• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamical quantum phase transition in XY chains with the Dzyaloshinskii–Moriya and XZY–Y ZX three-site interactions

    2022-06-29 08:53:46KaiyuanCao曹凱源MingZhong鐘鳴andPeiqingTong童培慶
    Chinese Physics B 2022年6期
    關(guān)鍵詞:鐘鳴

    Kaiyuan Cao(曹凱源) Ming Zhong(鐘鳴) and Peiqing Tong(童培慶)

    1Department of Physics and Institute of Theoretical Physics,Nanjing Normal University,Nanjing 210023,China

    2Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems,Nanjing Normal University,Nanjing 210023,China

    Keywords: dynamical quantum phase transition,gapless phase,asymmetry excitation spectra

    1. Introduction

    Quantum phase transitions (QPTs) are one of the most significant phenomena in quantum many-body physics.[1,2]It is characterized by a nonanalytic behavior of some physical observable at a quantum critical point due to the change of the external control parameter. Recently,the dynamical quantum phase transitions(DQPTs)that in the quantum many-body systems have attracted extendedly both the theoretical[3–31]and experimental[32–37]interests. Unlike the QPTs driven by the external control parameters, the DQPTs describe the nonanalytic behavior of the Loschmidt echo (LE) during the time evolution, where a common protocol for driven a system out of equilibrium is called quantum quench. In many cases, the DQPTs are found to have a strong connection with the QPTs. The DQPTs are present in the cases of sudden quenches crossing the quantum critical points[3,4]and the topology changes,[5,8]although it is also found that the DQPTs occur in the cases of quenches without crossing any quantum critical point.[6,12]Therefore,it is still an open and debated issue whether the quench crossing the critical points of QPTs is a necessary condition to induce a DQPT.[22,27]

    Up to now, many works have investigated the quench from gapped phase to gapped phase,whereas few studies have focused on the case of quench from the gapless phase. The gapless phase is of general existence in the quantum systems,such as theXYchain with the Dzyaloshinskii–Moriya (DM)interaction,[38–41]theXYchain withXZY–YZXtype of threesite interactions[42,43]and Kitaev model.[44]Unlike the case of the gapped phase, the ground states of the system in the gapless phase corresponds to the configuration where all the states with negative excitation spectra are filled and nonnegative are empty.[45–47]Recently, Cheraghi and Mahdavifar studied the DQPTs in the quantum Ising chain with DM interaction.[16]They only considered the case of quench from gapped phase to gapped phase and did not consider the quench from the gapless phase,so that they concluded that the DM interaction does not affect the DQPT.In a recent paper,[27]the authors studied the DQPTs in theXYchain with DM interaction in the alternating external transverse field. They also did not discuss the case of quench starting from the gapless phase, because they said that it is difficult to study the initial condition in the gapless phase in their models.[27]Therefore, it is still unknown when the quench is from the gapless phase.

    Recently, Jafari has studied the DQPTs in the extendedXYchain withXZX+YZYtype of three-site interaction in the staggered transverse field.[22]He found that the DQPTs may not occur when the quench is from the gapped phase to gapless phase. The model has the gapless phase due to the staggered external field and the quasiparticle excitation spectra are symmetrical.[22]In this paper,we investigate the DQPTs in the extendedXYchains with DM interaction andXZY–YZXtype of three site interactions. Both the models have asymmetrical quasiparticle excitation spectra(εk/=ε-k),which are different from the model in Ref.[22].We study all possible situations of ground states of pre-quench Hamiltonian and obtain the general expression of LE for the systems with gapless phases(see Section 2). This allows our discussion to be generalized to the general quantum spin models. For the homogeneous system,the LE can be given byL(t)=∏k>0Lk(t),whereLk(t)equals unity corresponding to the quasiparticle excitation spectra of pre-quench Hamiltonian satisfyingεk·ε-k <0 in the momentum subspacek >0. Therefore,we obtain general conditions for the occurrence of DQPTs. In Sections 3 and 4,we discuss the behaviors of DQPTs for two extendedXYchains by given numerical results. It is found that the DQPTs may not occur in the quench across the quantum phase transitions regardless of whether the quench is from the gapless phase to gapped phase or from gapped phase to gapless phase. A brief conclusion is given in Section 5.

    2. Models and DQPT

    We consider two kinds of the extendedXYchains (with periodic boundary) in a transverse field: one with the added DM interaction and the other with addedXZY–YZXtype of three-site interaction. The Hamiltonian is written as

    Fig.1. (a)The typical phase diagram of the XY chain with DM interaction in the (h,γ) plane for D=0.2. (b) Three typical quasiparticle excitation spectra εk for points A,B,and C in(a). (c)The typical phase diagram of the XY chain with XZY–YZX type of three-site interaction for ξ =0.5. (d)Three typical εk for points A,B,and C in(a). Regions CP,PM,FMx and FMy between the solid lines correspond to the gapless chiral phase, gapped paramagnetic phase, gapped ferromagnetic phase along x direction and gapped ferromagnetic phase along y direction,respectively.The orange areas denote the negative quasiparticle excitation spectrum intervals(εk <0).

    In Figs.1(a)and 1(c),we show the phase diagrams in the(h–γ)plane for theXYchain with DM interaction(D=0.2)[47]andXZY–YZXtype of three-site interaction (ξ= 0.5),[48]respectively. Both the phase diagrams consist of four parts[see Figs. 1(a) and 1(c)]: gapless chiral (CP) phase, gapped paramagnetic(PM)phase,gapped ferromagnetic phase alongx(FMx) direction, and gapped ferromagnetic phase alongy(FMy)direction,where for gapless CP phase,εk <0 for somek, but for gapped phases,εk >0 for allk. In Figs. 1(b) and 1(d),we show three typical excitation spectra for points A,B,and C(see Figs.1(a)and 1(c))for theXYchain with DM interaction(D=0.2)andXZY–YZXtype of three-site interaction

    3. The DQPT in the XY chain with DM interaction

    For the quench from theH(h0,γ0) toH(h,γ), we define the domain?(h0,γ0)in the plane(h,γ),where the conditions(17) and (18) are satisfied. The domain?(h0,γ0) covers all the parameters of the post-quench Hamiltonian, in which the DQPT will occur for the quench from(h0,γ0). In the following,we discuss the cases of quenches from the gapless phase and the gapped phase,respectively.

    3.1. Quench from the gapless phase

    First, we consider the case of quench from the gapless phase. As a typical example, Fig. 2(a) shows the domain?(h0= 0.5,γ0= 0.2) for the quench from the gapless CP phase, where the domain is shown as the red region. It can be seen that the domain?(h0=0.5,γ0=0.2)does not cover all the areas of the PM,FMxand FMyphases,and also covers a part of the area in the CP phase. This means that the DQPT may occur for the quench within the gapless CP phase, and may not occur for the quench from the CP phase to the PM,FMxand FMyphases.

    Fig.2. (a)Domain ?(h0,γ0)(the red region)covering the post-quench Hamiltonian parameters where the DQPTs appear for the quench from the initial points(h0,γ0). (b)–(e)The Fisher zeros for the quench paths A–D shown in(a). (f)The corresponding rate functions for the quench paths A–D.

    To show the behaviors of DQPTs more clearly,we show four examples of the Fisher zeroszn(k)in Figs.2(b)–2(e)for the quench paths A–D marked in Fig.2(a),and the corresponding rate functions are given in Fig.2(f). The paths A and B are within the CP phase, and the paths C and D are from the CP phase to the PM phase and FMyphase,respectively. It should be noticed that all the Fisher zeros for the paths A–D are separated into two parts,because those wave vectors corresponding toεk·ε-k <0 do not contribute to the Fisher zeros for the quench from the gapless CP phase. For the quench path A,one branch of the Fisher zeroszn(k) is seen to intersect with the imaginary axis in the complex time plane.However,for the quench paths B and C,the Fisher zeroszn(k)have no intersection with the imaginary axis. While for the quench path D,all two branches of Fisher zeroszn(k)will intersect with the imaginary axis. Meanwhile,for the quench paths A and D,we can find the corresponding cusp-like peaks of the rate functions at the critical times of the DQPTs [see Fig. 2(f)], which are in good agreement with the intersections between the Fisher zeros and the imaginary axis. However, for the quench paths B and C,the rate functions are smooth curves.

    Fig.3. Values of|tanαk|for the paths A,B,C,and D in Fig.2(a),respectively. The orange block denotes the wave vectors k corresponding to εk <0.

    To understand the reason of the behavior of DQPT for the quench from the gapless phase,we draw|tanαk|as a function ofkin Fig. 3 for the quench path A to D, respectively. The wave vectors intervalk ∈(1.73,2.39),in whichεk <0 of the pre-quench HamiltonianH(h0=0.5,γ0=0.2), is marked by the orange block. According to Eqs.(17)and(18),the DQPT will occur when|tanαk| reach 1 at the critical wave vectors outside the orange block. For the path A, it can be seen that there are two wave vectors satisfying|tanαk|=1, but one is inside the orange block and the other is outside. Therefore,there is one critical wave vectork*of the DQPT in the quench path A. For paths B and C, the wave vectors for|tanαk|=1 are located in the orange block, so the DQPT can not occur for the quench paths B and C.While for the path D,there are two critical wave vectorsk*for|tanαk*|=1 outside the orange block, which is exactly corresponding to two groups of DQPTs shown in Fig.2(e). In summary,for the quench from the gapless phase, the occurrence of DQPT must satisfy the conditions(17)and(18)simultaneously.

    3.2. Quench from the gapped phase

    Now, we consider the case of quench from the gapped phase(FM phase and PM phase). It is found that the situation for the quench from the FM phase is essentially the same as that for the quench from the PM phase, so we take the case of quench from the FM phase as an example to discuss the behavior of DQPT in the quench from the gapped phase.

    In Fig. 4(a), we display the domain?(h0,γ0) from the ground state of the pre-quench HamiltonianH(h0=0.5,γ0=-0.5), that is, from the FMyphase. It can be seen that the domain?(h0=0.5,γ0=-0.5)does not cover all the area of the CP phase, but cover all the area of the PM phase and the FMxphase. This indicates that the DQPT will always occur for the quench from the FMyphase to the PM phase and the FMxphase,but may not occur for the quench from the gapless CP phase. We find that the case of quench from the gapped phase to the gapped phase is similar to that in theXYchain,[6]so we focus on the case of quench from the gapped phase to the gapless phase.

    We consider the case of quench from the FM phase to the gapless CP phase. As two examples, we show the Fisher zeros for the quench paths A and B in the Figs. 4(b) and 4(c),and the corresponding rate functions are shown in Fig. 4(d).Unlike the case of the quench from the gapless phase, the quasiparticle excitation spectraεk >0 for all the wave vectorsk. Therefore, the Fisher zeros lines for the paths A and B are both continuous lines in the complex time plane. For the path A, the Fisher zeros are found having no intersection with imaginary axis[see Fig.4(b)],and the rate function is the smooth function. There is no DQPT in the path A.However,for the path B,each Fisher zeros linezn(k)have two intersections with the imaginary axis.The corresponding critical times of DQPTs are seen as the cusp-like peeks of the rate function[see Fig.4(d)].

    Similarly, we show the values of|tanαk| for the quench paths A and B in Fig. 5. For the path A, all the values of|tanαk| are smaller than 1, so the DQPT can not occur because the condition(17)is not satisfied. However,for the path B,there are two critical wave vectorsk*for|tanαk|=1,which is exactly corresponding to two intersections between each Fisher zeros line and the imaginary axis[see Fig.4(c)].Unlike the case of the quench from the gapless phase,the quasiparticle excitation spectra of the pre-quench Hamiltonian satisfyεk >0 for all the wave vectorskwhen the quench is from the gapped phase. Therefore,the occurrence of DQPT is actually determined by the condition(17).

    Fig.5. Values of|tanαk|for the paths A and B in Fig.4(a),which are from the FM to the CP phase.

    4. The DQPT in the XY chain with three-site interaction

    Now, we discuss the behavior of the DQPT in theXYchain withXZY–YZXtype of three-site interaction.

    4.1. Quench from the gapless CP phase

    First,we consider the case of quench from the gapless CP phase. In Fig. 6(a), we show the domain?(0.5,0.1) which indicates that the DQPTs occur in the case of quench from the ground states of pre-quench HamiltonianH(0.5,0.1). It is found that the domain?(0.5,0.1) does not cover the areah >1, and leaves the blank blocks in the gapped FMxphase and FMyphase [see Fig. 6(a)]. This means that the DQPTs may not occur when the quench is from the ground state ofH(0.5,0.1) and across the QPTs. Similarly, we take four examples of the Fisher zeros for the quenches from gapless phase in Figs. 6(b)–6(e) corresponding to paths A–D in Fig. 6(a),and the rate functions are shown in Fig.6(f). The Fisher zeros lineszn(k)in Figs.6(b)–6(e)are found to be separated into two branches,because for somekthe quasiparticle excitation spectra of the initial Hamiltonian satisfyεk·ε-k <0[see Fig.1(d)].For the paths A and B in which the system is quenched to the covered area by domain?(0.5,0.1),the Fisher zeros lines have intersections with the imaginary axis,and the nonanalytic points can be seen in the rate functions. For the paths B and C,the Fisher zeros do not intersect with the imaginary axis,and the rate functions are seen to be smooth. At this moment,the DQPT does not occur even if the quench crosses the QPTs.

    Similarly,we draw the values of|tanαk|in Fig.7 for the paths A, B, C, and D to explain the occurrence and the absence of the DQPTs. It is found that the values of|tanαk|for all four paths have intersections with the line|tanαk|=1.However,for the paths B and C,the intersections are located in the orange block, where the wave vectorskdo not contribute to the Fisher zeros. Therefore,the DQPTs do not occur in the quench paths B and C. For the paths A and D, the values of|tanαk| have one intersection outside the orange block. The corresponding wave vectorsk*of the intersections are exactly the critical wave vectors of the DQPTs.

    Fig. 6. (a) Domains ?(h0,γ0) (the red region) for quench from the initial points (h0,γ0) in the XY chain with XZY–YZX type of three-site interaction. The initial point is (h0 =0.5,γ0 =0.1). (b)–(e) The Fisher zeros for the quench paths A–D shown in(a). (f)The corresponding rate functions for the quench paths A–D.

    Fig.7. Values of|tanαk|for the paths A,B,C,and D in Fig.6(a),respectively. The orange block denotes the wave vectors k corresponding to εk <0 of the pre-quench Hamiltonian.

    4.2. Quench from the gapped phase

    Now, we consider the case of quench from the gapped phase. Here we take the case of quench from the FM phase as an example. In Figs. 8(a), we show the domain?(h0=0.5,γ0=-0.5)that is from the FMyphase. It is found that the domain?(h0=0.5,γ0=-0.5)does not cover all the area of the gapless CP phase,but covers all the gapped phases which are not the initial points belonging to. This indicates that the DQPTs may not occur when the quench from the gapped phase to the gapless phase, but will always occur in the case of quench from the gapped phase to the gapped phase.

    Fig. 8. (a) Domain ?(h0,γ0) (the red region) for the quench from the FM phase. (b) and (c) Fisher zeros lines zn(k) for the quench paths A and B marked in(a). (d)Corresponding rate functions for the quench paths A and B.

    Fig.9. Values of|tanαk|for the paths A and B in Fig.8(a),which are from the FM to the CP phase.

    As two examples, we show the Fisher zeros for the quench paths A and B marked in Fig. 8(a). It can be seen that for the quench path A, the Fisher zeros do not cross the imaginary axis. Meanwhile, the corresponding rate function is smooth. For the quench path B, each Fisher zeros lineszn(k) has two intersections with the imaginary axis, and the sharp peaks are seen in the rate function at the critical times of the DQPTs. Similarly, we display the values of|tanαk|for the paths A and B in Fig. 9. It is found that for the path A the values of|tanαk| are smaller than 1. However, for the path B the values of|tanαk| change from zero to the infinity(|tanαk|∈[0,+∞))and have the intersections with the line|tanαk|=1.

    5. Summary and conclusion

    We study the properties of DQPTs in theXYchains with DM interaction andXZY–YZXtype of three-site interaction,in which the systems have gapless phases and asymmetrical quasiparticle excitation spectra. By considering the quench starting from different initial states, we find that the factorsLk(t) of LE equal unity where the quasiparticle excitation spectra of pre-quench Hamiltonian satisfyεk·ε-k <0. Therefore, we obtain the general conditions for the occurrence of DQPT,that is, the occurrence of DQPT not only requires the Bogoliubov angle to satisfy|tanαk|=1,but also requires the quasiparticle excitation spectra of the pre-quench Hamiltonian to satisfyεk·ε-k ≥0.

    Although we consider two specifical models in our paper,the conclusion can also be extended to a group of integral quantum spin chain, which can be mapped into the spinless free fermion model with the quadratic form by the Jordan–Wigner transformation. From the above discussion and the previous results,[22,27]we summarize the connection between the DQPT and the QPT as follows: For the system only with gapped phase,the DQPTs will occur when the quench crosses the critical lines of QPTs. For the system with the gapless phase,the DQPT may not occur in the quench from the gapped phase to the gapless phase or from the gapless phase to the gapped phase. For the systems with symmetrical quasiparticle excitation spectra,the reason for the absence of the DQPT is that there is noksatisfying|tanαk| = 1. However, for the systems with asymmetrical quasiparticle excitation spectra, the reason for the absence of the DQPT is that no wave vectorksatisfies|tanαk|=1,or the wave vectorsksatisfying|tanαk|=1 correspond toεk·ε-k <0.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China(Grant Nos.11975126 and 11575087).

    猜你喜歡
    鐘鳴
    PHOTO FINISH
    Photo Finish
    漢語世界(2023年4期)2023-12-16 09:16:40
    鐘鳴陶瓷藝術(shù)
    鐘鳴藝術(shù)作品欣賞
    鐘鳴陶瓷藝術(shù)
    鐘鳴藝術(shù)作品欣賞
    鐘鳴藝術(shù)作品欣賞
    Orthonormality of Volkov Solutions and the Sufficient Condition?
    鐘鳴藝術(shù)作品欣賞
    鐘鳴陶瓷藝術(shù)
    51午夜福利影视在线观看| 国产精品久久久av美女十八| 黄网站色视频无遮挡免费观看| www.自偷自拍.com| 国产成人系列免费观看| 亚洲全国av大片| 精品国产美女av久久久久小说| 99在线人妻在线中文字幕 | 一级片'在线观看视频| 9色porny在线观看| 国产成+人综合+亚洲专区| 手机成人av网站| 999精品在线视频| 91字幕亚洲| av在线播放免费不卡| 欧美老熟妇乱子伦牲交| 91成年电影在线观看| 精品福利永久在线观看| 久久久国产成人免费| 黄片大片在线免费观看| 国产亚洲欧美98| 国产精品欧美亚洲77777| 久久人人爽av亚洲精品天堂| 久久久久国产精品人妻aⅴ院 | 女警被强在线播放| 午夜久久久在线观看| 久久人人爽av亚洲精品天堂| 亚洲国产精品合色在线| 久久婷婷成人综合色麻豆| 一级a爱片免费观看的视频| 日韩欧美三级三区| 男女下面插进去视频免费观看| 这个男人来自地球电影免费观看| 国产亚洲欧美98| 人人澡人人妻人| 夜夜躁狠狠躁天天躁| 精品卡一卡二卡四卡免费| 精品少妇一区二区三区视频日本电影| 在线视频色国产色| 天堂动漫精品| 亚洲国产精品一区二区三区在线| 精品一区二区三区四区五区乱码| 久久人人爽av亚洲精品天堂| 99久久99久久久精品蜜桃| 国产精品一区二区精品视频观看| 亚洲av成人不卡在线观看播放网| 欧美午夜高清在线| 国产伦人伦偷精品视频| 国产精品美女特级片免费视频播放器 | 国产精品久久久久久人妻精品电影| 他把我摸到了高潮在线观看| 自线自在国产av| 亚洲一区二区三区不卡视频| 搡老乐熟女国产| 久久九九热精品免费| 51午夜福利影视在线观看| 国产又色又爽无遮挡免费看| 老熟妇仑乱视频hdxx| 曰老女人黄片| 精品久久久久久久久久免费视频 | 曰老女人黄片| 水蜜桃什么品种好| 亚洲国产精品sss在线观看 | 国产精品1区2区在线观看. | 交换朋友夫妻互换小说| 精品熟女少妇八av免费久了| 久久影院123| 不卡av一区二区三区| 女人被躁到高潮嗷嗷叫费观| 天天影视国产精品| 国产一区二区三区在线臀色熟女 | 亚洲精品自拍成人| 国产麻豆69| 国产在线精品亚洲第一网站| 亚洲午夜精品一区,二区,三区| 成人国产一区最新在线观看| 日韩欧美三级三区| 男女下面插进去视频免费观看| 最新的欧美精品一区二区| 操美女的视频在线观看| 窝窝影院91人妻| 97人妻天天添夜夜摸| av天堂在线播放| 中文字幕人妻丝袜一区二区| 这个男人来自地球电影免费观看| 国内毛片毛片毛片毛片毛片| 国内毛片毛片毛片毛片毛片| 日韩一卡2卡3卡4卡2021年| 黑人欧美特级aaaaaa片| 亚洲午夜精品一区,二区,三区| 精品人妻1区二区| www.999成人在线观看| 色精品久久人妻99蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 精品高清国产在线一区| 飞空精品影院首页| 免费在线观看完整版高清| 在线看a的网站| 亚洲人成伊人成综合网2020| 一级毛片高清免费大全| 18禁观看日本| 亚洲成av片中文字幕在线观看| 69av精品久久久久久| 国产成人av教育| 欧美久久黑人一区二区| 国产精品免费视频内射| 久久精品国产亚洲av香蕉五月 | 啦啦啦视频在线资源免费观看| 久久香蕉精品热| 欧美在线黄色| 欧美国产精品一级二级三级| 午夜91福利影院| 国产无遮挡羞羞视频在线观看| 久久亚洲精品不卡| 日韩视频一区二区在线观看| 成年人黄色毛片网站| 欧洲精品卡2卡3卡4卡5卡区| a级毛片黄视频| 三上悠亚av全集在线观看| 少妇被粗大的猛进出69影院| 男女下面插进去视频免费观看| 欧美日韩成人在线一区二区| 国产精品欧美亚洲77777| 免费在线观看视频国产中文字幕亚洲| 国产亚洲精品第一综合不卡| 午夜福利在线免费观看网站| 欧美色视频一区免费| 黄色丝袜av网址大全| www日本在线高清视频| 久久精品国产a三级三级三级| 亚洲熟妇熟女久久| 一区在线观看完整版| 中文字幕最新亚洲高清| 变态另类成人亚洲欧美熟女 | 中文字幕av电影在线播放| 亚洲自偷自拍图片 自拍| 国产成人欧美| 亚洲av成人av| 一级作爱视频免费观看| 日日摸夜夜添夜夜添小说| 久久久精品区二区三区| 欧美老熟妇乱子伦牲交| 欧美精品一区二区免费开放| 日日爽夜夜爽网站| 成人av一区二区三区在线看| 极品少妇高潮喷水抽搐| 天堂中文最新版在线下载| 极品人妻少妇av视频| 丁香六月欧美| 天天躁夜夜躁狠狠躁躁| 亚洲中文av在线| 欧美成狂野欧美在线观看| 伦理电影免费视频| 久热爱精品视频在线9| 精品亚洲成国产av| 国产精品.久久久| 国产av又大| 人人澡人人妻人| 动漫黄色视频在线观看| 欧美日本中文国产一区发布| 亚洲人成电影免费在线| 啦啦啦在线免费观看视频4| 一区二区三区激情视频| 丰满的人妻完整版| 国产黄色免费在线视频| xxx96com| 女人被躁到高潮嗷嗷叫费观| 久久久久久久午夜电影 | 免费不卡黄色视频| 搡老熟女国产l中国老女人| 伊人久久大香线蕉亚洲五| 亚洲男人天堂网一区| 亚洲熟女精品中文字幕| 夜夜躁狠狠躁天天躁| 不卡一级毛片| 19禁男女啪啪无遮挡网站| 两性夫妻黄色片| 久久热在线av| 女人被躁到高潮嗷嗷叫费观| 女人久久www免费人成看片| 国产成人免费观看mmmm| av电影中文网址| 亚洲国产精品sss在线观看 | 免费女性裸体啪啪无遮挡网站| 国产欧美日韩综合在线一区二区| 色综合婷婷激情| 美女午夜性视频免费| 天堂中文最新版在线下载| 久久精品国产99精品国产亚洲性色 | 欧美日本中文国产一区发布| 中文字幕人妻熟女乱码| 精品高清国产在线一区| 亚洲国产精品sss在线观看 | 黄色视频不卡| 一进一出抽搐动态| 国产在视频线精品| 国产一区有黄有色的免费视频| 香蕉丝袜av| 国产单亲对白刺激| 一二三四在线观看免费中文在| 免费在线观看完整版高清| 午夜精品在线福利| 99精品在免费线老司机午夜| 黄网站色视频无遮挡免费观看| 亚洲男人天堂网一区| 国产午夜精品久久久久久| 中文欧美无线码| 亚洲av片天天在线观看| 丰满的人妻完整版| 久久久国产成人免费| 窝窝影院91人妻| 日韩制服丝袜自拍偷拍| 一夜夜www| 99久久综合精品五月天人人| 亚洲专区字幕在线| 国产在线观看jvid| 1024视频免费在线观看| 9色porny在线观看| 国产视频一区二区在线看| 精品亚洲成国产av| 国产伦人伦偷精品视频| √禁漫天堂资源中文www| 一二三四在线观看免费中文在| 国产成人系列免费观看| 一级片免费观看大全| 日韩欧美在线二视频 | 亚洲九九香蕉| 欧美中文综合在线视频| 999久久久精品免费观看国产| 99re6热这里在线精品视频| 免费观看a级毛片全部| 亚洲av片天天在线观看| av在线播放免费不卡| 午夜福利在线观看吧| 欧美精品av麻豆av| 大型黄色视频在线免费观看| 天天操日日干夜夜撸| 国产精品永久免费网站| 12—13女人毛片做爰片一| 成年人免费黄色播放视频| 欧美精品一区二区免费开放| 欧美中文综合在线视频| 欧美精品亚洲一区二区| 一进一出抽搐gif免费好疼 | 欧美日韩视频精品一区| 99久久国产精品久久久| 中文字幕色久视频| 欧美另类亚洲清纯唯美| 欧美中文综合在线视频| 国产激情欧美一区二区| 一本大道久久a久久精品| 国产精品一区二区精品视频观看| 成人av一区二区三区在线看| 国产xxxxx性猛交| 人人妻人人爽人人添夜夜欢视频| 露出奶头的视频| 夜夜爽天天搞| 在线观看免费午夜福利视频| 久久久久久亚洲精品国产蜜桃av| 精品第一国产精品| 好看av亚洲va欧美ⅴa在| 色婷婷久久久亚洲欧美| 国产在线一区二区三区精| 国产一卡二卡三卡精品| 91成年电影在线观看| 制服诱惑二区| 国精品久久久久久国模美| 黑人巨大精品欧美一区二区蜜桃| 狠狠婷婷综合久久久久久88av| 欧美另类亚洲清纯唯美| 中文亚洲av片在线观看爽 | 精品午夜福利视频在线观看一区| 精品福利观看| 天堂√8在线中文| 操美女的视频在线观看| 一级a爱视频在线免费观看| 日本精品一区二区三区蜜桃| 亚洲人成伊人成综合网2020| 免费日韩欧美在线观看| 18禁国产床啪视频网站| 国产国语露脸激情在线看| 国产在视频线精品| 国产又色又爽无遮挡免费看| 桃红色精品国产亚洲av| 久久精品国产综合久久久| 亚洲国产看品久久| 黄片大片在线免费观看| 正在播放国产对白刺激| 色老头精品视频在线观看| 999精品在线视频| 亚洲国产毛片av蜜桃av| 精品国产一区二区三区四区第35| av视频免费观看在线观看| 视频区欧美日本亚洲| 这个男人来自地球电影免费观看| 老司机午夜十八禁免费视频| 国产区一区二久久| 黄片播放在线免费| 欧美精品啪啪一区二区三区| 又紧又爽又黄一区二区| 国产亚洲精品第一综合不卡| 天堂√8在线中文| 久久天躁狠狠躁夜夜2o2o| 女人被狂操c到高潮| 黑人巨大精品欧美一区二区mp4| 亚洲男人天堂网一区| 国产麻豆69| av免费在线观看网站| 久久久久精品人妻al黑| 法律面前人人平等表现在哪些方面| 国产高清视频在线播放一区| 午夜亚洲福利在线播放| 高潮久久久久久久久久久不卡| 亚洲国产精品sss在线观看 | 国产精品av久久久久免费| 日日爽夜夜爽网站| 在线观看免费视频网站a站| 中文欧美无线码| 欧美乱色亚洲激情| 成年人免费黄色播放视频| 日韩欧美在线二视频 | 日韩有码中文字幕| 热99国产精品久久久久久7| 天天影视国产精品| 在线观看免费午夜福利视频| 国产精品98久久久久久宅男小说| 老司机影院毛片| 丰满人妻熟妇乱又伦精品不卡| 91字幕亚洲| 亚洲国产精品一区二区三区在线| 看片在线看免费视频| 精品国产一区二区三区四区第35| 国产精品美女特级片免费视频播放器 | 亚洲av成人av| 91麻豆av在线| 国产在线一区二区三区精| 久久婷婷成人综合色麻豆| 亚洲国产精品一区二区三区在线| 精品卡一卡二卡四卡免费| 日韩精品免费视频一区二区三区| 国产精品免费大片| 黄色女人牲交| 法律面前人人平等表现在哪些方面| 日韩成人在线观看一区二区三区| 在线av久久热| 丰满饥渴人妻一区二区三| 又大又爽又粗| 777久久人妻少妇嫩草av网站| а√天堂www在线а√下载 | 久久影院123| 国产成人精品久久二区二区免费| 日韩精品免费视频一区二区三区| 青草久久国产| 两性午夜刺激爽爽歪歪视频在线观看 | 一夜夜www| 午夜福利,免费看| 三级毛片av免费| 色综合欧美亚洲国产小说| 老汉色∧v一级毛片| 天堂中文最新版在线下载| 丝袜人妻中文字幕| 亚洲免费av在线视频| 又黄又爽又免费观看的视频| 成年动漫av网址| 18禁裸乳无遮挡免费网站照片 | 亚洲午夜理论影院| 午夜福利,免费看| 欧美精品一区二区免费开放| 啦啦啦在线免费观看视频4| 在线永久观看黄色视频| 18禁黄网站禁片午夜丰满| 人人澡人人妻人| 亚洲第一青青草原| av网站在线播放免费| 精品福利观看| 亚洲精品粉嫩美女一区| 制服人妻中文乱码| 波多野结衣av一区二区av| 久久天躁狠狠躁夜夜2o2o| 欧美中文综合在线视频| 人人妻,人人澡人人爽秒播| 波多野结衣一区麻豆| 九色亚洲精品在线播放| 久久久久国内视频| 亚洲一区二区三区不卡视频| 久久人妻熟女aⅴ| 免费观看a级毛片全部| 久久久久久人人人人人| 色精品久久人妻99蜜桃| 一二三四在线观看免费中文在| 亚洲一区二区三区欧美精品| 免费日韩欧美在线观看| 18禁美女被吸乳视频| 人人妻人人添人人爽欧美一区卜| 天天影视国产精品| 99精品久久久久人妻精品| 757午夜福利合集在线观看| 不卡av一区二区三区| 久久香蕉国产精品| 国产男女内射视频| 国产亚洲精品久久久久久毛片 | 制服诱惑二区| 午夜免费鲁丝| a级片在线免费高清观看视频| aaaaa片日本免费| 国产成人精品久久二区二区免费| 日韩三级视频一区二区三区| 最近最新中文字幕大全电影3 | 国产色视频综合| 中文字幕高清在线视频| 日韩欧美一区视频在线观看| 色婷婷av一区二区三区视频| 午夜福利影视在线免费观看| 啦啦啦免费观看视频1| 美女高潮喷水抽搐中文字幕| 欧美精品人与动牲交sv欧美| 熟女少妇亚洲综合色aaa.| 自线自在国产av| 丝袜在线中文字幕| 丝瓜视频免费看黄片| 亚洲片人在线观看| 日本一区二区免费在线视频| 91九色精品人成在线观看| 精品国产超薄肉色丝袜足j| 一二三四社区在线视频社区8| 欧美一级毛片孕妇| 午夜福利一区二区在线看| 国产单亲对白刺激| 国产亚洲精品第一综合不卡| 69精品国产乱码久久久| 在线十欧美十亚洲十日本专区| av有码第一页| 久久久久国内视频| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久久成人av| av线在线观看网站| 午夜精品久久久久久毛片777| √禁漫天堂资源中文www| 国产xxxxx性猛交| 亚洲精品乱久久久久久| av免费在线观看网站| 男女之事视频高清在线观看| 亚洲成人手机| 91成年电影在线观看| 久久精品熟女亚洲av麻豆精品| 91麻豆精品激情在线观看国产 | 亚洲一区二区三区不卡视频| 人人妻,人人澡人人爽秒播| 叶爱在线成人免费视频播放| 日日摸夜夜添夜夜添小说| 老熟妇乱子伦视频在线观看| 黄频高清免费视频| 亚洲色图综合在线观看| 欧美日本中文国产一区发布| 两个人看的免费小视频| 亚洲精品久久成人aⅴ小说| 欧美人与性动交α欧美精品济南到| 精品国产国语对白av| 亚洲av成人av| 欧美精品人与动牲交sv欧美| 亚洲一区二区三区不卡视频| 欧美激情极品国产一区二区三区| 亚洲在线自拍视频| 日本黄色视频三级网站网址 | 女警被强在线播放| 婷婷成人精品国产| 免费观看a级毛片全部| 亚洲avbb在线观看| 啦啦啦免费观看视频1| 久久久久视频综合| 老熟妇仑乱视频hdxx| 一区在线观看完整版| 色尼玛亚洲综合影院| 免费黄频网站在线观看国产| 老司机午夜十八禁免费视频| 国产无遮挡羞羞视频在线观看| 黄频高清免费视频| 成人永久免费在线观看视频| videos熟女内射| 欧美亚洲 丝袜 人妻 在线| 亚洲色图av天堂| 亚洲久久久国产精品| 免费观看a级毛片全部| 在线观看免费视频日本深夜| 露出奶头的视频| 人妻久久中文字幕网| 久久人人97超碰香蕉20202| 亚洲视频免费观看视频| svipshipincom国产片| 久久久久久人人人人人| 亚洲五月婷婷丁香| 成人特级黄色片久久久久久久| 成年动漫av网址| 日韩欧美免费精品| 中文字幕精品免费在线观看视频| 久久久国产精品麻豆| 久久国产精品大桥未久av| 久久久久久久久免费视频了| 久久精品国产综合久久久| 精品乱码久久久久久99久播| 老司机午夜福利在线观看视频| 少妇粗大呻吟视频| 成年动漫av网址| 精品国产一区二区久久| 免费在线观看影片大全网站| 欧美人与性动交α欧美精品济南到| 一二三四在线观看免费中文在| 亚洲av熟女| 两个人看的免费小视频| 午夜福利,免费看| 91老司机精品| 麻豆成人av在线观看| 久久精品91无色码中文字幕| 亚洲国产中文字幕在线视频| 国产精品影院久久| 久久久久精品人妻al黑| 国产aⅴ精品一区二区三区波| 国产淫语在线视频| 国产精品久久电影中文字幕 | 亚洲第一av免费看| 国产区一区二久久| 人妻丰满熟妇av一区二区三区 | 丁香欧美五月| 亚洲成a人片在线一区二区| 国产免费av片在线观看野外av| av国产精品久久久久影院| 动漫黄色视频在线观看| 久久中文字幕一级| 一级毛片高清免费大全| 中文字幕另类日韩欧美亚洲嫩草| av片东京热男人的天堂| 亚洲国产精品sss在线观看 | 久久精品国产a三级三级三级| 午夜老司机福利片| 中文字幕制服av| 操出白浆在线播放| 法律面前人人平等表现在哪些方面| 一区福利在线观看| 国产精品欧美亚洲77777| 男女午夜视频在线观看| 黄色片一级片一级黄色片| 国产亚洲av高清不卡| 精品国产一区二区三区久久久樱花| 亚洲一区二区三区不卡视频| 亚洲精品美女久久久久99蜜臀| 操出白浆在线播放| 国产深夜福利视频在线观看| 老熟妇仑乱视频hdxx| 美女高潮到喷水免费观看| 狂野欧美激情性xxxx| 91字幕亚洲| 女警被强在线播放| 国产一区二区三区视频了| 波多野结衣一区麻豆| 99国产精品一区二区三区| 岛国毛片在线播放| 99久久99久久久精品蜜桃| 欧美黄色片欧美黄色片| 老司机午夜福利在线观看视频| 婷婷精品国产亚洲av在线 | 91麻豆av在线| 在线观看www视频免费| 这个男人来自地球电影免费观看| 亚洲自偷自拍图片 自拍| 日本精品一区二区三区蜜桃| av天堂久久9| 在线视频色国产色| 国产极品粉嫩免费观看在线| 好男人电影高清在线观看| 国产av又大| 18禁观看日本| a在线观看视频网站| 水蜜桃什么品种好| 国产精品成人在线| 黄色成人免费大全| 国产精品九九99| 法律面前人人平等表现在哪些方面| 亚洲 国产 在线| 久久亚洲真实| 色婷婷久久久亚洲欧美| 一本一本久久a久久精品综合妖精| 国产亚洲欧美精品永久| 妹子高潮喷水视频| 久久中文字幕一级| 9191精品国产免费久久| a级片在线免费高清观看视频| 亚洲免费av在线视频| 老汉色∧v一级毛片| 成人免费观看视频高清| 亚洲成人手机| 美女高潮喷水抽搐中文字幕| 欧美国产精品一级二级三级| 91麻豆精品激情在线观看国产 | 亚洲黑人精品在线| 王馨瑶露胸无遮挡在线观看| 日韩欧美免费精品| 免费在线观看日本一区| 亚洲中文av在线| 欧美乱码精品一区二区三区| 日韩欧美免费精品| 王馨瑶露胸无遮挡在线观看| 男女免费视频国产| 搡老熟女国产l中国老女人| 叶爱在线成人免费视频播放| 国产激情欧美一区二区| 老司机影院毛片| 国产人伦9x9x在线观看| 一本一本久久a久久精品综合妖精| 国产1区2区3区精品| 亚洲精品美女久久久久99蜜臀| 女人爽到高潮嗷嗷叫在线视频| 久久亚洲真实| 国产精品98久久久久久宅男小说| 久久久久国内视频| 又黄又爽又免费观看的视频|