• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum algorithm for neighborhood preserving embedding

    2022-06-29 08:53:18ShiJiePan潘世杰LinChunWan萬林春HaiLingLiu劉海玲YuSenWu吳宇森SuJuanQin秦素娟QiaoYanWen溫巧燕andFeiGao高飛
    Chinese Physics B 2022年6期
    關(guān)鍵詞:吳宇森劉海

    Shi-Jie Pan(潘世杰) Lin-Chun Wan(萬林春) Hai-Ling Liu(劉海玲) Yu-Sen Wu(吳宇森)Su-Juan Qin(秦素娟) Qiao-Yan Wen(溫巧燕) and Fei Gao(高飛)

    1State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China

    2State Key Laboratory of Cryptology,P.O.Box 5159,Beijing 100878,China

    Keywords: quantum algorithm,quantum machine learning,amplitude amplification

    1. Introduction

    Quantum computing theoretically demonstrates its computational advantages in solving certain problems compared with classical computing, such as the problem of factoring integers,[1]unstructured data searching problem,[2]and matrix computation problems.[3–5]In recent years,quantum machine learning has received widespread attention as a method that successfully combines classical machine learning with quantum physics. An important direction of quantum machine learning is to design quantum algorithms to accelerate classical machine learning, including data classification,[6–9]linear regression,[10–14]association rules mining,[15]and anomaly detection.[16]

    Dimensionality reduction (DR) is an important part of machine learning,which aims to reduce the dimensionality of the training data set while preserving the structure information of the data points as well as possible. The DR algorithm often serves as a preprocessing step in data mining and machine learning to reduce the time complexity of the algorithm and avoid a problem called “curse of dimensionality”.[17]Generally,The DR algorithms can be classified into two categories:the linear one and the nonlinear one. The most widely used linear DR algorithms include principal component analysis(PCA),[18]linear discriminant analysis(LDA),[19]and neighborhood preserving embedding (NPE),[20]while the typical nonlinear DR algorithm is locally linear embedding(LLE).[21]Here, we focus on NPE which can be regarded as the linear approximation of LLE. Unlike PCA that tries to preserve the global Euclidean structure, NPE aims at preserving the local manifold structure. Furthermore, NPE has a closed-form solution. Similar to other DR algorithms, NPE requires a large amount of computational resources in the big-data scenario because of its high complexity.

    In recent years, some researchers successfully combined DR algorithms with quantum techniques and obtained various degrees of speedups. Lloydet al.[22]proposed a quantum PCA algorithm to reveal the large eigenvectors in quantum form of an unknown low-rank density matrix,which achieves an exponential speedup on the dimension of the training data.Latter, Yuet al.[23]proposed a quantum algorithm that compresses training data based on PCA, and achieves an exponential speedup on the dimension over the classical algorithm.Conget al.[8]proposed a quantum LDA algorithm for classification with exponential speedups on the scales of the training data over the classical algorithm. Besides,there are some other quantum DR algorithms, including quantum A-optimal projection,[24,25]quantum kernel PCA[26]and quantum spectral regression.[27,28]

    For NPE,Lianget al.[29]proposed a variational quantum algorithm(VQA),called VQNPE,and expected to achieve an exponential speedup on dimensionalityn. NPE contains three steps,i.e., finding the nearest neighbors of each data point,constructing the weight matrix,and obtaining the transformation matrixA.VQNPE includes three quantum sub-algorithms with a VQA in the third sub-algorithm, corresponding to the three steps of NPE.However,VQNPE has two drawbacks: (i)The algorithm is incomplete. As the authors pointed out,it is not known how to obtain the input of the third sub-algorithm from the output of the second one. (ii) It lacks a provable quantum advantage.Since the advantage of VQA has not been proved rigorously yet(generally,we say that VQA has potential advantage[30,31]),it is hard to examine the speedups of the third sub-algorithm.

    In this paper, we propose a complete quantum NPE algorithm with rigorous complexity analysis. Our quantum algorithm also consists of three quantum sub-algorithms, corresponding to the three steps of the classical NPE. The first one is finding the neighbors of each data point by quantum amplitude estimation and quantum amplitude amplification.By storing the information of neighbors in a data structure of QRAM,[32,33]we obtain two oracles. With these oracles, the second one reveals the classical information of the weight matrixWcolumn by column by quantum matrix inversion technique. In the third one,we use a quantum version of the spectral regression (SR) method to get the transformation matrixA. Specifically,we obtain thed(dis the dimension of the low dimensional space) bottom nonzero eigenvectors of the matrixM=(I-W)T(I-W) at first, and then perform several times of the quantum ridge regression algorithm to obtainA.As a conclusion,under certain conditions,our algorithm has a polynomial speedup on the number of data pointsmand exponential speedup on the dimension of the data pointsnover the classical NPE algorithm, and has a significant speedup compared with VQNPE.

    The rest of this paper is organized as follows. In Section 2, we review the classical NPE algorithm. In Section 3,we propose our quantum NPE algorithm and analyze the complexity. Specifically,in Subsection 3.1,we propose a quantum algorithm to find the nearest neighbors of each data point and analyze the complexity.In Subsection 3.2,we propose a quantum algorithm to obtain the information of the weight matrixWand analyze the complexity. The quantum algorithm for computing the transformation matrixAis proposed in Subsection 3.3, together with the complexity analysis. The algorithm procedures and the complexity is concluded in Subsection 3.4, along with a comparison with VQNPE.The conclusion is given in Section 4.

    2. Review of the classical NPE

    In this section, we briefly review the classical NPE.[20,21,34]

    SupposeX=(x0,x1,...,xm-1)Tis a data matrix with dimensionm×n,wherenis the dimension ofxiandmis the number of data points.The objective of NPE is to find a matrixA(called transformation matrix) embedding the data matrix into a low-dimensional space (assume the embedding results isy0,y1,...,ym-1,yi ∈Rdandd ?n, we haveyi=ATxi,A ∈Rn×d)that the linear relation between each data point and its nearest neighbors is best preserved. Specifically, suppose the nearest neighbors ofxiarexj,xk,andxl,thenxican be reconstructed(or approximately reconstructed)by linear combination ofxj,xk,xl,that is,

    whereWij,Wik, andWilare weights that summarize the contribution ofxj,xk, andxlto the reconstruction ofxi. NPE trys to preserve the linear relations in Eq. (1) in the lowdimensional embedding.

    NPE consists of the following three steps.

    Step 1 Find the nearest neighbors of each data point.There are two most common techniques to find the nearest neighbors. One isk-nearest neighbors algorithm (kNN) with a fixedk,and the other is choosing neighbors within a ball of fixed radiusrbased on Euclidean distance for each data point.

    Step 2 Construct the weight matrixW ∈Rm×m,where the(i+1)-th row and(j+1)-th column element isWi j. Suppose the set of the nearest neighbors of the data pointxiis denoted asQi,then the construction ofWis to optimize the following objective function:

    Note that the data pointxiis only reconstructed by its nearest neighbors,i.e.,the elements inQi. Ifxj/∈Qi,we setWij=0.We should mention that‖·‖is theL2norm of a vector or the spectral norm of a matrix in this paper. The above optimization problem has a closed form solution. LetC(i)denote anm×mmatrix related toxi, called neighborhood correlation matrix,where

    where 1=(1,1,...,1)T.

    Step 3 Compute the transformation matrixA. To best preserve the linear relations in the low-dimensional space,the optimization problem is designed as follows:

    whereMis a sparse matrix that equates (I-W)T(I-W).Then the bottomdnonzero eigenvectorsa0,a1,...,ad-1of the above eigen-problem with corresponding eigenvalues 0<λ0≤λ1≤...≤λd-1yieldA=(a0,a1,...,ad-1).

    There are many different methods to solve the eigenvalue problem in Eq.(6). Here we use the method mentioned in Refs. [35,36], called spectral regression (SR) method.The eigenvalue problem in Eq. (6) can be solved by two steps according to the SR method. (I) Solve the following eigen-problem to get the bottom non-zero eigenvectorsz0,z1,...,zd-1:

    wherezijis thejelement ofzi,α ≥0 is a constant to control the penalty of the norm ofa.

    As a conclusion,the detailed procedures of NPE are given in Algorithm 1.

    Algorithm 1 The procedure of NPE Input: The data set X =(x0,x1,...,xm-1)T;Output: The transformation matrix A=(a0,a1,...,ad-1);1: Find the set of nearest neighbors Qi of each data point i;2: Construct C(i) by Eq.(3)for i=0,1,...,m-1;3: State Obtain W by Eq.(4);4: Decompose the matrix M=(I-W)T(I-W)to get the bottom d nonzero eigenvectors z0,z1,...,zd-1;5: Compute ai=(XTX+αI)-1 XTzi for i=0,1,...,d-1;6: return A.

    As for the time complexity of NPE algorithm,the procedure to find theknearest neighbors of each data point has complexityO(mnlog2klog2m) by using BallTree.[27]The complexity to construct the weight matrix W isO(mnk3) (generally,k ?m). And the procedure to get the transformation matrixAhas complexityO(dm2). Thus the overall complexity of NPE algorithm isO(mnk3+dm2).

    3. Quantum algorithm for NPE

    In this section, we introduce our quantum algorithm for NPE.The quantum algorithm can be divided into three parts,corresponding to the three parts of the classical algorithm. We give a quantum algorithm to find the nearest neighbors algorithm in Subsection 3.1,a quantum algorithm to construct the weight matrixWin Subsection 3.2 and a quantum algorithm to compute the transformation matrixAin Subsection 3.3. In Subsection 3.4, we conclude the complexity of our quantum algorithm and make a comparison with VQNPE.

    3.1. Quantum algorithm to find the nearest neighbors

    Assume that the data matrixX=(x0,x1,...,xm-1)Tis stored in a structured QRAM[32,33]which allows the following mappings to be performed in timeO[polylog(mn)]as given below:

    whereXi·is thei-th row ofX,i.e.,xi.

    3.1.1. Algorithm details

    We adopt the quantum amplitude estimation[38]and amplitude amplification[2,38]to get the neighbors ofxi. The algorithm can be decomposed into the following two stages:

    Stage 1 Prepare the following quantum state by quantum amplitude estimation,

    3.2. Quantum algorithm to obtain the weight matrix W

    3.3. The quantum algorithm to compute the transformation matrix A

    We have obtained the classical information ofWin the above algorithm. Thus we can store the information of the matrixD=I-Win a data structure that allows the following two mappings:

    3.4. The total complexity and discussion

    The procedure of the quantum NPE algorithm can be summarized as follows:

    Algorithm 2 The procedure of quantum NPE Input: The data matrix X is stored in a data structure;Output: The quantum states|a0〉,|a1〉,...,|ad-1〉which represent each row of matrix A;1: Prepare 1 m ∑m-1i,j=0|i〉|j〉|■K m2〉;2: Prepare 1■K ∑m-1i=0 |i〉∑xj∈Qi|j〉;3: Measure the output in computational basis for several times to obtain the index j of the neighbors of xi for i=0,1,...,m-1;4: Construct oracle UB and VB;5: Prepare|ψ(i)〉to obtain ρC(i);6: Prepare|Wi〉=ρ-1 C(i)|Bi〉for i=0,1,...,m-1;7: Perform quantum state tomography on|Wi〉to get the information of Wi for i=0,1,...,m-1;8: Perform quantum singular value estimation to get|ψ1〉;9: Use the quantum algorithm for finding the minimum to find the bottom d nonzero eigenvalues and eigenvectors of M;10: Perform quantum ridge regression to get|aj〉for j=0,1,...,d-1.11: return|a0〉,|a1〉,...,|ad-1〉.

    The quantum algorithm can be divided into three subalgorithms and the complexity of each sub-algorithm can be seen in Table 1. The algorithms 1–3 in Table 1 are the quantum algorithm to find the nearest neighbors, the algorithm to obtain the weight matrixWand the algorithm for embedding,respectively.h=maxi‖xi‖,k=Θ(k(i)),k(i)is the number of neighbors ofxi,mis the number of training data points,nis the dimension of the data points,εis the error of the algorithm,ε0=mini j‖xi-xj‖,kmax=maxi k(i),κmax=maxi κ(i),κ(i)is the condition number of the neighborhood correlation matrixC(i),dis the dimension of the low-dimensional space,κis the condition number of train data matrixX. Putting it all together,the complexity of the quantum NPE algorithm is

    Table 1. The time complexity of the three sub-algorithms of the quantum NPE.

    Since the classical algorithm have complexityO(mnk3+dm2), our algorithm have a polynomial speedup onmand an exponential speedup onnwhen the factorsd,h,kmax,κmax,ε,ε0=O[polylog(mn)]. We should mention that the output of the quantum NPE algorithm is a matrixA=(|a0〉,|a1〉,...,|ad-1〉) with each column outputted as a quantum state.

    Our algorithm has two advantages over VQNPE.(i)Our algorithm is complete while VQNPE is not. In Ref.[29], the authors pointed out that it is not known how to obtain the input of the third sub-algorithm from the output of the second sub-algorithm. Actually,if just consider the completeness,we can use a VQA technique shown in Ref.[52]after our second sub-algorithm. (ii) The complexity of our algorithm is less than the complexity of VQNPE,even without considering the complexity of the third sub-algorithm of VQNPE.Specifically,The complexity of the first sub-algorithm isO(m2ε2log2n),and the complexity of the second sub-algorithm isΩ(poly(n))(we should mention that the complexity showed here are different with the original paper,see Appendix B for details),while the total complexity of our algorithm isO(m1.5polylog(mn))(only consider the main parameters). The advantage of our first sub-algorithm is mainly coming from the parallel estimation of the distance of each pair of data points. As for the second sub-algorithm, Lianget al. adopted the QSVD to get the|Wi〉. However,the eigenvalues ofAiare too small to satisfy the conditions to get an efficient algorithm,which causes the complexities to have polynomial dependence onn. We use a totally different algorithm to get the|Wi〉and the complexity analysis shows that our algorithm has complexity polylogarithmic dependence onn. As for the third sub-algorithm,it is hard to exam the complexity of the VQA of VQNPE, while our sub-algorithm has a rigorous complexity analysis.

    Also,we notice that Chenet al.[55]proved a lower bound of quantum ridge regression algorithm. However, since their objective is to return a classical vector as the output of ridge regression while our algorithm(the ridge regression algorithm in the third sub-algorithm)generates a solution vector as a quantum state,the lower bound would not influence the complexity bound of our algorithm.

    4. Conclusion

    In this paper, we proposed a complete quantum NPE algorithm with rigorous complexity analysis.It was showed that whend,h,kmax,κmax,ε,ε0=O[polylog(mn)], our algorithm has exponential acceleration onnand polynomial acceleration onmover the classical NPE. Also, our algorithm has a significant speedup compared with VQNPE.

    The Lemma 2 proposed an efficient method to append a quantum state generated by subtracting two vectors parallelly, which might have a wide range of applications in other quantum algorithms. Also, in the proof of the Lemma 2, we proposed a technique called parallel amplitude amplification,which may be of independent interest.We hope the techniques used in our algorithm could inspire more DR techniques to get a quantum advantage,especially the nonlinear DR techniques.We will explore the possibility in the future.

    Acknowledgements

    We thank Chao-Hua Yu for fruitful discussion and the anonymous referees for their helpful comments.

    Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A01) and the National Natural Science Foundation of China (Grant Nos.61972048 and 61976024).

    Appendix A:The proof of Lemma 2 The parallel quantum amplitude amplification consists of three steps:

    猜你喜歡
    吳宇森劉海
    以小見大 以情動(dòng)人
    Establish a Three-dimensional Fluorescent Fingerprint Database of Traditional Chinese Medicines
    Hubbard model on an anisotropic checkerboard lattice at finite temperatures:Magnetic and metal–insulator transitions
    學(xué)生天地(2019年36期)2019-08-25 08:59:52
    我請你吃雪糕
    做人與處世(2018年3期)2018-04-27 10:10:38
    見誼忘利
    做人與處世(2018年3期)2018-04-27 10:10:38
    吳宇森版《追捕》定檔11·24
    尋找那些鏡頭背后的英雄 實(shí)拍王吳宇森(John Woo)
    只靠劉海就能實(shí)現(xiàn)的超簡單變身方法!
    吳宇森的光影童年
    嫩草影院入口| 琪琪午夜伦伦电影理论片6080| 不卡一级毛片| 精品不卡国产一区二区三区| 免费看日本二区| 久久午夜福利片| 九色成人免费人妻av| 亚洲真实伦在线观看| 国产精品98久久久久久宅男小说| 99精品在免费线老司机午夜| 亚洲av不卡在线观看| 欧美成人a在线观看| 亚洲内射少妇av| 国产精品,欧美在线| 日本免费一区二区三区高清不卡| 夜夜躁狠狠躁天天躁| 国产欧美日韩一区二区精品| 久久久精品欧美日韩精品| 18禁黄网站禁片免费观看直播| 亚洲经典国产精华液单 | 亚洲欧美日韩高清在线视频| 一级作爱视频免费观看| 欧美一区二区亚洲| 色噜噜av男人的天堂激情| .国产精品久久| 看免费av毛片| 欧美色视频一区免费| 日本免费一区二区三区高清不卡| 99精品久久久久人妻精品| 不卡一级毛片| 成人av在线播放网站| 一进一出抽搐gif免费好疼| 欧美乱妇无乱码| 永久网站在线| 一级作爱视频免费观看| 一级a爱片免费观看的视频| 国产av一区在线观看免费| 亚洲无线在线观看| 激情在线观看视频在线高清| 日韩欧美在线二视频| 精品人妻熟女av久视频| 亚洲欧美日韩卡通动漫| 国产三级黄色录像| 国产精品av视频在线免费观看| 国产午夜福利久久久久久| 国产伦在线观看视频一区| 免费在线观看日本一区| 蜜桃久久精品国产亚洲av| 1024手机看黄色片| 成人无遮挡网站| 国产精品精品国产色婷婷| 美女黄网站色视频| 午夜免费成人在线视频| 99视频精品全部免费 在线| 国产午夜精品论理片| 男女那种视频在线观看| 亚洲人成网站在线播| 好男人在线观看高清免费视频| 99国产精品一区二区蜜桃av| 亚洲五月婷婷丁香| or卡值多少钱| 男女做爰动态图高潮gif福利片| 亚洲专区中文字幕在线| 99久久九九国产精品国产免费| 日日夜夜操网爽| 精品久久久久久成人av| 国产精品久久久久久人妻精品电影| 久久99热这里只有精品18| 身体一侧抽搐| 亚洲无线观看免费| 亚洲精品456在线播放app | 国内精品美女久久久久久| www.熟女人妻精品国产| 午夜福利在线观看吧| 国产一区二区亚洲精品在线观看| 亚洲综合色惰| 深夜a级毛片| 91字幕亚洲| 欧美三级亚洲精品| 免费无遮挡裸体视频| 午夜日韩欧美国产| 亚洲三级黄色毛片| 天堂影院成人在线观看| 国产精品伦人一区二区| 国产一区二区三区视频了| 色5月婷婷丁香| 亚洲av中文字字幕乱码综合| 怎么达到女性高潮| 国产精品一区二区免费欧美| 蜜桃久久精品国产亚洲av| 性欧美人与动物交配| 午夜激情欧美在线| 成年人黄色毛片网站| 成人午夜高清在线视频| 欧美性猛交黑人性爽| 亚洲av美国av| 九九久久精品国产亚洲av麻豆| 村上凉子中文字幕在线| 好男人电影高清在线观看| 欧美区成人在线视频| 伊人久久精品亚洲午夜| 日韩欧美在线乱码| 窝窝影院91人妻| av在线老鸭窝| 国产精品久久久久久久久免 | 在线免费观看不下载黄p国产 | 热99在线观看视频| 日本与韩国留学比较| 三级国产精品欧美在线观看| 精品不卡国产一区二区三区| 成人国产综合亚洲| 免费看光身美女| 亚洲午夜理论影院| 好看av亚洲va欧美ⅴa在| 亚洲国产日韩欧美精品在线观看| 成人精品一区二区免费| 99久久精品一区二区三区| 国产精品野战在线观看| 国产av麻豆久久久久久久| 日日夜夜操网爽| 亚洲在线观看片| 性色avwww在线观看| 嫩草影院入口| a在线观看视频网站| 亚洲成av人片免费观看| 成人av在线播放网站| 少妇人妻精品综合一区二区 | 99久久精品热视频| 最新中文字幕久久久久| 午夜a级毛片| 免费av毛片视频| 高清日韩中文字幕在线| 久久99热这里只有精品18| www.色视频.com| 在线免费观看的www视频| 88av欧美| 国产伦人伦偷精品视频| 亚洲av第一区精品v没综合| 亚洲狠狠婷婷综合久久图片| 国产精品一区二区三区四区久久| 黄色女人牲交| 久久亚洲精品不卡| 婷婷六月久久综合丁香| 日韩欧美精品v在线| 亚洲av成人不卡在线观看播放网| 久久热精品热| 999久久久精品免费观看国产| 欧美区成人在线视频| 人人妻,人人澡人人爽秒播| 亚洲 国产 在线| 午夜两性在线视频| 国产精品亚洲一级av第二区| 欧美精品啪啪一区二区三区| 日韩国内少妇激情av| 国产成+人综合+亚洲专区| 少妇的逼水好多| 99久久精品一区二区三区| 99久久精品一区二区三区| 国产激情偷乱视频一区二区| 亚洲欧美日韩高清在线视频| 老女人水多毛片| 级片在线观看| 国产综合懂色| 精品国内亚洲2022精品成人| 高潮久久久久久久久久久不卡| 欧美高清成人免费视频www| 在线国产一区二区在线| 色5月婷婷丁香| 一个人看视频在线观看www免费| 欧美精品啪啪一区二区三区| 麻豆成人av在线观看| 国产精品一区二区性色av| 波多野结衣高清无吗| 无遮挡黄片免费观看| eeuss影院久久| 国产欧美日韩一区二区三| 男女床上黄色一级片免费看| 一二三四社区在线视频社区8| 亚洲18禁久久av| 99热只有精品国产| 欧美一区二区国产精品久久精品| 俄罗斯特黄特色一大片| 两个人视频免费观看高清| 欧美成人一区二区免费高清观看| 欧美成狂野欧美在线观看| 日韩亚洲欧美综合| 久9热在线精品视频| 简卡轻食公司| x7x7x7水蜜桃| 色综合欧美亚洲国产小说| 直男gayav资源| 亚洲av成人精品一区久久| av在线老鸭窝| 亚洲成人久久爱视频| 99久久精品热视频| 校园春色视频在线观看| 老熟妇乱子伦视频在线观看| 午夜亚洲福利在线播放| 久久人人爽人人爽人人片va | 在线观看午夜福利视频| 亚洲人与动物交配视频| 极品教师在线视频| 欧美一级a爱片免费观看看| 欧美日本视频| av天堂中文字幕网| 午夜免费成人在线视频| 国产精品久久久久久精品电影| 久久久久久国产a免费观看| 国产精品久久久久久人妻精品电影| 国产欧美日韩一区二区精品| 国产v大片淫在线免费观看| 天堂网av新在线| 免费看光身美女| 亚洲一区二区三区色噜噜| 深夜a级毛片| 波多野结衣高清作品| 午夜亚洲福利在线播放| 男插女下体视频免费在线播放| 51国产日韩欧美| 校园春色视频在线观看| 免费在线观看日本一区| 国产探花极品一区二区| 亚洲一区二区三区色噜噜| 国产午夜精品久久久久久一区二区三区 | 国产成人a区在线观看| 啦啦啦观看免费观看视频高清| 亚洲欧美日韩高清专用| www.www免费av| АⅤ资源中文在线天堂| 最新在线观看一区二区三区| 亚洲精品在线观看二区| 可以在线观看毛片的网站| 嫁个100分男人电影在线观看| 在线a可以看的网站| 久久精品国产99精品国产亚洲性色| 久久久成人免费电影| 最近中文字幕高清免费大全6 | 午夜福利在线观看吧| 成人特级av手机在线观看| 美女高潮喷水抽搐中文字幕| 久久99热这里只有精品18| 人人妻,人人澡人人爽秒播| 999久久久精品免费观看国产| 色5月婷婷丁香| 国产av麻豆久久久久久久| 高清毛片免费观看视频网站| 我要搜黄色片| 九九久久精品国产亚洲av麻豆| 国产亚洲精品av在线| 又爽又黄a免费视频| 国产精品永久免费网站| 精品人妻一区二区三区麻豆 | 精品99又大又爽又粗少妇毛片 | 久久久久久大精品| 一本精品99久久精品77| 国产真实伦视频高清在线观看 | 亚洲在线观看片| 久久人人精品亚洲av| 最后的刺客免费高清国语| 中文字幕av在线有码专区| 草草在线视频免费看| 久久久国产成人免费| 人妻制服诱惑在线中文字幕| 丰满乱子伦码专区| 国产色爽女视频免费观看| 国产午夜精品久久久久久一区二区三区 | 亚洲一区高清亚洲精品| 亚洲电影在线观看av| 国产精品自产拍在线观看55亚洲| 国产成人a区在线观看| 精品久久久久久,| 亚洲成av人片免费观看| 亚洲av二区三区四区| 久久精品综合一区二区三区| av在线老鸭窝| 搡女人真爽免费视频火全软件 | 亚洲最大成人av| 高清在线国产一区| 97人妻精品一区二区三区麻豆| 欧美成狂野欧美在线观看| 伊人久久精品亚洲午夜| 露出奶头的视频| 日韩欧美国产在线观看| 国产主播在线观看一区二区| 欧美黄色淫秽网站| 91字幕亚洲| 午夜福利在线观看吧| 亚洲,欧美,日韩| 欧美精品国产亚洲| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一本一本综合久久| av福利片在线观看| 欧美成人性av电影在线观看| 国产亚洲精品av在线| 欧美精品国产亚洲| 国产在线精品亚洲第一网站| 搡女人真爽免费视频火全软件 | www.999成人在线观看| 哪里可以看免费的av片| 久久久久久久午夜电影| 变态另类丝袜制服| 亚洲av成人不卡在线观看播放网| 亚洲精品一卡2卡三卡4卡5卡| 搞女人的毛片| 在线观看舔阴道视频| 国产综合懂色| 国产免费男女视频| 久久人妻av系列| 桃色一区二区三区在线观看| 国产视频内射| 成年免费大片在线观看| av黄色大香蕉| 男女那种视频在线观看| 窝窝影院91人妻| 久久精品国产亚洲av涩爱 | 国产午夜精品论理片| АⅤ资源中文在线天堂| 午夜精品一区二区三区免费看| 男人舔女人下体高潮全视频| 如何舔出高潮| 日韩欧美精品v在线| 欧美日韩福利视频一区二区| 国产一级毛片七仙女欲春2| 草草在线视频免费看| 亚洲av.av天堂| 亚州av有码| 自拍偷自拍亚洲精品老妇| 亚洲一区二区三区色噜噜| 国产av在哪里看| 亚洲自拍偷在线| 人人妻人人澡欧美一区二区| bbb黄色大片| 最后的刺客免费高清国语| 成熟少妇高潮喷水视频| 久久伊人香网站| 国产精品久久电影中文字幕| 国产美女午夜福利| 久久天躁狠狠躁夜夜2o2o| 两个人视频免费观看高清| 亚洲欧美日韩高清专用| 免费在线观看日本一区| 国产精品综合久久久久久久免费| 97超视频在线观看视频| 一区二区三区四区激情视频 | 国产精品,欧美在线| 成年人黄色毛片网站| 精品久久久久久久久久免费视频| 亚洲真实伦在线观看| 99国产精品一区二区蜜桃av| 久久久久精品国产欧美久久久| 一个人看的www免费观看视频| 精品久久久久久久人妻蜜臀av| 91字幕亚洲| 观看美女的网站| 日韩欧美在线二视频| 永久网站在线| 欧美一区二区亚洲| 免费一级毛片在线播放高清视频| 久久精品国产亚洲av香蕉五月| 亚洲第一欧美日韩一区二区三区| av国产免费在线观看| 色视频www国产| 亚洲精品在线观看二区| 性欧美人与动物交配| 嫩草影视91久久| 少妇人妻精品综合一区二区 | 90打野战视频偷拍视频| 亚洲一区二区三区不卡视频| 超碰av人人做人人爽久久| 精品久久久久久久人妻蜜臀av| 少妇的逼好多水| 99热这里只有是精品50| 97超视频在线观看视频| 脱女人内裤的视频| 国产亚洲欧美在线一区二区| 国产欧美日韩精品一区二区| 丰满乱子伦码专区| 色5月婷婷丁香| 我要搜黄色片| 老熟妇乱子伦视频在线观看| 最后的刺客免费高清国语| 熟女电影av网| 久久久国产成人免费| ponron亚洲| 在现免费观看毛片| 一区二区三区高清视频在线| 狂野欧美白嫩少妇大欣赏| 久久欧美精品欧美久久欧美| 男人狂女人下面高潮的视频| 亚洲成人中文字幕在线播放| 欧洲精品卡2卡3卡4卡5卡区| www.色视频.com| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产清高在天天线| 看免费av毛片| 亚洲无线在线观看| 国产伦一二天堂av在线观看| 免费大片18禁| 搞女人的毛片| 亚洲五月天丁香| av天堂中文字幕网| 午夜福利视频1000在线观看| 免费在线观看影片大全网站| 18禁黄网站禁片午夜丰满| 欧美+亚洲+日韩+国产| 在线看三级毛片| 日韩欧美精品v在线| 婷婷丁香在线五月| 亚洲av.av天堂| 淫妇啪啪啪对白视频| 有码 亚洲区| 午夜视频国产福利| 搡老妇女老女人老熟妇| 欧美精品啪啪一区二区三区| 最后的刺客免费高清国语| 不卡一级毛片| 18禁黄网站禁片午夜丰满| 免费看a级黄色片| 日本撒尿小便嘘嘘汇集6| 国产av在哪里看| 久久草成人影院| eeuss影院久久| 欧美国产日韩亚洲一区| 亚洲av免费在线观看| 国产欧美日韩精品一区二区| 日韩欧美免费精品| .国产精品久久| a在线观看视频网站| 人妻夜夜爽99麻豆av| 简卡轻食公司| 日韩成人在线观看一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 一进一出好大好爽视频| 国产色婷婷99| 露出奶头的视频| 老司机深夜福利视频在线观看| 国产精品久久久久久人妻精品电影| 国产精品98久久久久久宅男小说| 午夜福利视频1000在线观看| 久久热精品热| 欧美中文日本在线观看视频| 热99在线观看视频| 久久久久久久亚洲中文字幕 | 欧美激情久久久久久爽电影| 在线观看午夜福利视频| 国产爱豆传媒在线观看| 麻豆av噜噜一区二区三区| 18禁黄网站禁片免费观看直播| 国内久久婷婷六月综合欲色啪| 国产精品,欧美在线| 国产欧美日韩精品一区二区| 欧美日韩乱码在线| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成av人片免费观看| 亚洲真实伦在线观看| 中文字幕免费在线视频6| www.色视频.com| 99热精品在线国产| 18禁在线播放成人免费| 国产乱人伦免费视频| 成年人黄色毛片网站| 神马国产精品三级电影在线观看| 91麻豆av在线| 亚州av有码| 亚洲中文日韩欧美视频| 91久久精品国产一区二区成人| 日韩中文字幕欧美一区二区| 可以在线观看的亚洲视频| 精品久久久久久,| 国内久久婷婷六月综合欲色啪| 亚洲国产欧洲综合997久久,| 色5月婷婷丁香| 亚洲五月天丁香| 亚洲成人久久性| 老司机午夜十八禁免费视频| 3wmmmm亚洲av在线观看| 淫妇啪啪啪对白视频| 国产精品自产拍在线观看55亚洲| 看十八女毛片水多多多| 性色avwww在线观看| 在线观看av片永久免费下载| 一级av片app| 高清日韩中文字幕在线| 欧美高清成人免费视频www| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲精品久久久久久毛片| 别揉我奶头~嗯~啊~动态视频| 精品人妻1区二区| 色av中文字幕| 99热只有精品国产| 国产精品人妻久久久久久| 搡老妇女老女人老熟妇| 亚洲 欧美 日韩 在线 免费| 夜夜夜夜夜久久久久| 午夜a级毛片| 国产成人a区在线观看| 乱人视频在线观看| 日韩精品中文字幕看吧| 亚洲国产色片| 深夜a级毛片| 久久国产精品人妻蜜桃| 亚洲国产欧洲综合997久久,| 啦啦啦韩国在线观看视频| 日本精品一区二区三区蜜桃| 99久久成人亚洲精品观看| 波多野结衣高清无吗| 一个人观看的视频www高清免费观看| 国产精品乱码一区二三区的特点| 90打野战视频偷拍视频| 看片在线看免费视频| 免费高清视频大片| 免费在线观看日本一区| 哪里可以看免费的av片| 成人一区二区视频在线观看| 女生性感内裤真人,穿戴方法视频| 99久久精品一区二区三区| 久久久久久久午夜电影| 国产精品人妻久久久久久| 免费看美女性在线毛片视频| 国产激情偷乱视频一区二区| 国产黄a三级三级三级人| 天堂网av新在线| 亚洲av成人av| 中文字幕久久专区| 天堂动漫精品| 亚洲在线观看片| 亚洲国产欧洲综合997久久,| 夜夜躁狠狠躁天天躁| 亚洲精品色激情综合| 国产高清三级在线| 一二三四社区在线视频社区8| 淫妇啪啪啪对白视频| 亚洲内射少妇av| 看片在线看免费视频| 国产精品精品国产色婷婷| 国产探花极品一区二区| 久久久久久久精品吃奶| 欧美最新免费一区二区三区 | 国产成人a区在线观看| 九色成人免费人妻av| 色综合婷婷激情| or卡值多少钱| 亚洲无线观看免费| 直男gayav资源| www.色视频.com| 男女那种视频在线观看| 有码 亚洲区| 日日摸夜夜添夜夜添av毛片 | 欧美成人一区二区免费高清观看| 国产乱人视频| 亚洲国产精品久久男人天堂| 噜噜噜噜噜久久久久久91| 国产精品98久久久久久宅男小说| 免费在线观看亚洲国产| 一进一出好大好爽视频| 国产成+人综合+亚洲专区| 男人的好看免费观看在线视频| av在线观看视频网站免费| 久久人妻av系列| 搡老妇女老女人老熟妇| 成人毛片a级毛片在线播放| 欧美高清性xxxxhd video| 露出奶头的视频| 全区人妻精品视频| 欧美3d第一页| 99在线人妻在线中文字幕| 黄色配什么色好看| 国产成人av教育| 国产免费av片在线观看野外av| 91九色精品人成在线观看| 嫁个100分男人电影在线观看| 美女大奶头视频| 国产av麻豆久久久久久久| 精品久久久久久久末码| 村上凉子中文字幕在线| 精品国内亚洲2022精品成人| 欧美在线一区亚洲| 久久欧美精品欧美久久欧美| 男女那种视频在线观看| 欧美激情在线99| 日韩欧美国产一区二区入口| 十八禁国产超污无遮挡网站| 亚洲七黄色美女视频| 好男人电影高清在线观看| 内地一区二区视频在线| 欧美性猛交╳xxx乱大交人| 国内精品美女久久久久久| 国产精品久久电影中文字幕| 乱人视频在线观看| 国内精品美女久久久久久| 日韩欧美在线二视频| 欧美性感艳星| 日本黄大片高清| 日本三级黄在线观看| 舔av片在线| 国内精品美女久久久久久| 亚洲美女搞黄在线观看 | 亚洲国产欧美人成| 亚洲专区国产一区二区| 国产视频内射| 变态另类丝袜制服| 欧美区成人在线视频| 极品教师在线视频| 一个人免费在线观看的高清视频| 午夜福利在线观看免费完整高清在 | 国产精品一区二区性色av| 精品99又大又爽又粗少妇毛片 | 美女高潮的动态| 十八禁网站免费在线| 免费av不卡在线播放| 国产精品伦人一区二区| 丰满乱子伦码专区| 永久网站在线| 丰满人妻熟妇乱又伦精品不卡| 午夜亚洲福利在线播放|