• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors

    2022-06-29 08:55:40YueLi李月ZengqiangChen陳增強(qiáng)MingfengYuan袁明峰andShijianCang倉詩建
    Chinese Physics B 2022年6期

    Yue Li(李月) Zengqiang Chen(陳增強(qiáng)) Mingfeng Yuan(袁明峰) and Shijian Cang(倉詩建)

    1College of Artificial Intelligence,Nankai University,Tianjin 300350,China

    2Department of Earth and Space Science and Engineering,York University,4700 Keele St,Toronto M3J 1P3,Canada

    3Department of Product Design,Tianjin University of Science and Technology,Tianjin 300222,China

    Keywords: conservative flows, dissipative attractors, coexisting phenomena, fold-Hopf bifurcation, class-B laser chaotic system

    1. Introduction

    According to the conservative property of phase volume,the phase trajectories of the system can be divided into conservative flows (phase volume is conservative) and dissipative flows (phase volume is contractive). Since Lorenz proposed the Lorenz system in 1963,[1]dissipative systems have been extensively studied.[2–7]In recent years,with the further exploration of chaos theory, conservative flows have gradually become a research hotspot in the nonlinear field. For example, based on the generalized Hamiltonian system theory, the Cang team proposed a class of multi-cluster conservative chaotic systems (3D and 4D) with complex topological structures,[8–10]and the Dong team proposed some high-dimensional Hamiltonian conservative chaotic systems with multistability and designed a pseudo-random number generator.[11]In addition,the Qi team proposed some Hamiltonian conservative chaotic systems based on 4D Euler equations,and analyzed the reason why these systems can produce conservative chaos from the perspective of energy.[12,13]From the above introduction, it can be seen that the phase volume of the flows generated by the existing system is mostly single(conservative or dissipative). Based on this,this paper studies a class-B laser system, which can realize the transition from conservative flows to dissipative flows.

    A laser is a device that emits light through a process of optical amplification or oscillation based on the stimulated emission of electromagnetic radiation.[14]In the 1980s,some scholars successively studied the class-B laser system with injected signal, and discovered chaos, Hopf bifurcation, and other dynamical behaviors.[15–17]In recent years,there are some scholars studying this system. Such the paper which analyzed the dynamic characteristics of a class-B laser model,it also found chaos by variable delayed optoelectronic feedback;[18]Wanget al.studied the Hopf bifurcation and double Hopf bifurcation phenomena of the class-B laser system;[14]Similarly,Li also investigated the double Hopf bifurcation of a class-B laser system.[19]However, the current researches on the class-B laser system are still subject to further exploration of chaos and Hopf bifurcation phenomena,and its internal dynamic characteristics had not been discovered yet. Therefore, this paper conducts deeper research on the class-B laser system. The contributions of this paper are as follows:

    (i)Even if the system structure is not changed,the class-B laser system realizes the transition from conservative flows to dissipative attractors(period,quasi-period and chaos);

    (ii) When the injected signal is not zero, there are two coexisting phenomena (period and period, period and quasiperiod)in the class-B laser system;

    (iii) The class-B laser system has fold-Hopf bifurcation which is proved by the theoretical analysis and numerical simulation.

    The rest of this paper is divided into six sections as follows. Section 2 introduces a class-B laser system and transforms this system into the generalized Hamiltonian system form. Section 3 analyzes the equilibria characteristics of the class-B laser system. In Section 4,the transition of the class-B laser system from conservative flows to dissipative attractors is analyzed. Section 5 introduces the coexisting phenomena in the system. The theoretical derivation and numerical simulation of the fold-Hopf bifurcation in the class-B laser system are introduced in Section 6. Finally,some conclusions are drawn in Section 7.

    2. System description

    By correcting the Maxwell–Bloch equations of a singlemode,homogeneously broadened ring laser with external signal, and separating the field variable into the amplitude and phase with respect to the external field,one gets a class-B laser system with injected signal:[17,20,21]

    whereXis the state vector;A(X) is the skew-symmetric state matrix satisfyingA(X)=-A(X)T;Λ(X) is an indefinite matrix satisfyingΛ(X)=-Λ(X)T; ?H(X) is the gradient vector of HamiltonianH(X); andUis a matrix composed of column vectors that represents the exchange energy between the system and the outside world. In terms of energy,A(X)?H(X),Λ(X)?H(X)andUrepresent the conservative term,the dissipative term,and the external interference of the system(3). Therefore,according to Eq.(3),the system(2)can be expressed as

    Obviously, the parameteradetermines the dissipative strength in system (2), this paper will discuss the dynamical characteristics of system(2)ata/=0.

    3. Equilibrium analysis

    Let ˙x= 0,˙y= 0,˙z= 0, the equilibrium points for system(2)are as follows:

    (I)Whenk ∈(-w,w),system(2)has the only equilibrium

    At this time,the system(2)has three equilibrium pointsS1,2,3.

    It is difficult to produce the analytical solutions of the eigenvalues by substitutingS2,3into their corresponding Jacobian matrixes. For simplicity,leta=1 andw=1,then one can obtain the numerical results of the eigenvalues atS1,2,3whenkvaries, as shown in Fig. 1. As can be seen from the figure, when the parameterkpasses through the critical valuesw=±1, the equilibrium pointsS2,3will disappear or appear,which indicates thatSLandSRare the potential bifurcation points. Since the equilibria are symmetrical aboutk=0,this paper can only consider the dynamics of the system(2)atk≥0.

    Fig. 1. Plot of the distribution of the equilibria of the system (2) with respect to k varying in the interval[-2,2],and their corresponding stability when a=1 and w=1. The blue and red curves are the marks of the stable and unstable equilibria,respectively. SL and SR denote the bifurcation points.

    4. Transition from conservation to dissipation

    Keepinga=1 andw=1, whenk=0, the phase trajectories of system (2) starting from different initial conditionsJ0=(0.2,0.1,0.1),J1=(0.3,0.1,0.1),...,J6=(0.8,0.1,0.1)form the nested quasi-periodic motions, their corresponding Poincar′e section is shown in Fig.2(a). The closed curves with different colors in Fig. 2(a) further indicate that there exist the coexistence of multiple quasi-periods in system (2) whenk=0. In addition, the Lyapunov exponents (LE1,LE2,LE3)=(0,0,0) indicate that these quasi-periodic motion are conservative flows. In the nonlinear system,since the dissipative term is difficult to keep balance with the conservative term and the external interference,it is difficult to find the conservative flows in the system containing the dissipative term. By calculation, the reason why the system (2) can produce conservative flows is that whenk=0,the dissipative term in system(2)is always in balance with the external interference, hence the nested closed curves in Fig.2(a)appear. And whenk/=0,the stable state in system (2) is destroyed due to the interference of the parameterk, that is, the closed curves in Fig. 2(a) will no longer exist. Figure 2(b)shows the Poincar′e section generated by system(2)atk=0.01,as we can see from the figure,the seemingly closed rings are actually some irregular discrete points,these show that whenk=0.01,the quasi-periodic motions are disturbed and turn into chaotic motion.

    With the continuous increase of the value ofk,the dissipative characteristics of system (2) are also becoming more and more obvious. Figure 3 shows the Lyapunov exponents of system (2) whilek ∈[0.2,0.7]. It can be seen from the figure that whenktakes different values, the system (2) has dynamical behaviors with different characteristics. For example, whenk= 0.4, the Lyapunov exponents(LE1,LE2,LE3) = (0,-0.13,-0.13) indicate that there is a periodic orbit in system (2); whenk= 0.55, the Lyapunov exponents (LE1,LE2,LE3) = (0,0,-0.14) indicate that system (2) has quasi-periodic motion; and the Lyapunov exponents(LE1,LE2,LE3)=(0.14,0,-0.24)whenk=0.67 indicate that the system(2)has chaotic motion. These phenomena are shown in Fig.4.

    Fig.2. When the parameters a=1 and w=1,Poincar′e sections of the system(2)on the x–z plane(y=0)with different initial conditions J0,1,...,6: (a)k=0;(b)k=0.01.

    Fig.3. When the parameters a=1,w=1,Lyapunov exponents of the system(2)from the initial conditions I0=(0.1,0.1,0.1)with k ∈[0.2,0.7].

    Fig.4. When the parameters a=1,w=1,3D phase portraits the system(2)from the initial conditions I0=(0.1,0.1,0.1)with different k: (a)k=0.4;(b)k=0.55;(c)k=0.67.

    5. Coexisting phenomena

    According to the Section 4,whena=1,w=1 andk/=0,no matter what motion(period,quasi-period,or chaos)is produced by system (2), its phase volume is always contractive.That is to say,the phase trajectories in Fig.4 are independent attractors. However, through numerical simulation, it is finds that system(2)has not only one attractor,but also two attractors in special cases,that is,coexisting attractors.

    Figure 5(a) shows the two coexisting periodic attractorsP1andP2which exist in the system (2) whenk=0.3,which are generated by the initial valuesP1=(0.8,0.5,0.5)andP2=(0.5,0.5,0.5), respectively. In addition, whenk=0.89, the system (2) also has the coexisting phenomenon.By choosing the initial conditionsN1=(0.5,-0.6,0.5) andN2=(0.5,0.5,0.5),and they generate the quasi-periodic motionN1and the periodic motionN2as shown in Fig.5(b),respectively.

    Fig. 5. The 3D phase portraits of system (2) with the parameters a =1,w=1: (a) parameter k =0.3 and the initial values P1 =(0.8,0.5,0.5)and P2 =(0.5,0.5,0.5); (b)parameter k=0.89 and the initial values N1 =(0.5,-0.6,0.5)and N2=(0.5,0.5,0.5).

    Under given parameter conditions, according to whether the basin of attraction of attractor contains the equilibrium point in phase space,attractor can be divided into self-excited attractor or hidden attractor.[23]The basin of attraction of self-excited attractor contains the equilibrium point,while the basin of attraction of hidden attractor does not contains the equilibrium point. Whena=1,w=1 andk ∈(-w,w), according to Eq.(5),we have a single equilibrium point Further, whenk= 0.3 ork= 0.89, one can get ?S1=(-0.15,-0.15,1)or ?S1=(-0.445,-0.445,1).

    Fig.6. Two colored basins of attraction of system(2)at z=0.5 on the x–y plane;(a)k=0.3;(b)k=0.89.

    In order to determine the type of attractors shown in Fig.5,figures 6(a)and 6(b)show the basin of attraction of system(2)whenk=0.3 andk=0.89,respectively. In Fig.6(a),the dark blue area represents the basin of attraction of periodic motionP1in Fig.5(a),the light blue area represents the basin of attraction of periodic motionP2, and the equilibrium point ?S1is represented by “·”. It can be seen from the figure that equilibrium point ?S1is located in the light blue area,which indicates that the periodic motionP2in Fig.5(a)is a self-excited attractor,and the periodic motionP1is a hidden attractor. Further,in Fig.6(b),the red area represents the basin of attraction of quasi-periodic motionN1in Fig. 5(b), the blue area represents the basin of attraction of periodic motionN2, and the equilibrium point ?S1is represented by“*”. Obviously,the different colors do not intersect each other,but this is enough to determine the type of the two attractorsN1andN2in Fig.6(b).

    To further determine the type of attractorsN1andN2,one keeps the parametersaandwunchanged,and chooses an initial valuesX0=(-0.445,-0.445,0.9999)that are very close to the equilibrium points ?S1. Whenk=0.89, the study finds that the motionX0(Fig. 7) starting from the initial valueX0similar to that of the periodic motionN2in Fig. 5(b). This shows that the basin of attraction of the periodic motionN2intersects with open neighborhood of the equilibrium point ?S1,which in turn indicates that the periodic orbitN2is a selfexcited attractor,and the quasi-periodic motionN1is a hidden attractor.

    Fig. 7. The 3D phase portraits of system (2) with the parameters a=1,w=1,k=0.89 and the initial conditions X0=(-0.445,-0.445,0.9999).

    6. Fold-Hopf bifurcation

    6.1. Derivation of the normal form

    The fold-Hopf bifurcation is a bifurcation of an equilibrium point in a two-parameter family of autonomous ODEs at which the critical equilibrium has a zero eigenvalue and a pair of purely imaginary eigenvalues.[24]Consider an autonomous system of ordinary differential equations(ODEs):

    According to formula(14),the fold-Hopf bifurcation can be divided into three categories:

    I)subcritical Hopf bifurcation and no tori(s=1,θ(0)>0 ors=-1,θ(0)<0);

    II) subcritical and supercritical Hopf bifurcations and torus“heteroclinic destruction”(s=1,θ(0)<0);

    III) subcritical and supercritical Hopf bifurcations and torus“blow-up”(s=-1,θ(0)>0).

    6.2. Theoretical analysis

    Proposition 1 Whena= 1 andw= 1, andkpasses through the critical values 1,system(2)undergoes a fold-Hopf bifurcation and presents a blow-up invariant tori near the fold-Hopf bifurcation point.

    Proof Whena=1,w=1 andk=1,system(2)has two equilibrium points:Then, one gets the coefficients of the Gavrilov normal form:B(0)=-1/3,C(0)=16/9 andE(0)=11/48. Furthermore,we have

    In conclusion, whena=1,w=1, andk=1, there is a fold-Hopf bifurcation point in system(2),ands=-1,θ(0)>0 indicate that a blow-up invariant tori appears near the fold-Hopf bifurcation point.

    6.3. Numerical simulation

    In this section,one further verifies the correctness of the Proposition 1 through numerical simulation. As shown in Fig.8(a),at the fold-Hopf bifurcation point,the phase trajectoryφ(X0,t)converges toSR,whilek=0.991,an invariant torus is suddenly blow-up andφ(X0,t) runs on it eventually.Two black closed curves on thex–zplane in Fig. 8(b) further show that system (2) is quasi-periodic. The red points approaching the black closed curves demonstrate that the motion of system (2) gradually reaches the invariant torus over time whenk=0.99.

    Fig.8. Invariant torus of system(2)with the parameters a=1,ω =1,k=0.99 1 and the initial conditions X0 =(0.5,0.5,0.5): (a) phase portrait on the x–y plane;and(b)Poincar′e section on the x–z plane with y=-1.

    7. Conclusion

    In this paper, A class-B laser system with conservative and dissipative characteristics was studied. The study found that the numbers and stability of equilibrium points are affected by the system parameters. Whenk=0, there are conservative flows in the class-B laser system. Whenk/=0, the conservative characteristics disappear and the dissipative characteristics become more and more obvious. Meanwhile, it is found that there are period, quasi-period, chaos, and coexisting attractors in system, these phenomena have been demonstrated by several numerical techniques including phase portraits,Poincar′e sections,Lyapunov exponents,and other tools.In addition,through theoretical derivation,we find that the system has a fold-Hopf bifurcation and tori will“blow-up”at the bifurcation point, and the subsequent numerical simulations confirm the correctness of the theoretical derivation.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 61973175) and the Natural Science Foundation of Tianjin(Grant Nos.20JCYBJC01060 and 20JCQNJC01450).

    国产成人欧美在线观看 | 欧美日韩黄片免| 国产日韩欧美亚洲二区| 在线精品无人区一区二区三| 亚洲伊人色综图| 宅男免费午夜| 久久久久久久久久久久大奶| 18禁裸乳无遮挡动漫免费视频| 窝窝影院91人妻| 亚洲精品第二区| 午夜免费成人在线视频| 亚洲久久久国产精品| 伊人亚洲综合成人网| 午夜精品久久久久久毛片777| 一级毛片电影观看| 亚洲精品一卡2卡三卡4卡5卡 | 日韩人妻精品一区2区三区| 国产成人av教育| 欧美中文综合在线视频| 真人做人爱边吃奶动态| 午夜视频精品福利| 一本一本久久a久久精品综合妖精| cao死你这个sao货| 熟女少妇亚洲综合色aaa.| 欧美乱码精品一区二区三区| 超碰97精品在线观看| 午夜免费观看性视频| 久久中文字幕一级| 三级毛片av免费| 精品国产乱子伦一区二区三区 | 亚洲天堂av无毛| 精品一区在线观看国产| 欧美日韩精品网址| 精品人妻在线不人妻| 亚洲九九香蕉| 免费不卡黄色视频| 大片免费播放器 马上看| 美女视频免费永久观看网站| 久久久水蜜桃国产精品网| 亚洲人成电影观看| 男女国产视频网站| 欧美成人午夜精品| 欧美午夜高清在线| 免费人妻精品一区二区三区视频| 成人影院久久| 亚洲精品在线美女| 亚洲男人天堂网一区| 一级,二级,三级黄色视频| 大码成人一级视频| 一边摸一边抽搐一进一出视频| 久久精品国产a三级三级三级| 捣出白浆h1v1| 亚洲天堂av无毛| 青青草视频在线视频观看| 亚洲熟女毛片儿| 少妇被粗大的猛进出69影院| 桃红色精品国产亚洲av| 久久久久久久久免费视频了| 久久久精品区二区三区| 99精品欧美一区二区三区四区| 欧美精品人与动牲交sv欧美| 久久ye,这里只有精品| 手机成人av网站| 搡老岳熟女国产| 国产精品av久久久久免费| 国产成人av教育| 真人做人爱边吃奶动态| 亚洲少妇的诱惑av| 亚洲欧美精品自产自拍| 视频区图区小说| 啦啦啦中文免费视频观看日本| 动漫黄色视频在线观看| 91麻豆精品激情在线观看国产 | 999精品在线视频| 18禁国产床啪视频网站| 亚洲精品自拍成人| 亚洲国产中文字幕在线视频| 岛国在线观看网站| 国产精品久久久av美女十八| 精品国产乱码久久久久久男人| 国产一区二区在线观看av| 在线观看免费高清a一片| 不卡一级毛片| 精品乱码久久久久久99久播| 1024视频免费在线观看| 法律面前人人平等表现在哪些方面 | 亚洲欧美激情在线| 精品一品国产午夜福利视频| 最近最新中文字幕大全免费视频| 亚洲精品乱久久久久久| 精品久久久精品久久久| 精品亚洲乱码少妇综合久久| 国产精品.久久久| 在线观看免费午夜福利视频| xxxhd国产人妻xxx| 婷婷色av中文字幕| 久久久久精品人妻al黑| 亚洲熟女精品中文字幕| 成人18禁高潮啪啪吃奶动态图| 又紧又爽又黄一区二区| 午夜福利一区二区在线看| 精品久久久久久久毛片微露脸 | 人人妻人人爽人人添夜夜欢视频| 搡老熟女国产l中国老女人| 午夜91福利影院| 国产极品粉嫩免费观看在线| av网站在线播放免费| 一级毛片女人18水好多| 久久精品亚洲熟妇少妇任你| 国产无遮挡羞羞视频在线观看| 国产亚洲av片在线观看秒播厂| 午夜福利,免费看| 国产免费现黄频在线看| 美女大奶头黄色视频| 欧美日韩一级在线毛片| 一级片'在线观看视频| 欧美国产精品一级二级三级| xxxhd国产人妻xxx| 亚洲中文日韩欧美视频| 欧美精品啪啪一区二区三区 | 日韩电影二区| 叶爱在线成人免费视频播放| 波多野结衣一区麻豆| 国产精品亚洲av一区麻豆| 青青草视频在线视频观看| 岛国在线观看网站| 新久久久久国产一级毛片| 国产欧美亚洲国产| 国产黄色免费在线视频| 成年女人毛片免费观看观看9 | www.999成人在线观看| 国产精品久久久久久人妻精品电影 | 久久中文字幕一级| 亚洲一卡2卡3卡4卡5卡精品中文| 法律面前人人平等表现在哪些方面 | 精品亚洲成a人片在线观看| 久久久久精品人妻al黑| 大香蕉久久成人网| 国产精品 欧美亚洲| 久久99热这里只频精品6学生| 9热在线视频观看99| 久久久国产欧美日韩av| 狠狠婷婷综合久久久久久88av| e午夜精品久久久久久久| 王馨瑶露胸无遮挡在线观看| 在线观看www视频免费| 一区二区日韩欧美中文字幕| videosex国产| 久久精品亚洲av国产电影网| 亚洲国产av新网站| 制服人妻中文乱码| 欧美 亚洲 国产 日韩一| 亚洲精品av麻豆狂野| 三级毛片av免费| 淫妇啪啪啪对白视频 | 国产麻豆69| 欧美一级毛片孕妇| 国产国语露脸激情在线看| 久久中文字幕一级| 巨乳人妻的诱惑在线观看| 99国产极品粉嫩在线观看| 另类精品久久| 一边摸一边抽搐一进一出视频| 91九色精品人成在线观看| 成人黄色视频免费在线看| 亚洲性夜色夜夜综合| 国产成人精品久久二区二区91| 日本vs欧美在线观看视频| 夜夜夜夜夜久久久久| 成人免费观看视频高清| 国产精品自产拍在线观看55亚洲 | 亚洲国产精品999| 免费在线观看完整版高清| 亚洲黑人精品在线| 香蕉国产在线看| 两性夫妻黄色片| 国产熟女午夜一区二区三区| 制服诱惑二区| 精品福利永久在线观看| 国产在线免费精品| 国产成人精品在线电影| 黑人欧美特级aaaaaa片| 99热网站在线观看| 久久久精品国产亚洲av高清涩受| 狂野欧美激情性xxxx| 精品久久久久久电影网| 女人高潮潮喷娇喘18禁视频| 久久狼人影院| 亚洲国产毛片av蜜桃av| 日韩视频在线欧美| 高清视频免费观看一区二区| 国产在线免费精品| 国产免费现黄频在线看| 在线av久久热| 亚洲精品第二区| 国产伦理片在线播放av一区| 欧美成狂野欧美在线观看| 国产av国产精品国产| 国产高清视频在线播放一区 | 午夜老司机福利片| 国产亚洲精品一区二区www | 久久久久网色| 国产xxxxx性猛交| 少妇裸体淫交视频免费看高清 | 欧美人与性动交α欧美精品济南到| 蜜桃国产av成人99| 欧美国产精品va在线观看不卡| 久久ye,这里只有精品| 亚洲综合色网址| 又大又爽又粗| 丝袜美腿诱惑在线| 午夜福利,免费看| 亚洲精品国产区一区二| 日韩有码中文字幕| 丝袜人妻中文字幕| 欧美人与性动交α欧美精品济南到| av超薄肉色丝袜交足视频| 中文字幕另类日韩欧美亚洲嫩草| 精品熟女少妇八av免费久了| 老司机午夜十八禁免费视频| 十八禁人妻一区二区| 汤姆久久久久久久影院中文字幕| 一区在线观看完整版| 男女免费视频国产| 成人黄色视频免费在线看| 精品人妻在线不人妻| 99国产精品一区二区蜜桃av | 欧美精品一区二区大全| 视频区欧美日本亚洲| 丝瓜视频免费看黄片| av不卡在线播放| 99久久综合免费| 国产成人影院久久av| 亚洲精品久久久久久婷婷小说| 视频在线观看一区二区三区| 交换朋友夫妻互换小说| 人妻 亚洲 视频| 中文字幕制服av| 国产老妇伦熟女老妇高清| 精品人妻一区二区三区麻豆| 男女无遮挡免费网站观看| 狠狠精品人妻久久久久久综合| 精品一区在线观看国产| svipshipincom国产片| 色播在线永久视频| 少妇精品久久久久久久| 亚洲欧美激情在线| 狠狠精品人妻久久久久久综合| 精品亚洲乱码少妇综合久久| 一本综合久久免费| 国产成人精品久久二区二区免费| netflix在线观看网站| 90打野战视频偷拍视频| 久久精品国产亚洲av高清一级| 极品人妻少妇av视频| 亚洲五月婷婷丁香| 亚洲欧美精品自产自拍| 精品福利永久在线观看| 久久精品国产亚洲av香蕉五月 | 制服人妻中文乱码| 最近最新中文字幕大全免费视频| 日本五十路高清| 老司机靠b影院| 国产精品亚洲av一区麻豆| 欧美少妇被猛烈插入视频| 性少妇av在线| avwww免费| 国产亚洲欧美在线一区二区| 首页视频小说图片口味搜索| 女人爽到高潮嗷嗷叫在线视频| 99国产极品粉嫩在线观看| 香蕉国产在线看| 欧美久久黑人一区二区| 亚洲欧美精品综合一区二区三区| 欧美午夜高清在线| 国产黄色免费在线视频| 脱女人内裤的视频| 男人舔女人的私密视频| 国产福利在线免费观看视频| 精品久久蜜臀av无| 亚洲精品成人av观看孕妇| 国产欧美日韩精品亚洲av| tocl精华| 91精品国产国语对白视频| 国产伦理片在线播放av一区| 亚洲国产av影院在线观看| 亚洲精品国产区一区二| 视频区欧美日本亚洲| 狠狠婷婷综合久久久久久88av| 亚洲欧美日韩高清在线视频 | 岛国在线观看网站| 亚洲成人国产一区在线观看| 在线观看免费午夜福利视频| 日韩中文字幕欧美一区二区| 久久国产精品大桥未久av| 亚洲国产av新网站| 老司机影院成人| 欧美老熟妇乱子伦牲交| 免费看十八禁软件| 欧美国产精品va在线观看不卡| 人妻一区二区av| 国产激情久久老熟女| 亚洲专区中文字幕在线| 51午夜福利影视在线观看| 中文字幕高清在线视频| 一区二区日韩欧美中文字幕| 夜夜夜夜夜久久久久| 建设人人有责人人尽责人人享有的| 久久久水蜜桃国产精品网| 成人18禁高潮啪啪吃奶动态图| 亚洲伊人色综图| 欧美日韩福利视频一区二区| 国产精品熟女久久久久浪| 久久女婷五月综合色啪小说| 男女边摸边吃奶| 午夜老司机福利片| 国产欧美亚洲国产| 日本黄色日本黄色录像| 国产一区二区三区综合在线观看| 一区二区日韩欧美中文字幕| 精品人妻熟女毛片av久久网站| 国产一区二区激情短视频 | 久久久精品国产亚洲av高清涩受| 大码成人一级视频| 精品国产乱子伦一区二区三区 | 日韩 欧美 亚洲 中文字幕| 亚洲成av片中文字幕在线观看| 欧美黄色淫秽网站| av天堂在线播放| 午夜福利在线观看吧| 日日摸夜夜添夜夜添小说| 人人妻人人爽人人添夜夜欢视频| 国产成人av教育| 老司机靠b影院| 久久久久久久久久久久大奶| 亚洲色图综合在线观看| 一本一本久久a久久精品综合妖精| 操出白浆在线播放| 久久久久久久大尺度免费视频| 交换朋友夫妻互换小说| 亚洲一区中文字幕在线| 亚洲av美国av| 一本—道久久a久久精品蜜桃钙片| 动漫黄色视频在线观看| 大香蕉久久网| tocl精华| 18禁裸乳无遮挡动漫免费视频| 视频在线观看一区二区三区| 亚洲成国产人片在线观看| 精品少妇内射三级| 在线十欧美十亚洲十日本专区| 欧美成人午夜精品| 久久精品aⅴ一区二区三区四区| 性高湖久久久久久久久免费观看| 中亚洲国语对白在线视频| 女人精品久久久久毛片| 青春草亚洲视频在线观看| 人妻人人澡人人爽人人| 悠悠久久av| 日韩欧美一区视频在线观看| 十八禁网站网址无遮挡| 母亲3免费完整高清在线观看| 国产精品秋霞免费鲁丝片| 大片免费播放器 马上看| 国产日韩欧美在线精品| 久久精品久久久久久噜噜老黄| 久久久久网色| 成人亚洲精品一区在线观看| 国产免费视频播放在线视频| 国产xxxxx性猛交| 99久久国产精品久久久| 啦啦啦在线免费观看视频4| 91精品三级在线观看| 男女高潮啪啪啪动态图| 午夜精品国产一区二区电影| 久久99一区二区三区| 在线观看免费高清a一片| 男人添女人高潮全过程视频| 中文精品一卡2卡3卡4更新| 悠悠久久av| 亚洲国产欧美一区二区综合| 一本久久精品| 日本a在线网址| 精品少妇久久久久久888优播| 欧美av亚洲av综合av国产av| 欧美日韩视频精品一区| 欧美性长视频在线观看| 久久久水蜜桃国产精品网| 窝窝影院91人妻| 蜜桃在线观看..| 性色av乱码一区二区三区2| 久久国产精品人妻蜜桃| 少妇精品久久久久久久| 日本vs欧美在线观看视频| 热re99久久精品国产66热6| 性高湖久久久久久久久免费观看| 久久午夜综合久久蜜桃| 在线精品无人区一区二区三| 男女高潮啪啪啪动态图| 久久精品国产a三级三级三级| 国产亚洲欧美在线一区二区| 黄片播放在线免费| 国产野战对白在线观看| 国产精品成人在线| 在线十欧美十亚洲十日本专区| 国内毛片毛片毛片毛片毛片| 亚洲男人天堂网一区| 亚洲精品自拍成人| 亚洲精品第二区| 精品福利永久在线观看| 亚洲欧美日韩另类电影网站| av超薄肉色丝袜交足视频| 国产亚洲av高清不卡| 成年美女黄网站色视频大全免费| 国产精品久久久久久精品电影小说| 亚洲人成77777在线视频| 午夜91福利影院| 美女高潮到喷水免费观看| 成人三级做爰电影| 久久天堂一区二区三区四区| 国产精品免费大片| 欧美变态另类bdsm刘玥| 2018国产大陆天天弄谢| 欧美变态另类bdsm刘玥| 国产亚洲欧美精品永久| 另类精品久久| 人人妻人人澡人人看| 国产日韩欧美视频二区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久免费高清国产稀缺| 免费在线观看黄色视频的| 不卡一级毛片| 久久精品久久久久久噜噜老黄| 亚洲欧美精品综合一区二区三区| 精品国产一区二区三区久久久樱花| netflix在线观看网站| 美女高潮到喷水免费观看| 91九色精品人成在线观看| 亚洲av日韩精品久久久久久密| 18禁裸乳无遮挡动漫免费视频| av线在线观看网站| 久久99一区二区三区| 国产在视频线精品| 永久免费av网站大全| 日日摸夜夜添夜夜添小说| 91精品三级在线观看| 久久国产精品人妻蜜桃| 日本黄色日本黄色录像| 国产精品 欧美亚洲| 亚洲欧美色中文字幕在线| 大型av网站在线播放| 久久人人爽人人片av| 中文字幕最新亚洲高清| 蜜桃国产av成人99| 免费高清在线观看日韩| 日本撒尿小便嘘嘘汇集6| 淫妇啪啪啪对白视频 | 欧美日韩精品网址| 日本五十路高清| 天天操日日干夜夜撸| 日韩中文字幕视频在线看片| a 毛片基地| 久热这里只有精品99| 超色免费av| 在线观看舔阴道视频| 国产又爽黄色视频| 亚洲天堂av无毛| 国产亚洲精品一区二区www | 国产成人啪精品午夜网站| 少妇精品久久久久久久| 精品久久蜜臀av无| 宅男免费午夜| 久久热在线av| 国产av一区二区精品久久| 国产亚洲欧美精品永久| 黄片小视频在线播放| 国产人伦9x9x在线观看| 久久毛片免费看一区二区三区| 在线av久久热| 少妇精品久久久久久久| 夫妻午夜视频| tube8黄色片| tocl精华| 91九色精品人成在线观看| 看免费av毛片| 天天影视国产精品| 一个人免费在线观看的高清视频 | 天天影视国产精品| av网站免费在线观看视频| 久久午夜综合久久蜜桃| av在线app专区| 欧美日韩成人在线一区二区| 丝袜美足系列| 男人添女人高潮全过程视频| 一区二区三区精品91| 窝窝影院91人妻| 老司机亚洲免费影院| 十八禁网站网址无遮挡| 日韩大码丰满熟妇| 亚洲av成人一区二区三| 在线精品无人区一区二区三| www.熟女人妻精品国产| 久久精品aⅴ一区二区三区四区| 多毛熟女@视频| 美女午夜性视频免费| 肉色欧美久久久久久久蜜桃| 丰满少妇做爰视频| 黑丝袜美女国产一区| 精品卡一卡二卡四卡免费| 欧美精品人与动牲交sv欧美| 精品福利观看| 久久免费观看电影| 三上悠亚av全集在线观看| 一进一出抽搐动态| 精品视频人人做人人爽| 一级毛片电影观看| 18禁观看日本| 欧美日韩一级在线毛片| 三上悠亚av全集在线观看| 电影成人av| 一区二区三区激情视频| 亚洲国产精品一区二区三区在线| 中文字幕精品免费在线观看视频| 免费观看av网站的网址| 免费在线观看视频国产中文字幕亚洲 | 国产精品二区激情视频| www.熟女人妻精品国产| 亚洲第一青青草原| 中文字幕精品免费在线观看视频| 亚洲欧美精品自产自拍| 亚洲一区中文字幕在线| 精品久久久久久久毛片微露脸 | 亚洲精品一二三| 青春草亚洲视频在线观看| 久热这里只有精品99| 日本猛色少妇xxxxx猛交久久| 捣出白浆h1v1| 热re99久久国产66热| 天天添夜夜摸| 欧美精品啪啪一区二区三区 | 久久精品国产综合久久久| 免费高清在线观看日韩| 国产激情久久老熟女| 日本91视频免费播放| www.自偷自拍.com| 黄色视频,在线免费观看| 欧美另类一区| 亚洲精品第二区| 日韩人妻精品一区2区三区| 国产日韩一区二区三区精品不卡| 日韩视频在线欧美| 91麻豆av在线| 欧美亚洲日本最大视频资源| 亚洲国产精品一区二区三区在线| 欧美精品啪啪一区二区三区 | 国产精品麻豆人妻色哟哟久久| 制服诱惑二区| 欧美日韩精品网址| 久久人妻福利社区极品人妻图片| 国产人伦9x9x在线观看| 97在线人人人人妻| 日本wwww免费看| 日韩视频在线欧美| 欧美日韩亚洲国产一区二区在线观看 | 国产又色又爽无遮挡免| 欧美大码av| 免费女性裸体啪啪无遮挡网站| www日本在线高清视频| 国产欧美日韩一区二区精品| 少妇 在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产一级毛片在线| 色婷婷av一区二区三区视频| 91成人精品电影| 精品国产乱子伦一区二区三区 | 美女福利国产在线| 成年人免费黄色播放视频| a级毛片黄视频| 超色免费av| 国产亚洲av高清不卡| 久久久国产成人免费| 十八禁高潮呻吟视频| 老司机午夜十八禁免费视频| 亚洲成人国产一区在线观看| 黄片播放在线免费| 国产一区二区三区综合在线观看| 欧美日韩精品网址| tocl精华| 999久久久国产精品视频| 国产人伦9x9x在线观看| 国产在线视频一区二区| 久久99热这里只频精品6学生| 国产精品自产拍在线观看55亚洲 | 国产一区二区在线观看av| 国产亚洲av片在线观看秒播厂| 中文字幕色久视频| 国产亚洲欧美在线一区二区| 天天躁日日躁夜夜躁夜夜| 啪啪无遮挡十八禁网站| av线在线观看网站| av又黄又爽大尺度在线免费看| 午夜免费观看性视频| 精品国产国语对白av| 高清黄色对白视频在线免费看| 亚洲精品第二区| 成人国语在线视频| 美女中出高潮动态图| 欧美日韩亚洲国产一区二区在线观看 | 一级a爱视频在线免费观看| 99国产精品免费福利视频| 亚洲综合色网址| 国产野战对白在线观看| 这个男人来自地球电影免费观看| 国产亚洲一区二区精品| a级毛片在线看网站|