| 妹子高潮喷水视频| 精品无人区乱码1区二区| 亚洲自拍偷在线| 人妻久久中文字幕网| 草草在线视频免费看| 午夜久久久久精精品| 美女高潮喷水抽搐中文字幕| 99国产精品99久久久久| 欧美日韩乱码在线| 在线观看66精品国产| 禁无遮挡网站| 日韩精品青青久久久久久| 成年免费大片在线观看| 午夜a级毛片| 正在播放国产对白刺激| 99在线人妻在线中文字幕| 人人妻人人看人人澡| 制服丝袜大香蕉在线| 成人国产综合亚洲| 国产色视频综合| 91字幕亚洲| 首页视频小说图片口味搜索| 两个人免费观看高清视频| 黑人欧美特级aaaaaa片| 国产亚洲欧美在线一区二区| 欧美 亚洲 国产 日韩一| 母亲3免费完整高清在线观看| 亚洲三区欧美一区| 在线观看免费午夜福利视频| 在线视频色国产色| 丰满人妻熟妇乱又伦精品不卡| 国产成年人精品一区二区| 免费一级毛片在线播放高清视频| 欧美激情高清一区二区三区| 亚洲专区国产一区二区| 精品熟女少妇八av免费久了| 亚洲精品一区av在线观看| 欧美一级毛片孕妇| 宅男免费午夜| 精品高清国产在线一区| 两个人视频免费观看高清| 在线观看免费视频日本深夜| 亚洲在线自拍视频| 久久精品国产清高在天天线| 日日爽夜夜爽网站| 日本免费a在线| 国产精品免费视频内射| 亚洲人成电影免费在线| 亚洲国产精品sss在线观看| 亚洲国产中文字幕在线视频| 亚洲精品美女久久久久99蜜臀| 亚洲国产欧美网| 最近最新中文字幕大全免费视频| 女同久久另类99精品国产91| 99精品久久久久人妻精品| 久久人人精品亚洲av| √禁漫天堂资源中文www| 99精品欧美一区二区三区四区| 99国产精品99久久久久| 99国产精品一区二区蜜桃av| 国产一级毛片七仙女欲春2 | 在线永久观看黄色视频| 国产精品野战在线观看| 狠狠狠狠99中文字幕| 国产视频一区二区在线看| 日韩有码中文字幕| 中文字幕人成人乱码亚洲影| 久久久久久久久免费视频了| 久久中文字幕人妻熟女| 久久国产精品影院| 女警被强在线播放| av在线播放免费不卡| 精品久久久久久久久久免费视频| 黄色视频,在线免费观看| 777久久人妻少妇嫩草av网站| 久久午夜亚洲精品久久| 国产野战对白在线观看| 中文在线观看免费www的网站 | 在线看三级毛片| 亚洲片人在线观看| 欧美最黄视频在线播放免费| 亚洲精品中文字幕一二三四区| 午夜两性在线视频| 97超级碰碰碰精品色视频在线观看| 亚洲精品久久成人aⅴ小说| 怎么达到女性高潮| 亚洲欧美一区二区三区黑人| 国产午夜福利久久久久久| 亚洲成a人片在线一区二区| 国产蜜桃级精品一区二区三区| 国产激情欧美一区二区| 成人午夜高清在线视频 | 欧美黄色淫秽网站| 久久精品国产清高在天天线| 9191精品国产免费久久| 在线观看午夜福利视频| 神马国产精品三级电影在线观看 | 国产亚洲av高清不卡| 亚洲成人久久爱视频| 国产又色又爽无遮挡免费看| 99精品在免费线老司机午夜| 亚洲一码二码三码区别大吗| 每晚都被弄得嗷嗷叫到高潮| 成人三级做爰电影| 黄色视频不卡| 亚洲午夜精品一区,二区,三区| 1024手机看黄色片| 久久国产精品男人的天堂亚洲| 精品一区二区三区av网在线观看| 日本免费a在线| 精品国产超薄肉色丝袜足j| 亚洲一区高清亚洲精品| 国产成年人精品一区二区| 成人永久免费在线观看视频| 给我免费播放毛片高清在线观看| 无遮挡黄片免费观看| 最近最新中文字幕大全电影3 | 看片在线看免费视频| 亚洲国产精品成人综合色| 麻豆久久精品国产亚洲av| 国产精品亚洲av一区麻豆| 99热只有精品国产| 欧美绝顶高潮抽搐喷水| 久久性视频一级片| 亚洲国产精品999在线| 夜夜躁狠狠躁天天躁| 亚洲 欧美一区二区三区| 白带黄色成豆腐渣| 女生性感内裤真人,穿戴方法视频| 国产激情偷乱视频一区二区| 国产精品日韩av在线免费观看| 久久国产亚洲av麻豆专区| 极品教师在线免费播放| 超碰成人久久| 国产成人精品久久二区二区91| 婷婷亚洲欧美| 欧美在线一区亚洲| 国产黄片美女视频| 精品久久久久久久末码| 国产亚洲精品久久久久久毛片| 午夜福利视频1000在线观看| 黄色 视频免费看| 国产成人一区二区三区免费视频网站| 午夜免费成人在线视频| 首页视频小说图片口味搜索| 日韩 欧美 亚洲 中文字幕| 色尼玛亚洲综合影院| 欧美黄色片欧美黄色片| 国产激情欧美一区二区| 国产精品爽爽va在线观看网站 | 在线观看免费午夜福利视频| 精品不卡国产一区二区三区| 亚洲五月婷婷丁香| 老汉色∧v一级毛片| 亚洲人成电影免费在线| 欧美日本亚洲视频在线播放| 成人三级做爰电影| 亚洲精品久久成人aⅴ小说| 中出人妻视频一区二区| 国产高清激情床上av| 国产日本99.免费观看| 此物有八面人人有两片| 国产日本99.免费观看| 伊人久久大香线蕉亚洲五| 91麻豆av在线| 亚洲激情在线av| 成人18禁高潮啪啪吃奶动态图| 欧美日本亚洲视频在线播放| 国产v大片淫在线免费观看| 中文字幕人成人乱码亚洲影| 国产区一区二久久| 中文字幕人成人乱码亚洲影| 国产精品 欧美亚洲| 国产精品,欧美在线| 丁香六月欧美| 免费看美女性在线毛片视频| 欧美日韩精品网址| 欧美成狂野欧美在线观看| 亚洲全国av大片| 成年女人毛片免费观看观看9| 国产高清激情床上av| 日本一本二区三区精品| 色综合站精品国产| 在线十欧美十亚洲十日本专区| 这个男人来自地球电影免费观看| 一区二区三区高清视频在线| 首页视频小说图片口味搜索| 日韩欧美一区二区三区在线观看| 高潮久久久久久久久久久不卡| 亚洲人成77777在线视频| 亚洲最大成人中文| 俺也久久电影网| 91字幕亚洲| 午夜福利成人在线免费观看| 99热只有精品国产| 亚洲午夜理论影院| 老鸭窝网址在线观看| 麻豆久久精品国产亚洲av| 亚洲免费av在线视频| 亚洲片人在线观看| 人妻丰满熟妇av一区二区三区| 香蕉丝袜av| 亚洲全国av大片| 精品久久久久久久久久免费视频| 欧美黑人巨大hd| 天天躁狠狠躁夜夜躁狠狠躁|