• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum algorithm for neighborhood preserving embedding

    2022-06-29 08:53:18ShiJiePan潘世杰LinChunWan萬林春HaiLingLiu劉海玲YuSenWu吳宇森SuJuanQin秦素娟QiaoYanWen溫巧燕andFeiGao高飛
    Chinese Physics B 2022年6期
    關(guān)鍵詞:吳宇森劉海

    Shi-Jie Pan(潘世杰) Lin-Chun Wan(萬林春) Hai-Ling Liu(劉海玲) Yu-Sen Wu(吳宇森)Su-Juan Qin(秦素娟) Qiao-Yan Wen(溫巧燕) and Fei Gao(高飛)

    1State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China

    2State Key Laboratory of Cryptology,P.O.Box 5159,Beijing 100878,China

    Keywords: quantum algorithm,quantum machine learning,amplitude amplification

    1. Introduction

    Quantum computing theoretically demonstrates its computational advantages in solving certain problems compared with classical computing, such as the problem of factoring integers,[1]unstructured data searching problem,[2]and matrix computation problems.[3–5]In recent years,quantum machine learning has received widespread attention as a method that successfully combines classical machine learning with quantum physics. An important direction of quantum machine learning is to design quantum algorithms to accelerate classical machine learning, including data classification,[6–9]linear regression,[10–14]association rules mining,[15]and anomaly detection.[16]

    Dimensionality reduction (DR) is an important part of machine learning,which aims to reduce the dimensionality of the training data set while preserving the structure information of the data points as well as possible. The DR algorithm often serves as a preprocessing step in data mining and machine learning to reduce the time complexity of the algorithm and avoid a problem called “curse of dimensionality”.[17]Generally,The DR algorithms can be classified into two categories:the linear one and the nonlinear one. The most widely used linear DR algorithms include principal component analysis(PCA),[18]linear discriminant analysis(LDA),[19]and neighborhood preserving embedding (NPE),[20]while the typical nonlinear DR algorithm is locally linear embedding(LLE).[21]Here, we focus on NPE which can be regarded as the linear approximation of LLE. Unlike PCA that tries to preserve the global Euclidean structure, NPE aims at preserving the local manifold structure. Furthermore, NPE has a closed-form solution. Similar to other DR algorithms, NPE requires a large amount of computational resources in the big-data scenario because of its high complexity.

    In recent years, some researchers successfully combined DR algorithms with quantum techniques and obtained various degrees of speedups. Lloydet al.[22]proposed a quantum PCA algorithm to reveal the large eigenvectors in quantum form of an unknown low-rank density matrix,which achieves an exponential speedup on the dimension of the training data.Latter, Yuet al.[23]proposed a quantum algorithm that compresses training data based on PCA, and achieves an exponential speedup on the dimension over the classical algorithm.Conget al.[8]proposed a quantum LDA algorithm for classification with exponential speedups on the scales of the training data over the classical algorithm. Besides,there are some other quantum DR algorithms, including quantum A-optimal projection,[24,25]quantum kernel PCA[26]and quantum spectral regression.[27,28]

    For NPE,Lianget al.[29]proposed a variational quantum algorithm(VQA),called VQNPE,and expected to achieve an exponential speedup on dimensionalityn. NPE contains three steps,i.e., finding the nearest neighbors of each data point,constructing the weight matrix,and obtaining the transformation matrixA.VQNPE includes three quantum sub-algorithms with a VQA in the third sub-algorithm, corresponding to the three steps of NPE.However,VQNPE has two drawbacks: (i)The algorithm is incomplete. As the authors pointed out,it is not known how to obtain the input of the third sub-algorithm from the output of the second one. (ii) It lacks a provable quantum advantage.Since the advantage of VQA has not been proved rigorously yet(generally,we say that VQA has potential advantage[30,31]),it is hard to examine the speedups of the third sub-algorithm.

    In this paper, we propose a complete quantum NPE algorithm with rigorous complexity analysis. Our quantum algorithm also consists of three quantum sub-algorithms, corresponding to the three steps of the classical NPE. The first one is finding the neighbors of each data point by quantum amplitude estimation and quantum amplitude amplification.By storing the information of neighbors in a data structure of QRAM,[32,33]we obtain two oracles. With these oracles, the second one reveals the classical information of the weight matrixWcolumn by column by quantum matrix inversion technique. In the third one,we use a quantum version of the spectral regression (SR) method to get the transformation matrixA. Specifically,we obtain thed(dis the dimension of the low dimensional space) bottom nonzero eigenvectors of the matrixM=(I-W)T(I-W) at first, and then perform several times of the quantum ridge regression algorithm to obtainA.As a conclusion,under certain conditions,our algorithm has a polynomial speedup on the number of data pointsmand exponential speedup on the dimension of the data pointsnover the classical NPE algorithm, and has a significant speedup compared with VQNPE.

    The rest of this paper is organized as follows. In Section 2, we review the classical NPE algorithm. In Section 3,we propose our quantum NPE algorithm and analyze the complexity. Specifically,in Subsection 3.1,we propose a quantum algorithm to find the nearest neighbors of each data point and analyze the complexity.In Subsection 3.2,we propose a quantum algorithm to obtain the information of the weight matrixWand analyze the complexity. The quantum algorithm for computing the transformation matrixAis proposed in Subsection 3.3, together with the complexity analysis. The algorithm procedures and the complexity is concluded in Subsection 3.4, along with a comparison with VQNPE.The conclusion is given in Section 4.

    2. Review of the classical NPE

    In this section, we briefly review the classical NPE.[20,21,34]

    SupposeX=(x0,x1,...,xm-1)Tis a data matrix with dimensionm×n,wherenis the dimension ofxiandmis the number of data points.The objective of NPE is to find a matrixA(called transformation matrix) embedding the data matrix into a low-dimensional space (assume the embedding results isy0,y1,...,ym-1,yi ∈Rdandd ?n, we haveyi=ATxi,A ∈Rn×d)that the linear relation between each data point and its nearest neighbors is best preserved. Specifically, suppose the nearest neighbors ofxiarexj,xk,andxl,thenxican be reconstructed(or approximately reconstructed)by linear combination ofxj,xk,xl,that is,

    whereWij,Wik, andWilare weights that summarize the contribution ofxj,xk, andxlto the reconstruction ofxi. NPE trys to preserve the linear relations in Eq. (1) in the lowdimensional embedding.

    NPE consists of the following three steps.

    Step 1 Find the nearest neighbors of each data point.There are two most common techniques to find the nearest neighbors. One isk-nearest neighbors algorithm (kNN) with a fixedk,and the other is choosing neighbors within a ball of fixed radiusrbased on Euclidean distance for each data point.

    Step 2 Construct the weight matrixW ∈Rm×m,where the(i+1)-th row and(j+1)-th column element isWi j. Suppose the set of the nearest neighbors of the data pointxiis denoted asQi,then the construction ofWis to optimize the following objective function:

    Note that the data pointxiis only reconstructed by its nearest neighbors,i.e.,the elements inQi. Ifxj/∈Qi,we setWij=0.We should mention that‖·‖is theL2norm of a vector or the spectral norm of a matrix in this paper. The above optimization problem has a closed form solution. LetC(i)denote anm×mmatrix related toxi, called neighborhood correlation matrix,where

    where 1=(1,1,...,1)T.

    Step 3 Compute the transformation matrixA. To best preserve the linear relations in the low-dimensional space,the optimization problem is designed as follows:

    whereMis a sparse matrix that equates (I-W)T(I-W).Then the bottomdnonzero eigenvectorsa0,a1,...,ad-1of the above eigen-problem with corresponding eigenvalues 0<λ0≤λ1≤...≤λd-1yieldA=(a0,a1,...,ad-1).

    There are many different methods to solve the eigenvalue problem in Eq.(6). Here we use the method mentioned in Refs. [35,36], called spectral regression (SR) method.The eigenvalue problem in Eq. (6) can be solved by two steps according to the SR method. (I) Solve the following eigen-problem to get the bottom non-zero eigenvectorsz0,z1,...,zd-1:

    wherezijis thejelement ofzi,α ≥0 is a constant to control the penalty of the norm ofa.

    As a conclusion,the detailed procedures of NPE are given in Algorithm 1.

    Algorithm 1 The procedure of NPE Input: The data set X =(x0,x1,...,xm-1)T;Output: The transformation matrix A=(a0,a1,...,ad-1);1: Find the set of nearest neighbors Qi of each data point i;2: Construct C(i) by Eq.(3)for i=0,1,...,m-1;3: State Obtain W by Eq.(4);4: Decompose the matrix M=(I-W)T(I-W)to get the bottom d nonzero eigenvectors z0,z1,...,zd-1;5: Compute ai=(XTX+αI)-1 XTzi for i=0,1,...,d-1;6: return A.

    As for the time complexity of NPE algorithm,the procedure to find theknearest neighbors of each data point has complexityO(mnlog2klog2m) by using BallTree.[27]The complexity to construct the weight matrix W isO(mnk3) (generally,k ?m). And the procedure to get the transformation matrixAhas complexityO(dm2). Thus the overall complexity of NPE algorithm isO(mnk3+dm2).

    3. Quantum algorithm for NPE

    In this section, we introduce our quantum algorithm for NPE.The quantum algorithm can be divided into three parts,corresponding to the three parts of the classical algorithm. We give a quantum algorithm to find the nearest neighbors algorithm in Subsection 3.1,a quantum algorithm to construct the weight matrixWin Subsection 3.2 and a quantum algorithm to compute the transformation matrixAin Subsection 3.3. In Subsection 3.4, we conclude the complexity of our quantum algorithm and make a comparison with VQNPE.

    3.1. Quantum algorithm to find the nearest neighbors

    Assume that the data matrixX=(x0,x1,...,xm-1)Tis stored in a structured QRAM[32,33]which allows the following mappings to be performed in timeO[polylog(mn)]as given below:

    whereXi·is thei-th row ofX,i.e.,xi.

    3.1.1. Algorithm details

    We adopt the quantum amplitude estimation[38]and amplitude amplification[2,38]to get the neighbors ofxi. The algorithm can be decomposed into the following two stages:

    Stage 1 Prepare the following quantum state by quantum amplitude estimation,

    3.2. Quantum algorithm to obtain the weight matrix W

    3.3. The quantum algorithm to compute the transformation matrix A

    We have obtained the classical information ofWin the above algorithm. Thus we can store the information of the matrixD=I-Win a data structure that allows the following two mappings:

    3.4. The total complexity and discussion

    The procedure of the quantum NPE algorithm can be summarized as follows:

    Algorithm 2 The procedure of quantum NPE Input: The data matrix X is stored in a data structure;Output: The quantum states|a0〉,|a1〉,...,|ad-1〉which represent each row of matrix A;1: Prepare 1 m ∑m-1i,j=0|i〉|j〉|■K m2〉;2: Prepare 1■K ∑m-1i=0 |i〉∑xj∈Qi|j〉;3: Measure the output in computational basis for several times to obtain the index j of the neighbors of xi for i=0,1,...,m-1;4: Construct oracle UB and VB;5: Prepare|ψ(i)〉to obtain ρC(i);6: Prepare|Wi〉=ρ-1 C(i)|Bi〉for i=0,1,...,m-1;7: Perform quantum state tomography on|Wi〉to get the information of Wi for i=0,1,...,m-1;8: Perform quantum singular value estimation to get|ψ1〉;9: Use the quantum algorithm for finding the minimum to find the bottom d nonzero eigenvalues and eigenvectors of M;10: Perform quantum ridge regression to get|aj〉for j=0,1,...,d-1.11: return|a0〉,|a1〉,...,|ad-1〉.

    The quantum algorithm can be divided into three subalgorithms and the complexity of each sub-algorithm can be seen in Table 1. The algorithms 1–3 in Table 1 are the quantum algorithm to find the nearest neighbors, the algorithm to obtain the weight matrixWand the algorithm for embedding,respectively.h=maxi‖xi‖,k=Θ(k(i)),k(i)is the number of neighbors ofxi,mis the number of training data points,nis the dimension of the data points,εis the error of the algorithm,ε0=mini j‖xi-xj‖,kmax=maxi k(i),κmax=maxi κ(i),κ(i)is the condition number of the neighborhood correlation matrixC(i),dis the dimension of the low-dimensional space,κis the condition number of train data matrixX. Putting it all together,the complexity of the quantum NPE algorithm is

    Table 1. The time complexity of the three sub-algorithms of the quantum NPE.

    Since the classical algorithm have complexityO(mnk3+dm2), our algorithm have a polynomial speedup onmand an exponential speedup onnwhen the factorsd,h,kmax,κmax,ε,ε0=O[polylog(mn)]. We should mention that the output of the quantum NPE algorithm is a matrixA=(|a0〉,|a1〉,...,|ad-1〉) with each column outputted as a quantum state.

    Our algorithm has two advantages over VQNPE.(i)Our algorithm is complete while VQNPE is not. In Ref.[29], the authors pointed out that it is not known how to obtain the input of the third sub-algorithm from the output of the second sub-algorithm. Actually,if just consider the completeness,we can use a VQA technique shown in Ref.[52]after our second sub-algorithm. (ii) The complexity of our algorithm is less than the complexity of VQNPE,even without considering the complexity of the third sub-algorithm of VQNPE.Specifically,The complexity of the first sub-algorithm isO(m2ε2log2n),and the complexity of the second sub-algorithm isΩ(poly(n))(we should mention that the complexity showed here are different with the original paper,see Appendix B for details),while the total complexity of our algorithm isO(m1.5polylog(mn))(only consider the main parameters). The advantage of our first sub-algorithm is mainly coming from the parallel estimation of the distance of each pair of data points. As for the second sub-algorithm, Lianget al. adopted the QSVD to get the|Wi〉. However,the eigenvalues ofAiare too small to satisfy the conditions to get an efficient algorithm,which causes the complexities to have polynomial dependence onn. We use a totally different algorithm to get the|Wi〉and the complexity analysis shows that our algorithm has complexity polylogarithmic dependence onn. As for the third sub-algorithm,it is hard to exam the complexity of the VQA of VQNPE, while our sub-algorithm has a rigorous complexity analysis.

    Also,we notice that Chenet al.[55]proved a lower bound of quantum ridge regression algorithm. However, since their objective is to return a classical vector as the output of ridge regression while our algorithm(the ridge regression algorithm in the third sub-algorithm)generates a solution vector as a quantum state,the lower bound would not influence the complexity bound of our algorithm.

    4. Conclusion

    In this paper, we proposed a complete quantum NPE algorithm with rigorous complexity analysis.It was showed that whend,h,kmax,κmax,ε,ε0=O[polylog(mn)], our algorithm has exponential acceleration onnand polynomial acceleration onmover the classical NPE. Also, our algorithm has a significant speedup compared with VQNPE.

    The Lemma 2 proposed an efficient method to append a quantum state generated by subtracting two vectors parallelly, which might have a wide range of applications in other quantum algorithms. Also, in the proof of the Lemma 2, we proposed a technique called parallel amplitude amplification,which may be of independent interest.We hope the techniques used in our algorithm could inspire more DR techniques to get a quantum advantage,especially the nonlinear DR techniques.We will explore the possibility in the future.

    Acknowledgements

    We thank Chao-Hua Yu for fruitful discussion and the anonymous referees for their helpful comments.

    Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A01) and the National Natural Science Foundation of China (Grant Nos.61972048 and 61976024).

    Appendix A:The proof of Lemma 2 The parallel quantum amplitude amplification consists of three steps:

    猜你喜歡
    吳宇森劉海
    以小見大 以情動(dòng)人
    Establish a Three-dimensional Fluorescent Fingerprint Database of Traditional Chinese Medicines
    Hubbard model on an anisotropic checkerboard lattice at finite temperatures:Magnetic and metal–insulator transitions
    學(xué)生天地(2019年36期)2019-08-25 08:59:52
    我請你吃雪糕
    做人與處世(2018年3期)2018-04-27 10:10:38
    見誼忘利
    做人與處世(2018年3期)2018-04-27 10:10:38
    吳宇森版《追捕》定檔11·24
    尋找那些鏡頭背后的英雄 實(shí)拍王吳宇森(John Woo)
    只靠劉海就能實(shí)現(xiàn)的超簡單變身方法!
    吳宇森的光影童年
    国产成+人综合+亚洲专区| 欧美大码av| 亚洲av日韩在线播放| 他把我摸到了高潮在线观看 | 亚洲熟女毛片儿| √禁漫天堂资源中文www| 狠狠狠狠99中文字幕| 日韩欧美三级三区| 午夜两性在线视频| 国产黄频视频在线观看| 日韩大码丰满熟妇| 99riav亚洲国产免费| 欧美黑人欧美精品刺激| 蜜桃国产av成人99| 亚洲精品国产色婷婷电影| 中文字幕另类日韩欧美亚洲嫩草| 久久天堂一区二区三区四区| 亚洲国产毛片av蜜桃av| 999久久久精品免费观看国产| 超碰成人久久| 黄片播放在线免费| 精品午夜福利视频在线观看一区 | 日韩欧美一区二区三区在线观看 | 精品人妻1区二区| 涩涩av久久男人的天堂| 中文字幕人妻丝袜一区二区| 黑丝袜美女国产一区| 夜夜爽天天搞| 精品熟女少妇八av免费久了| 制服诱惑二区| 50天的宝宝边吃奶边哭怎么回事| 日韩免费高清中文字幕av| 国产精品1区2区在线观看. | 两个人看的免费小视频| 91九色精品人成在线观看| 国产老妇伦熟女老妇高清| 岛国在线观看网站| 人人妻,人人澡人人爽秒播| 日韩欧美一区视频在线观看| 99在线人妻在线中文字幕 | 日韩人妻精品一区2区三区| 1024视频免费在线观看| 一级毛片电影观看| 91九色精品人成在线观看| 国产亚洲av高清不卡| 亚洲av成人不卡在线观看播放网| 欧美黑人欧美精品刺激| 亚洲av欧美aⅴ国产| 日本wwww免费看| 国产成人啪精品午夜网站| 亚洲欧美日韩高清在线视频 | 黄片小视频在线播放| 欧美日韩中文字幕国产精品一区二区三区 | av不卡在线播放| 色老头精品视频在线观看| 色老头精品视频在线观看| 国产高清视频在线播放一区| 另类亚洲欧美激情| 日本a在线网址| 成人黄色视频免费在线看| 国产男女超爽视频在线观看| 日本av免费视频播放| 在线av久久热| 一区二区三区国产精品乱码| 超碰97精品在线观看| 嫩草影视91久久| 国产淫语在线视频| 国产精品.久久久| 久久久国产成人免费| 色综合欧美亚洲国产小说| 怎么达到女性高潮| 丰满少妇做爰视频| 女人被躁到高潮嗷嗷叫费观| 黄片小视频在线播放| 亚洲av电影在线进入| 夜夜爽天天搞| 操美女的视频在线观看| 啦啦啦视频在线资源免费观看| 热99国产精品久久久久久7| 老司机靠b影院| 日韩精品免费视频一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 久久这里只有精品19| 正在播放国产对白刺激| 久久精品亚洲熟妇少妇任你| 欧美+亚洲+日韩+国产| 久久国产精品男人的天堂亚洲| 亚洲成人国产一区在线观看| 亚洲av日韩在线播放| 视频区图区小说| www.熟女人妻精品国产| www日本在线高清视频| 国产精品久久久久久精品电影小说| 精品亚洲乱码少妇综合久久| 国产欧美日韩精品亚洲av| 国产成人精品无人区| 视频区图区小说| 91老司机精品| 一级a爱视频在线免费观看| 老熟妇仑乱视频hdxx| 午夜福利一区二区在线看| 一个人免费在线观看的高清视频| 在线观看免费午夜福利视频| 9色porny在线观看| www日本在线高清视频| 日韩精品免费视频一区二区三区| 国产成人精品无人区| 色婷婷av一区二区三区视频| 99国产精品99久久久久| 99国产极品粉嫩在线观看| 国产精品久久久人人做人人爽| 亚洲九九香蕉| 亚洲免费av在线视频| 精品久久久久久电影网| 9191精品国产免费久久| 久久久久久人人人人人| 欧美激情高清一区二区三区| 男女高潮啪啪啪动态图| 下体分泌物呈黄色| 久久久水蜜桃国产精品网| 69av精品久久久久久 | 国产av一区二区精品久久| 精品国产一区二区三区久久久樱花| 一级片免费观看大全| 国产精品一区二区在线不卡| 黑人巨大精品欧美一区二区mp4| 久久久国产欧美日韩av| 18禁美女被吸乳视频| 久9热在线精品视频| 99热国产这里只有精品6| 亚洲精品av麻豆狂野| 国产亚洲av高清不卡| 男女无遮挡免费网站观看| 免费高清在线观看日韩| 午夜精品久久久久久毛片777| 2018国产大陆天天弄谢| 国产精品 欧美亚洲| 精品高清国产在线一区| 亚洲精品在线观看二区| 啦啦啦 在线观看视频| 黄色片一级片一级黄色片| 欧美久久黑人一区二区| 久热爱精品视频在线9| 日本欧美视频一区| 亚洲七黄色美女视频| 国产欧美日韩一区二区精品| 黄色怎么调成土黄色| 一级a爱视频在线免费观看| 巨乳人妻的诱惑在线观看| 性高湖久久久久久久久免费观看| 国产熟女午夜一区二区三区| 国产高清国产精品国产三级| av线在线观看网站| 久久国产精品大桥未久av| 女警被强在线播放| 国产精品一区二区在线不卡| 国产深夜福利视频在线观看| 国产欧美亚洲国产| 99热国产这里只有精品6| 日本av手机在线免费观看| 国产一区二区三区综合在线观看| videosex国产| 丝袜美腿诱惑在线| 悠悠久久av| 久久精品国产综合久久久| 欧美国产精品va在线观看不卡| 啦啦啦视频在线资源免费观看| 咕卡用的链子| 热99国产精品久久久久久7| 超碰成人久久| av免费在线观看网站| 国产精品亚洲一级av第二区| 午夜精品国产一区二区电影| 黑人巨大精品欧美一区二区蜜桃| 日韩成人在线观看一区二区三区| 精品国产一区二区三区四区第35| 波多野结衣av一区二区av| 最近最新中文字幕大全电影3 | 色婷婷av一区二区三区视频| 国产成人精品久久二区二区免费| 天天躁夜夜躁狠狠躁躁| 51午夜福利影视在线观看| 成人国语在线视频| 欧美性长视频在线观看| 涩涩av久久男人的天堂| 免费人妻精品一区二区三区视频| 久久久久精品国产欧美久久久| 手机成人av网站| 国产淫语在线视频| 十八禁人妻一区二区| 久久国产亚洲av麻豆专区| 免费在线观看影片大全网站| 国产精品九九99| 中文字幕人妻熟女乱码| 精品少妇久久久久久888优播| 亚洲成人免费电影在线观看| 亚洲av美国av| 欧美在线一区亚洲| 国产高清videossex| 久久精品亚洲熟妇少妇任你| 国产欧美亚洲国产| 国产区一区二久久| 亚洲午夜精品一区,二区,三区| 久久久国产欧美日韩av| 亚洲精品国产精品久久久不卡| 精品久久久久久电影网| 搡老熟女国产l中国老女人| 老熟女久久久| 一夜夜www| 国产单亲对白刺激| 人人澡人人妻人| 午夜免费成人在线视频| 亚洲av第一区精品v没综合| 婷婷丁香在线五月| 亚洲专区国产一区二区| 国产成人系列免费观看| 欧美精品一区二区大全| 50天的宝宝边吃奶边哭怎么回事| 激情视频va一区二区三区| 亚洲精品久久成人aⅴ小说| 在线看a的网站| 婷婷丁香在线五月| 在线观看www视频免费| 高清视频免费观看一区二区| 一边摸一边抽搐一进一小说 | 中亚洲国语对白在线视频| 成年女人毛片免费观看观看9 | 国产麻豆69| 99国产精品99久久久久| 日本欧美视频一区| 一区二区三区精品91| 成人三级做爰电影| 国产深夜福利视频在线观看| 国产免费福利视频在线观看| 2018国产大陆天天弄谢| 亚洲精品一卡2卡三卡4卡5卡| 人妻 亚洲 视频| 香蕉丝袜av| 老司机午夜福利在线观看视频 | 热re99久久精品国产66热6| 欧美激情 高清一区二区三区| 日本av免费视频播放| 50天的宝宝边吃奶边哭怎么回事| 在线亚洲精品国产二区图片欧美| 一级片免费观看大全| 国产精品一区二区在线不卡| 老汉色∧v一级毛片| 成人免费观看视频高清| 成人黄色视频免费在线看| 亚洲综合色网址| 国产精品久久久久久精品电影小说| 91成人精品电影| 亚洲成人国产一区在线观看| 男女之事视频高清在线观看| 久久免费观看电影| 无人区码免费观看不卡 | 一区二区三区乱码不卡18| 国产精品1区2区在线观看. | 午夜福利在线观看吧| 日韩有码中文字幕| 大片电影免费在线观看免费| 久久国产亚洲av麻豆专区| 一边摸一边抽搐一进一出视频| 亚洲美女黄片视频| 国产精品免费一区二区三区在线 | 老司机午夜十八禁免费视频| 欧美精品亚洲一区二区| 人妻一区二区av| 自拍欧美九色日韩亚洲蝌蚪91| 成年版毛片免费区| 久久天堂一区二区三区四区| 日韩有码中文字幕| 国产亚洲av高清不卡| 亚洲精品美女久久av网站| 亚洲伊人久久精品综合| 免费日韩欧美在线观看| 巨乳人妻的诱惑在线观看| 日韩人妻精品一区2区三区| 最近最新中文字幕大全电影3 | 欧美乱码精品一区二区三区| 精品视频人人做人人爽| 中国美女看黄片| 在线观看舔阴道视频| 精品视频人人做人人爽| 国产av又大| xxxhd国产人妻xxx| 亚洲第一青青草原| 国产区一区二久久| 成人特级黄色片久久久久久久 | 99热网站在线观看| 9热在线视频观看99| 午夜福利一区二区在线看| 久久ye,这里只有精品| 成人特级黄色片久久久久久久 | 如日韩欧美国产精品一区二区三区| 美女福利国产在线| 国产淫语在线视频| 日韩有码中文字幕| 精品少妇内射三级| 亚洲美女黄片视频| 大香蕉久久成人网| 丝袜美足系列| 91精品三级在线观看| 操美女的视频在线观看| 欧美成人午夜精品| 国产伦理片在线播放av一区| 一级片'在线观看视频| 精品国产亚洲在线| 免费高清在线观看日韩| 一级毛片女人18水好多| 久久狼人影院| 18禁黄网站禁片午夜丰满| 香蕉久久夜色| 精品一品国产午夜福利视频| 中文字幕人妻熟女乱码| 老司机亚洲免费影院| 精品久久久久久久毛片微露脸| 大码成人一级视频| 老汉色∧v一级毛片| 日韩欧美三级三区| 黄色丝袜av网址大全| 国产不卡一卡二| 国产av又大| 日本av手机在线免费观看| 亚洲欧美激情在线| 日韩欧美三级三区| 亚洲久久久国产精品| h视频一区二区三区| 国产一区二区三区在线臀色熟女 | 久久青草综合色| 午夜两性在线视频| 国产免费av片在线观看野外av| 在线看a的网站| 亚洲成国产人片在线观看| 国产免费视频播放在线视频| 午夜视频精品福利| 午夜福利免费观看在线| 99re6热这里在线精品视频| 国产男女超爽视频在线观看| 99热网站在线观看| 黑人欧美特级aaaaaa片| 岛国在线观看网站| 日韩制服丝袜自拍偷拍| www.999成人在线观看| 1024视频免费在线观看| 法律面前人人平等表现在哪些方面| 一本久久精品| 中文字幕制服av| 美女高潮喷水抽搐中文字幕| 亚洲一区二区三区欧美精品| 老司机福利观看| 国产成+人综合+亚洲专区| 国产野战对白在线观看| 国产在线视频一区二区| 久久久国产成人免费| 国产99久久九九免费精品| 超碰97精品在线观看| 中文字幕人妻丝袜一区二区| 久久久精品国产亚洲av高清涩受| 日韩免费高清中文字幕av| 久久久精品免费免费高清| av福利片在线| 国产精品免费视频内射| 大陆偷拍与自拍| 国产成人啪精品午夜网站| 精品一区二区三卡| 99热国产这里只有精品6| 777久久人妻少妇嫩草av网站| 欧美日韩中文字幕国产精品一区二区三区 | 精品一品国产午夜福利视频| 精品久久久久久电影网| 国产日韩欧美视频二区| 99精国产麻豆久久婷婷| 午夜福利视频精品| 欧美黄色片欧美黄色片| 首页视频小说图片口味搜索| 蜜桃国产av成人99| 制服诱惑二区| 9热在线视频观看99| 日韩熟女老妇一区二区性免费视频| 亚洲欧美日韩高清在线视频 | 久久精品国产亚洲av高清一级| 国产成+人综合+亚洲专区| 亚洲久久久国产精品| 大片电影免费在线观看免费| 国产在线一区二区三区精| 欧美人与性动交α欧美精品济南到| 免费日韩欧美在线观看| 成人免费观看视频高清| 久久精品国产综合久久久| 久久av网站| 少妇的丰满在线观看| 久久久久久免费高清国产稀缺| 久久九九热精品免费| 国产在视频线精品| 免费在线观看完整版高清| 波多野结衣一区麻豆| 国产精品久久久久成人av| 国产午夜精品久久久久久| 成人国语在线视频| 国产在线观看jvid| 777米奇影视久久| 欧美精品高潮呻吟av久久| aaaaa片日本免费| 少妇精品久久久久久久| 91麻豆av在线| 精品视频人人做人人爽| 午夜成年电影在线免费观看| 国产91精品成人一区二区三区 | 精品人妻熟女毛片av久久网站| 怎么达到女性高潮| 亚洲中文av在线| 精品少妇内射三级| 中文字幕人妻丝袜制服| av免费在线观看网站| 午夜福利在线观看吧| 日韩一区二区三区影片| 免费观看a级毛片全部| 丝袜在线中文字幕| 久久这里只有精品19| 97在线人人人人妻| 亚洲精品乱久久久久久| h视频一区二区三区| av一本久久久久| a级片在线免费高清观看视频| 国产精品一区二区在线不卡| 国产一区二区三区综合在线观看| 黄色毛片三级朝国网站| 90打野战视频偷拍视频| 欧美 亚洲 国产 日韩一| 免费女性裸体啪啪无遮挡网站| 色婷婷久久久亚洲欧美| 一本一本久久a久久精品综合妖精| 成人影院久久| 男女无遮挡免费网站观看| 亚洲人成电影免费在线| 亚洲精品成人av观看孕妇| 一区福利在线观看| 亚洲免费av在线视频| 啦啦啦中文免费视频观看日本| 亚洲专区国产一区二区| 亚洲男人天堂网一区| 汤姆久久久久久久影院中文字幕| 亚洲情色 制服丝袜| 国产成+人综合+亚洲专区| 国产精品麻豆人妻色哟哟久久| 免费观看人在逋| 精品久久久久久电影网| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产看品久久| 久久精品成人免费网站| 国产有黄有色有爽视频| 18禁裸乳无遮挡动漫免费视频| 另类精品久久| 免费看十八禁软件| 国产精品98久久久久久宅男小说| 肉色欧美久久久久久久蜜桃| 国产精品1区2区在线观看. | 国产精品影院久久| tocl精华| 精品人妻1区二区| 亚洲人成电影免费在线| 免费在线观看影片大全网站| av片东京热男人的天堂| 韩国精品一区二区三区| 99精品久久久久人妻精品| 亚洲精品一卡2卡三卡4卡5卡| 国产精品.久久久| 99精品在免费线老司机午夜| 少妇精品久久久久久久| 国产极品粉嫩免费观看在线| 欧美成人午夜精品| 欧美亚洲 丝袜 人妻 在线| 九色亚洲精品在线播放| 国产av精品麻豆| 色老头精品视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 欧美乱码精品一区二区三区| 成人免费观看视频高清| 久久久久网色| 亚洲一码二码三码区别大吗| 香蕉久久夜色| 俄罗斯特黄特色一大片| 国产精品熟女久久久久浪| 中文字幕人妻丝袜制服| 精品国产国语对白av| 久久亚洲真实| 欧美精品亚洲一区二区| 亚洲国产欧美一区二区综合| 亚洲va日本ⅴa欧美va伊人久久| 黄频高清免费视频| 中文字幕精品免费在线观看视频| 亚洲人成77777在线视频| 亚洲色图av天堂| cao死你这个sao货| 国产精品久久久久成人av| 欧美日韩成人在线一区二区| 久久国产精品影院| 中亚洲国语对白在线视频| 搡老熟女国产l中国老女人| 久久国产精品大桥未久av| 丝袜美足系列| 久久久久精品人妻al黑| 99国产精品一区二区三区| 免费女性裸体啪啪无遮挡网站| av电影中文网址| 国产一区二区激情短视频| 亚洲色图综合在线观看| 国产在线免费精品| 精品国内亚洲2022精品成人 | 欧美激情极品国产一区二区三区| 极品人妻少妇av视频| 激情视频va一区二区三区| 一区二区三区精品91| 欧美日韩av久久| 老鸭窝网址在线观看| 又黄又粗又硬又大视频| 亚洲一码二码三码区别大吗| 99精品在免费线老司机午夜| 亚洲全国av大片| 在线看a的网站| 黄色怎么调成土黄色| 丁香六月天网| 国产精品偷伦视频观看了| 黄色a级毛片大全视频| 日本欧美视频一区| 成人黄色视频免费在线看| 天天躁日日躁夜夜躁夜夜| 国产精品久久久人人做人人爽| 国产精品美女特级片免费视频播放器 | 丁香欧美五月| 日本av免费视频播放| 久久精品亚洲熟妇少妇任你| 久久毛片免费看一区二区三区| 美女主播在线视频| 亚洲国产av新网站| 亚洲精品成人av观看孕妇| 女人久久www免费人成看片| 可以免费在线观看a视频的电影网站| 18禁裸乳无遮挡动漫免费视频| 久热爱精品视频在线9| 亚洲成av片中文字幕在线观看| 两人在一起打扑克的视频| 亚洲精品成人av观看孕妇| 黑丝袜美女国产一区| 丰满迷人的少妇在线观看| 脱女人内裤的视频| 少妇精品久久久久久久| 波多野结衣一区麻豆| 亚洲色图av天堂| 国产一区二区三区综合在线观看| 国产激情久久老熟女| 国产精品亚洲一级av第二区| 久久人妻福利社区极品人妻图片| 男女边摸边吃奶| 真人做人爱边吃奶动态| 国产av一区二区精品久久| 国产高清激情床上av| 欧美精品高潮呻吟av久久| 精品人妻在线不人妻| 国产高清激情床上av| 91麻豆av在线| 久久久欧美国产精品| 欧美另类亚洲清纯唯美| 亚洲第一欧美日韩一区二区三区 | 国产国语露脸激情在线看| 国产一区二区三区视频了| 母亲3免费完整高清在线观看| 岛国在线观看网站| 久久精品91无色码中文字幕| 757午夜福利合集在线观看| 少妇被粗大的猛进出69影院| 欧美精品av麻豆av| 91成人精品电影| 亚洲国产av新网站| 极品少妇高潮喷水抽搐| 久久人妻av系列| 久久国产精品男人的天堂亚洲| 免费在线观看日本一区| 日韩视频一区二区在线观看| 制服人妻中文乱码| 午夜福利视频在线观看免费| 久久亚洲真实| 三级毛片av免费| 国产国语露脸激情在线看| 成年人午夜在线观看视频| 蜜桃在线观看..| 老司机影院毛片| 亚洲avbb在线观看| 国产精品98久久久久久宅男小说| 99国产极品粉嫩在线观看| 久久久欧美国产精品| 久久毛片免费看一区二区三区| 欧美日韩一级在线毛片| 久热爱精品视频在线9| 精品免费久久久久久久清纯 | 色在线成人网| 亚洲人成电影免费在线| 九色亚洲精品在线播放| 精品国产亚洲在线| 日韩有码中文字幕| 一区二区三区激情视频| 欧美黄色片欧美黄色片| 亚洲性夜色夜夜综合| 久久青草综合色| 国产精品自产拍在线观看55亚洲 | 国产成人欧美在线观看 | 成年人黄色毛片网站| 欧美在线黄色| av国产精品久久久久影院| 中国美女看黄片| 搡老岳熟女国产| 久久天躁狠狠躁夜夜2o2o| www.自偷自拍.com| 久久国产精品人妻蜜桃|