• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The dynamics of a memristor-based Rulkov neuron with fractional-order difference

    2022-06-29 09:19:54YanMeiLu盧艷梅ChunHuaWang王春華QuanLiDeng鄧全利andCongXu徐聰
    Chinese Physics B 2022年6期

    Yan-Mei Lu(盧艷梅), Chun-Hua Wang(王春華), Quan-Li Deng(鄧全利), and Cong Xu(徐聰)

    College of Computer Science and Electronic Engineering,Hunan University,Changsha 410082,China

    Keywords: discrete memristor,Rulkov neuron,fractional-order difference,dynamics

    1. Introduction

    The biological nervous system contains many neurons,and changes in neuronal electrical activities affect the function of the nervous system. Particularly,electromagnetic radiation is generated owing to the extensive application of various electromagnetic communication instruments, and it is almost full of today’s living environment. Due to the memristor can represent the electrical characteristics of the flux-charge domain,it can be applied to the neuron discharge model to study the influence of electromagnetic radiation on the electrical activities of neurons.[1–4]Compared with ordinary neuron models,memristor-based neurons can simulate the effects of electromagnetic radiation in the real environment,so they are closer to the actual biological neuron model. Experiments show that it can also bring more complex dynamics.

    In the past decade, combined with memristors, many scholars have explored the dynamics of neurons and neural network systems under electromagnetic radiation. Compared with continuous-domain neurons (such as the famous HH model,[5]HR model,[6]etc.),the discrete domain(such as the classical Izhikevich model,[7]Rulkov model,[8]etc.) can simulate the firing behavior of neurons in a lower dimensionality and be used more effectively and accurately in real engineering applications.[9]Emulating electromagnetic radiation by discrete memristors on neuron maps is becoming an emerging research topic. Liet al.successfully implemented the discrete-memristor to simulate electromagnetic radiation on neurons for the first time in 2021.[10]However,their research is based on the form of integer order iteration maps. So far,no investigation on the dynamic behaviors of the memristor-based fractional Rulkov map has been found.

    As the extension of integer order,fractional calculus is a vital branch of mathematics.[11]Owing to its memory characteristics and being closer to engineering reality,[12–15]it is extensively used in lots of fields.[16–19]In fact, as early as 1989, Miller and Ross began the study of discrete fractional difference and gave a preliminary definition.[20]But until recently,due to the important role of discrete dynamical systems in engineering,people began to pay attention to the research on the definition of discrete fractional order and achieved phased results.[21–25]However, the current research on fractionalorder discrete chaotic systems is still in its infancy, and researches based on fractional-order discrete neurons is even rarer,requiring continuous exploration and research.

    Based on the relationship between charge and magnetic flux, the memristor is a two-terminal electronic device proposed by Professor Leon Chua,[26]and a physical model was successfully developed by Hewlett Packard (HP) laboratory in 2008.[27]Due to its nanometer size, nonlinearity, and memory peculiarity, the memristor is widely used in chaotic circuits,[28,29]neural networks,[1,3]memory storage,[30,31]secure communications.[32,33]The concept of fractional memristor was firstly proposed by Coopmanset al.[34]Since then,the fractional memristor has been closely watched by researchers.Unfortunately,there are relatively few studies on discrete fractional memristors.It is known that discrete memristors play an important role in the application of discrete systems.In our paper,a new fractional discrete memristor is constructed. Compared with the fractional memristor in Ref.[35],the modulus function of the new memristor has outstanding nonlinearity.

    In summary, this paper proposes a new fractional-order discrete memristor model with superior non-linear features and constructs a memristor-based fractional Rulkov neuron map for the first time. The dynamics of the simple memristorbased map under integer order and fractional order are probed respectively.Simulation experiments demonstrate that the system can produce periodic and chaotic behaviors in integerorder form,but rich dynamic behaviors such as asymptotically periodic oscillation, hyper-chaos, multi-stable, and transient chaos appear in fractional-order form. Finally,the complexity of the fractional-order system is evaluated through the spectral entropy complexity algorithm.Results show that the complexity of the system is related to the fractional order.

    The organization of the follow-up part of this article is as follows: The second part introduces the definition of discrete fractional-order difference. The third part constructs a new fractional-order discrete memristor model. The fourth part structure a two-dimensional Rulkov neuron mapping based on a discrete memristor and the dynamics of it are discussed in the form of integer order and fractional order, complexity is explored as well. Finally,the article is summarized.

    2. The discrete fractional-order difference

    Presently, the definition of fractional-order discrete system is mainly based on three types, Riemann–Liouville definition,[36]Caputo definition[22,36]and Grunwald–Letnokov definition.[37,38]Among them, the Riemann-Liouville difference equation needs to define the initial conditions, and the research on the Grunwald–Letnokov definition is relatively few, and many characteristics are not analyzed sufficiently. Relatively speaking, the Caputo definition not only does not have the problem of initial value definition but also has sufficient theoretical research and analysis, so the fractional difference operator in this article is based on it. In this part,we will introduce the Caputo definition firstly.

    Define an independent time scalarNa={a,a+1,a+2,...},a ∈R, and a discrete function asx(n).The forward difference operator of this function is Δx(n)=x(n+1)-x(n).

    Definition 1[39]There is a relationshipf:Na →R,then the score sum of orderq(q >0 is the fractional combination,q <0 is the fractional difference)is defined as

    According to Eq. (5), it can be observed that when the fractional orderq= 1, this equation degenerates into a general integer-order difference equation. We can also see that the current moment is related to the value of all moments before it, which reflects the discrete memory effect of the fractional difference operator.

    3. A new fractional discrete memristor

    A continuous flux-controlled memristor model was proposed to simulate electromagnetic induction in Ref.[40]. The model was expressed as whereφ(n+1)is the value ofφ(t)in the(n+1)-th iteration.The parameterεrepresents the time scale factor of the induced electromotive force in a finite transient period,and it depends on the nature of the medium.

    When the voltage applied across the memristor isv(n)=Hsin(wn)(His the amplitude,wis the frequency),letH=1,figure 1 shows the volt-ampere curve of the discrete memristor. It is not difficult to see that the discrete memristor has three specialties of general memristor.[42]

    Fig. 1. The volt–ampere curve of the integer-order discrete memristor,H=1.

    In keeping with the definition of Caputo fractional difference in Part 2,the fractional form of the memristor can be described by the following equation:

    It can be seen that the modulus function of the fractional discrete memristor is a hyperbolic tangent function with a nonlinear personality. This inherent nonlinearity is different from the traditional nonlinear characteristic outside the memristor,which makes the memristor have a more outstanding nonlinear feature. In addition, compared with the fractional memristor in Ref.[35], the modulus function of this new memristor is a single-valued nonlinear function with outstanding nonlinearity.

    LetH=1,q=0.65,explore the relationship between the volt-ampere characteristics of the fractional discrete memristor and the input frequency. The results are shown in Fig.2(a).Obviously,the area of the hysteresis sidelobe decreases as the frequency increases. It can be noticed that whenw= 3.0,the relationship between the voltage across the memristor and the current through the memristor is approximately a singlevalued function.This is consistent with the traits of the general memristor.

    SettingH=1,w=0.1, figure 2(b) presents the correlation between the hysteresis loop of the discrete memristor and the fractional orderq. It is easy to see that as the fractional orderqincreases,the area of the hysteresis sidelobe increases as well, indicating that the orderqhas an effect on the peculiarity of the discrete memristor,which is coincident with the conclusion of Ref.[35].

    Fig.2. The volt-ampere characteristic curve of the fractional discrete memristor. (a)H=1,q=0.65;(b)H=1,w=0.1.

    4. The memristor-based Rulkov neuron with the fractional-order difference

    4.1. The model of the fractional neuron map

    In order to explore the characteristics of neurons more conveniently,researchers have proposed many neuron models based on experimental and theoretical analysis. In particular,the Rulkov neuron map is a typical discrete-domain neuron model. It is an abstract simple mathematical model,but it can represent the rich nonlinear dynamics and biological neuronal features.[43–45]Here, considering a one-dimensional map of Rulkov neuron[8]

    This model can simulate the firing behaviors of a neuron,where the variablexrepresents the membrane potential of the neuron, and the variableβis relevant to the concentration of ions on the cell membrane.

    The membrane potential of neurons is caused by the difference in the concentration of charged ions inside and outside the cell membrane. When neurons are stimulated by electromagnetic radiation,the moving charged ions will generate the electromagnetic induction current,thereby changing the membrane potential. Therefore, the influence of electromagnetic radiation on neurons can be equivalent to the induced current generated by external magnetic flux passing through the membrane potential.[1,4]Among them, the coupling of magnetic flux and membrane potential can be described by a fluxcontrolled memristor. Specifically,the discrete memristor represented by Eq. (7) can be used to characterize the induced current generated under the influence of electromagnetic radiation on the neuron described by Eq.(9). Hence,introducing Eq. (7) into the neuron described by Eq. (9), a new model is built as follows:The Eq. (10) can imitate the dynamic behavior changes of the Rulkov neuron under electromagnetic radiation. Where tanh(y(n))x(n)means the induced current which is generated by electromagnetic induction, and the parameterpstands for the intensity of the induced current acting on the neuron. According to the Eq.(10),we can acquire the difference equation of the Rulkov neuron map based on the discrete memristor as

    wherex(0) stands for the initial membrane potential of the neuron,andy(0)represents the initial voltage across the memristor.It can be seen from the Eq.(12)that due to the influence of the fractional-order difference operator, the current mode voltage of the neuron is related to the past moments. It reflects the property of memory and corresponds to the memory nature of the organism itself,so this model is more practical.

    4.2. The dynamics of the fractional neuron map

    In the process of studying and observing system dynamics,some specific methods are needed to describe the characteristics of the system clearly and intuitively. Here are three types used in this article:[46]

    (i) Iteration diagram: It is the record of the movement track of one dimensional, you can directly observe the position of the system in a certain iteration,which is the most direct way to observe the movement state of the system.

    (ii) Bifurcation diagram: When the system parameter changes, the projection of the trajectory of the system on a certain coordinate axis can constitute the bifurcation diagram.When the system is in a periodic state, the bifurcation graph appears as periodic points,and when the system is in a chaotic state, the bifurcation graph appears as irregularly distributed points.

    (iii) Lyapunov exponent: It can characterize the characteristics of system motion. The positive and negative values of the Lyapunov exponent in a given direction represent the average speed of divergence or convergence of adjacent orbits in the attractor in that direction over a period of time. When the maximum Lyapunov of the system is equal to zero,the system is in a periodic state. When the system has only one Lyapunov exponent greater than zero, the system is in a chaotic state. When the system has two or more Lyapunov exponents greater than zero,the system is in a hyperchaotic state.

    Next, the dynamic behaviors of the Rulkov neuron map based on the discrete memristor in fractional-order will be explored. Before researching the fractional-order characteristics of the system,let’s take a look at the dynamics of the integerorder system. For Eq.(10)whenα=4.1,p=0.5,ε=0.04,x(0)=-0.3,y(0)=0.2 are fixed,the bifurcation diagram and the Lyapunov exponential spectrum are used to investigate the change of system dynamics with the parameterβ. The bifurcation diagram is shown in Fig. 3(a). It can be seen that the system starts from the periodic states and gradually enters into the chaotic states by the period-doubling bifurcation. Then there is the phenomenon of alternating periods and chaotic states, finally returning to the periodic states through the reverse period-doubling bifurcation. In Fig.3(b),changes in the value of the Lyapunov exponents are consistent with the bifurcation diagram. It can be observed that in the whole change process,there is at most one Lyapunov exponent greater than zero, which shows that the system does not appear in hyperchaotic states.

    Fig.3. The dynamics of the system in the integer order: (a)the bifurcation diagram;(b)the Lyapunov exponential spectrum.

    4.2.1. Asymptotically periodic oscillations

    Unlike the integer-order systems, there are no exact periodic solutions in the fractional-order one.[47]However,through Ref.[48], we can know that there are asymptotically periodic characteristics in some fractional systems.

    Theorem 2[49]For the given fractional difference equation

    Fig.4.The asymptotically periodic oscillations of the fractional neuron map under the initial state x(0)=3.5,y(0)=-1.5.

    4.2.2. The hyperchaotic property of the fractional neuron map

    Likewise, the dynamics of the fractional-order system Eq. (12) are searched by the bifurcation diagram and Lyapunov exponential spectrum as well. For the Lyapunov exponents of fractional discrete chaotic systems,there are only two methods: one is the Jacobian matrix method[50]and the other is the Wolf algorithm.[51]The calculation speed of the Wolf algorithm is relatively slow,so the Jacobian matrix method is adopted in this article. Special attention should be paid to the use of this method in fractional systems. The detailed process can be found in Ref.[52].

    Compared with integer order form, when the fractional orderq=0.85 and other conditionsα=4.1,p=0.5,ε=0.04 remain unchanged, the simulation results are shown in Fig.5(a). Here,we draw the bifurcation diagram and the Lyapunov exponential spectrum together. It is helpful to observe whether the two changes are synchronized. Obviously, with the change of variableβ, the system appears A–P–O and hyperchaos. For example, whenβ=-3.99 andβ=-3.8, the system is in one asymptotically periodic oscillations and two asymptotically periodic oscillations respectively, and it behaves as hyperchaotic behavior whenβ=-3.2. The iteration diagrams are shown in Figs.5(b)–5(d). The appearance of the hyperchaotic states indicates that the fractional-order form of the system has more complex dynamics than the integer-order.

    In order to explore the impact of the fractional order on the system,in the following content,the dynamic performance of the system at different orders will be probed. As shown in Figs. 6(a)–6(d), under certain other conditions, the bifurcation diagrams and Lyapunov exponential spectrums corresponding to the differentqare significantly different, which means diverse dynamic behaviors. But the same is that all cases possess hyperchaotic behavior changes. Since there are at least two Lyapunov exponents greater than zero, the hyperchaotic state[53]of the chaotic system has more complex behavior, and the generated sequence is closer to the pseudorandom sequence. Applying it to the field of secure communication, the system will have stronger anti-interference and anti-interception capabilities, and the security effect will be better.

    Fig.5. The dynamics of the fractional system with the parameters α =4.1, p=0.5,ε =0.04,q=0.85. (a)The bifurcation diagram and the Lyapunov exponential spectrum. (b)Iterative graph at β =-3.99. (c)Iterative graph at β =-3.8. (d)Iterative graph β =-3.2.

    Fig. 6. The effect of fractional order q on system dynamics. (a) The bifurcation diagram of β,q=0.65. (b) The bifurcation diagram of β,q=0.95. (c)The Lyapunov exponential spectrum of α,q=0.65. (d)The Lyapunov exponential spectrum of α,q=0.95.

    4.2.3. The multistability of the fractional neuron map

    The multistability[54]of a chaotic system means that when other parameters other than the initial value remain unchanged, the system displays three or more coexisting states.It is an important manifestation of the influence of the chaotic system on the initial values.

    When the system parametersα=3.9,p=0.5,ε=0.04,andq=0.65 are settled, different initial values are chosen to verify the multi-stable behavior of the fractional-order system Eq. (12). Figure 7(a) shows the simulation results. Among it, the initial values of the red dot graphs are (3.5,-1.5), the green dot graphs represent the initial values of(0.1,0.1),and the initial values of the blue one are (-7,-0.01). It can be seen that the red,green,and blue in the figure appear intermittently in some areas. When the same parameters are selected,the system exhibits different behaviors, which signifies the multi-stable coexistence. For example, whenβ=-3.7, the two asymptotically periodic oscillations (green), the chaotic state (red), and the one asymptotically periodic oscillations(blue)are shown respectively;whenβ=-3.3,the behaviors under the three different initial conditions are also different.The specific iteration diagrams are presented in Figs.8(a)and 8(b).

    Fig.7. The multistability of the fractional-order system. (a)The bifurcation diagram of the system with different initial values, red (3.5, -1.5), green(0.1,0.1),blue(-7,-0.01). (b)The max Lyapunov exponent spectrum of the system with different initial values,blue(3.5,-1.5),purple(0.1,0.1).

    Fig.8. The multistability iterative graphs of the fractional system. (a)β =-3.7,q=0.65;(b)β =-3.3,q=0.65;(c)α=3.35,q=0.75;(d)α =5,q=0.75.

    Furthermore,the coexistence of different states in the system is confirmed by the largest Lyapunov exponential spectrum. Settingβ=-3,p=0.5,ε=0.04,q=0.75,figure 7(b)shows the maximum Lyapunov exponents under the initial values(3.5,-1.5)(blue)and(0.1,0.1)(purple). Apparently,the system has coexisting attractors. Figures 8(c) and 8(d) give two specific examples. Whenα=3.35, the system presents two asymptotically periodic oscillations (purple) and chaotic state(blue)respectively under two initial values.Whenα=5,three asymptotically periodic oscillations(blue)and a chaotic state (purple) can get under the initial values (3.5,-1.5) and(0.1,0.1).

    4.2.4. The transient chaos of the fractional neuron map

    In some continuous systems, there is a phenomenon of transient chaos.[55]Similarly, in a discrete system, the phenomenon of transient chaotic behavior means that the nonlinear system appears a chaotic sequence in a finite iteration interval,then evolves into a period or another hyperchaotic/chaotic state with the number of iterations. But there are few reports in the discrete system.

    In the fractional discrete map constructed in this paper,under certain initial conditions and parameters,different transient chaotic phenomena appear. Figure 9 shows three specific examples, where figure 9(a) shows the result of the iteration when the parametersα=4.1,β=-2.1,p=0.5,ε=0.04,q=0.65, and the initial conditions are (0.1, 0.1). It can be found that when the number of iterationsnis less than 400,the system is in a chaotic state,evolving fromn=400 to an A–P–O state.Figure 9(b)is the result of the iteration under the same condition as(a)andq=0.75. It is not difficult to find that the system is in a chaotic state at the beginning of the iteration,but whenn=240, it begins to enter into an A–P–O state. Whenn=435, the system begins to enter the chaotic state again.Yet, letα=3.9,β=-1.7,p=0.5,ε=0.04,q=0.65, the iterative simulation diagram is shown in Fig. 9(c). Vividly,as the iteration progresses, the system goes through the A–P–O, chaos, and A–P–O in turn. In summary, we can conclude that there are abundant transient chaotic behaviors in this fractional-order system.

    4.3. The complexity of the fractional neuron map

    The chaotic pseudo-random sequence has similar randomness,so it has a broad range of application prospects in the field of encryption and secure communication. The complexity can be used to measure the closeness between the chaotic pseudo-random sequence and the real random sequence. The higher the complexity,the closer to the random sequence,the stronger the system’s anti-interference and anti-interception capacity,and the better communication security effect. Therefore, it is meaningful to investigate the complexity of chaotic systems.

    The complexity of chaotic systems can be analyzed from two aspects: behavior and structure. The main concern in this article is the latter. Structural complexity refers to the analysis of sequence complexity through frequency characteristics and energy spectrum characteristics in the transform domain. The more balanced the energy spectrum distribution in the sequence transform domain, the closer the sequence is to a random signal. To analyze the complexity of the chaotic pseudo-random sequence generated by the fractional mapping Eq. (12), the spectral entropy (SE) complexity algorithm[56]based on the Fourier transform is utilized.

    Fig.10. The variation of complexity with the parameters α,β.

    Figure 10 shows the impact of system parameter variation on the system complexity whenβ=-3,q=0.85 andα=3.9,q=0.85 separately. It can be observed that the size of the SE complexity continuously fluctuates with the change of the parameter,which illustrates the influence of the parameter on the system complexity.

    Fig.11. The variation of complexity with fractional order q.

    In addition,the influence of fractional order on sequence complexity is also inspected.Figure 11 specifically shows how the sequence complexity changes with the fractional orderq.It can be seen that with the diversification of the fractional order, the value of SE changes non-directionally and fluctuates up and down,symbolizing that the orderqcan affect the complexity of the system and then affect the application effect of the system.

    5. Conclusion and perspectives

    In this paper, we construct a fractional discrete memristor with remarkable single-valued nonlinearity firstly, then propose a straightforward two-order map by coupling a discrete memristor with a one-dimensional Rulkov neuron map.Integer-order and fractional-order dynamic traits of the system are investigated respectively. Numerical simulation results show that the fractional form of the system has richer dynamics and higher complexity. It can be acquired that the application of fractional-order difference in discrete neuron maps based on the memristor can not only better simulate the fractional characteristics of biological neurons,but also bring more intricate dynamics. The peculiarities of fractional-order difference lay the foundation for further research and application of discrete neuron map in the future. In the next work,we will deeply study the fractional-order specialties of the discrete neuron networks under the action of the memristor.

    Acknowledgements

    Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91964108), the National Natural Science Foundation of China (Grant No. 61971185), and the Natural Science Foundation of Hunan Province,China(Grant No.2020JJ4218).

    www.色视频.com| 一级爰片在线观看| 美女国产视频在线观看| 久久毛片免费看一区二区三区| 亚洲av在线观看美女高潮| 午夜激情久久久久久久| 久久久久久久久久久免费av| 女的被弄到高潮叫床怎么办| 中文字幕最新亚洲高清| 国产永久视频网站| 在线精品无人区一区二区三| 人妻人人澡人人爽人人| 国产午夜精品久久久久久一区二区三区| 国产精品熟女久久久久浪| 三级国产精品欧美在线观看| 精品99又大又爽又粗少妇毛片| 精品久久久久久久久亚洲| 国产在线免费精品| 在线免费观看不下载黄p国产| 国产熟女午夜一区二区三区 | 日韩一区二区视频免费看| 免费观看性生交大片5| 国产精品国产三级专区第一集| 亚洲精品第二区| 自拍欧美九色日韩亚洲蝌蚪91| 日韩精品免费视频一区二区三区 | 人体艺术视频欧美日本| 在线亚洲精品国产二区图片欧美 | 七月丁香在线播放| 不卡视频在线观看欧美| 在线观看美女被高潮喷水网站| 狠狠精品人妻久久久久久综合| 高清午夜精品一区二区三区| 最近2019中文字幕mv第一页| 亚洲av男天堂| 精品国产露脸久久av麻豆| 中文字幕制服av| 免费不卡的大黄色大毛片视频在线观看| 大片免费播放器 马上看| 久久99蜜桃精品久久| 一级爰片在线观看| 丰满少妇做爰视频| 超色免费av| 久久久久久久久久久免费av| 亚洲国产欧美日韩在线播放| 丝袜美足系列| 亚洲怡红院男人天堂| 国产精品不卡视频一区二区| 久久久精品区二区三区| 伦理电影免费视频| 色94色欧美一区二区| 国产无遮挡羞羞视频在线观看| 日韩人妻高清精品专区| 国产免费又黄又爽又色| 国产精品熟女久久久久浪| 亚洲内射少妇av| av播播在线观看一区| 少妇高潮的动态图| 日韩欧美精品免费久久| 自拍欧美九色日韩亚洲蝌蚪91| 两个人免费观看高清视频| av国产久精品久网站免费入址| 在线看a的网站| 国产色婷婷99| 能在线免费看毛片的网站| 视频在线观看一区二区三区| 亚洲第一av免费看| 26uuu在线亚洲综合色| 欧美人与善性xxx| 插阴视频在线观看视频| 汤姆久久久久久久影院中文字幕| 韩国av在线不卡| 免费不卡的大黄色大毛片视频在线观看| 亚洲av不卡在线观看| 久久久久久久久大av| 久久鲁丝午夜福利片| 欧美3d第一页| 国产亚洲最大av| 成人毛片60女人毛片免费| 男人添女人高潮全过程视频| 久久精品夜色国产| www.色视频.com| 久久精品人人爽人人爽视色| 能在线免费看毛片的网站| av免费在线看不卡| 精品熟女少妇av免费看| 中文字幕免费在线视频6| 精品久久国产蜜桃| 日韩av不卡免费在线播放| 国产亚洲av片在线观看秒播厂| 成人漫画全彩无遮挡| 国产精品国产三级国产av玫瑰| 久久久久久久久久久免费av| 久久这里有精品视频免费| 午夜激情av网站| 国产一区二区三区综合在线观看 | 午夜精品国产一区二区电影| 观看美女的网站| 十分钟在线观看高清视频www| 久久精品国产亚洲网站| 国产亚洲午夜精品一区二区久久| 五月开心婷婷网| 日本色播在线视频| 亚洲三级黄色毛片| 欧美亚洲日本最大视频资源| 免费大片18禁| 亚洲av成人精品一二三区| 午夜免费男女啪啪视频观看| 久久精品国产亚洲网站| 黄色毛片三级朝国网站| 成人国产麻豆网| 国产一区二区三区综合在线观看 | 性色avwww在线观看| 亚洲美女视频黄频| 国产高清不卡午夜福利| 一本一本综合久久| a级毛片在线看网站| 国产精品久久久久久久久免| 欧美日韩视频高清一区二区三区二| 亚洲成色77777| 伊人久久国产一区二区| 午夜福利影视在线免费观看| 亚洲欧洲国产日韩| 国产免费福利视频在线观看| 免费看光身美女| 久热久热在线精品观看| 亚洲欧美日韩卡通动漫| 国产极品粉嫩免费观看在线 | 久久99精品国语久久久| 免费看不卡的av| 国产一级毛片在线| 免费大片18禁| 男人操女人黄网站| 日本免费在线观看一区| 国产日韩欧美亚洲二区| 成人黄色视频免费在线看| 亚洲精品一二三| 狂野欧美白嫩少妇大欣赏| 美女xxoo啪啪120秒动态图| 亚洲伊人久久精品综合| 美女大奶头黄色视频| 久久女婷五月综合色啪小说| 亚洲av成人精品一区久久| 日韩 亚洲 欧美在线| 曰老女人黄片| 日韩一区二区三区影片| 亚洲五月色婷婷综合| 亚洲欧美日韩另类电影网站| 九色亚洲精品在线播放| 下体分泌物呈黄色| a级毛片黄视频| 国产成人aa在线观看| 久久久久国产精品人妻一区二区| 一级毛片我不卡| 91久久精品国产一区二区成人| 亚洲精品久久午夜乱码| 美女xxoo啪啪120秒动态图| 中文字幕最新亚洲高清| 久久久久人妻精品一区果冻| 精品一区在线观看国产| 黑人猛操日本美女一级片| 欧美另类一区| 日本av手机在线免费观看| 一区二区三区四区激情视频| 国产免费视频播放在线视频| 最后的刺客免费高清国语| 大香蕉97超碰在线| 下体分泌物呈黄色| 另类精品久久| 18禁动态无遮挡网站| 亚洲美女搞黄在线观看| 一个人免费看片子| 大又大粗又爽又黄少妇毛片口| 亚洲少妇的诱惑av| 久久精品国产鲁丝片午夜精品| 黑人巨大精品欧美一区二区蜜桃 | 黄色怎么调成土黄色| 亚洲精品国产色婷婷电影| 久久久久人妻精品一区果冻| 亚洲,一卡二卡三卡| 午夜福利影视在线免费观看| 日日摸夜夜添夜夜爱| 亚洲高清免费不卡视频| 在线观看国产h片| 亚洲欧洲日产国产| 亚洲欧洲精品一区二区精品久久久 | 国产成人免费观看mmmm| 各种免费的搞黄视频| 精品久久国产蜜桃| 观看美女的网站| 国产免费一区二区三区四区乱码| 中文字幕最新亚洲高清| 国产欧美另类精品又又久久亚洲欧美| 草草在线视频免费看| 交换朋友夫妻互换小说| 全区人妻精品视频| 纵有疾风起免费观看全集完整版| 日韩电影二区| 不卡视频在线观看欧美| 九九在线视频观看精品| 2022亚洲国产成人精品| 视频区图区小说| 亚洲内射少妇av| 国产高清有码在线观看视频| 亚洲国产精品成人久久小说| 热re99久久精品国产66热6| 精品亚洲成a人片在线观看| 国产免费又黄又爽又色| 99re6热这里在线精品视频| 国产精品一区二区在线观看99| 亚洲性久久影院| 国产成人精品久久久久久| 国产午夜精品久久久久久一区二区三区| 中文欧美无线码| 亚洲伊人久久精品综合| 亚洲精品乱久久久久久| 色哟哟·www| 久久国产亚洲av麻豆专区| 国产亚洲最大av| 亚洲精品av麻豆狂野| 欧美3d第一页| 国产高清三级在线| 尾随美女入室| 亚洲中文av在线| 国产熟女欧美一区二区| 制服丝袜香蕉在线| 国产国语露脸激情在线看| 2018国产大陆天天弄谢| 成人18禁高潮啪啪吃奶动态图 | 欧美日韩精品成人综合77777| 亚洲国产日韩一区二区| 伦精品一区二区三区| 九九在线视频观看精品| 久久99蜜桃精品久久| 一本—道久久a久久精品蜜桃钙片| 美女国产视频在线观看| 青青草视频在线视频观看| 亚洲高清免费不卡视频| 日韩亚洲欧美综合| 国产无遮挡羞羞视频在线观看| 人妻系列 视频| 欧美成人午夜免费资源| 午夜免费男女啪啪视频观看| 国产有黄有色有爽视频| 最新的欧美精品一区二区| 亚洲精品乱码久久久久久按摩| 伊人亚洲综合成人网| 最新的欧美精品一区二区| 我的女老师完整版在线观看| av一本久久久久| 好男人视频免费观看在线| 亚洲精品成人av观看孕妇| 亚洲三级黄色毛片| 国产精品一区二区在线观看99| 美女脱内裤让男人舔精品视频| 一级毛片黄色毛片免费观看视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久精品久久久久久久性| 国产爽快片一区二区三区| 人妻一区二区av| 欧美日韩一区二区视频在线观看视频在线| 精品国产一区二区三区久久久樱花| 成人亚洲精品一区在线观看| 人人妻人人澡人人爽人人夜夜| 美女脱内裤让男人舔精品视频| 三级国产精品欧美在线观看| 免费高清在线观看视频在线观看| 亚洲第一区二区三区不卡| 久久99蜜桃精品久久| 少妇人妻久久综合中文| 成人国语在线视频| 国产一区亚洲一区在线观看| 国产国语露脸激情在线看| 制服丝袜香蕉在线| 中文天堂在线官网| 亚洲欧美一区二区三区黑人 | 久久精品人人爽人人爽视色| 大又大粗又爽又黄少妇毛片口| 99久久人妻综合| 亚洲精品久久成人aⅴ小说 | kizo精华| 波野结衣二区三区在线| 欧美亚洲 丝袜 人妻 在线| 91久久精品国产一区二区三区| 久久久久久久精品精品| 一本久久精品| 丝袜在线中文字幕| 亚洲精品乱码久久久v下载方式| 欧美一级a爱片免费观看看| 国产一区二区三区综合在线观看 | 日本91视频免费播放| 日韩,欧美,国产一区二区三区| 99视频精品全部免费 在线| 日韩av在线免费看完整版不卡| 成人手机av| 国产精品一区二区在线不卡| 99九九在线精品视频| a级毛色黄片| 十八禁高潮呻吟视频| 伊人久久精品亚洲午夜| 亚洲国产精品一区二区三区在线| 少妇人妻 视频| 视频中文字幕在线观看| 人人澡人人妻人| 在线免费观看不下载黄p国产| 久久国产精品男人的天堂亚洲 | 国产精品人妻久久久久久| 高清午夜精品一区二区三区| 人人妻人人澡人人看| 青春草亚洲视频在线观看| 亚洲精品久久午夜乱码| 日韩免费高清中文字幕av| 亚洲精品乱码久久久v下载方式| 人妻一区二区av| 人成视频在线观看免费观看| 亚洲欧洲国产日韩| 久久午夜综合久久蜜桃| 成年人午夜在线观看视频| 乱人伦中国视频| 99re6热这里在线精品视频| 全区人妻精品视频| 一区在线观看完整版| 欧美少妇被猛烈插入视频| 国产片特级美女逼逼视频| 亚洲图色成人| 成人综合一区亚洲| 久久久久国产网址| 欧美3d第一页| 国产高清三级在线| 99视频精品全部免费 在线| 亚洲欧美成人综合另类久久久| 一级a做视频免费观看| 高清欧美精品videossex| 久久久久久人妻| 久久亚洲国产成人精品v| 人妻夜夜爽99麻豆av| 国产极品粉嫩免费观看在线 | 91在线精品国自产拍蜜月| 国产精品国产三级国产专区5o| 男人添女人高潮全过程视频| 九草在线视频观看| 在线天堂最新版资源| 少妇人妻久久综合中文| 中文字幕av电影在线播放| 美女视频免费永久观看网站| 中文字幕久久专区| 久久热精品热| 色吧在线观看| 夜夜骑夜夜射夜夜干| 亚洲av成人精品一区久久| 国产白丝娇喘喷水9色精品| 亚洲美女黄色视频免费看| 亚洲欧洲精品一区二区精品久久久 | 精品亚洲乱码少妇综合久久| 欧美一级a爱片免费观看看| 国产av码专区亚洲av| 五月伊人婷婷丁香| 一二三四中文在线观看免费高清| 国精品久久久久久国模美| 日韩 亚洲 欧美在线| 内地一区二区视频在线| 国产精品一区二区三区四区免费观看| 国产有黄有色有爽视频| 99热网站在线观看| 美女内射精品一级片tv| 黑人巨大精品欧美一区二区蜜桃 | 国产老妇伦熟女老妇高清| 亚洲国产成人一精品久久久| 国产一区有黄有色的免费视频| 精品一区二区三卡| 日韩熟女老妇一区二区性免费视频| 人体艺术视频欧美日本| 日韩不卡一区二区三区视频在线| 久久ye,这里只有精品| 国产 精品1| 尾随美女入室| 国产精品无大码| 久久久久久久精品精品| 久久精品国产亚洲网站| 日日摸夜夜添夜夜添av毛片| 只有这里有精品99| 97在线视频观看| 欧美精品亚洲一区二区| 国产成人一区二区在线| 国产 一区精品| 成人无遮挡网站| 乱人伦中国视频| 中文字幕人妻丝袜制服| 99久久中文字幕三级久久日本| 日日摸夜夜添夜夜爱| 国产欧美日韩一区二区三区在线 | 日本wwww免费看| 夜夜骑夜夜射夜夜干| 九九爱精品视频在线观看| 国产在线免费精品| 久久久久久伊人网av| 一本大道久久a久久精品| 久久这里有精品视频免费| 91久久精品电影网| 精品一区在线观看国产| 97精品久久久久久久久久精品| 亚洲av免费高清在线观看| 精品一区二区三卡| 久久久午夜欧美精品| 18禁在线播放成人免费| 亚洲不卡免费看| 久久女婷五月综合色啪小说| 精品久久久久久电影网| 国产精品熟女久久久久浪| 国产毛片在线视频| 最黄视频免费看| 亚洲高清免费不卡视频| 国产高清三级在线| 男女边摸边吃奶| 亚洲,一卡二卡三卡| 午夜福利视频在线观看免费| 交换朋友夫妻互换小说| 男女高潮啪啪啪动态图| 美女视频免费永久观看网站| 99国产综合亚洲精品| 高清av免费在线| 免费黄色在线免费观看| 久久久精品免费免费高清| 免费观看a级毛片全部| 一区二区三区乱码不卡18| 亚洲第一av免费看| 久久99一区二区三区| 成人影院久久| 999精品在线视频| 国产成人精品在线电影| 亚洲国产欧美在线一区| 国产视频内射| 久久女婷五月综合色啪小说| 一级片'在线观看视频| 中文字幕亚洲精品专区| 夜夜看夜夜爽夜夜摸| 91在线精品国自产拍蜜月| 免费黄频网站在线观看国产| 国产极品天堂在线| 午夜老司机福利剧场| 人妻 亚洲 视频| 大香蕉久久成人网| 男男h啪啪无遮挡| 成年女人在线观看亚洲视频| 欧美日韩在线观看h| 一区二区三区免费毛片| 国产高清三级在线| 只有这里有精品99| 日韩欧美精品免费久久| 亚洲久久久国产精品| 黑人高潮一二区| 亚洲欧美一区二区三区国产| 51国产日韩欧美| 久热久热在线精品观看| 欧美xxⅹ黑人| 成人18禁高潮啪啪吃奶动态图 | 男人爽女人下面视频在线观看| 国产高清三级在线| 国产精品偷伦视频观看了| 精品少妇内射三级| 亚洲av成人精品一区久久| 超色免费av| 丝袜美足系列| 久久这里有精品视频免费| 国产 一区精品| 亚洲av免费高清在线观看| 国产成人一区二区在线| 最近最新中文字幕免费大全7| 一区二区三区乱码不卡18| 男人添女人高潮全过程视频| 亚洲欧洲国产日韩| 久久精品国产亚洲网站| 国产有黄有色有爽视频| 青青草视频在线视频观看| 美女中出高潮动态图| 日产精品乱码卡一卡2卡三| 午夜老司机福利剧场| 熟女av电影| 中国三级夫妇交换| 久久99热6这里只有精品| 天堂中文最新版在线下载| 一二三四中文在线观看免费高清| 高清毛片免费看| 亚洲av中文av极速乱| 国产免费一区二区三区四区乱码| 亚洲精品久久成人aⅴ小说 | 欧美少妇被猛烈插入视频| 精品亚洲乱码少妇综合久久| 国产精品成人在线| a 毛片基地| 国产有黄有色有爽视频| 免费观看性生交大片5| 精品一区二区三卡| 欧美bdsm另类| 人妻少妇偷人精品九色| 成人亚洲精品一区在线观看| 激情五月婷婷亚洲| 高清在线视频一区二区三区| 天天躁夜夜躁狠狠久久av| 国精品久久久久久国模美| 久久精品熟女亚洲av麻豆精品| 国产精品无大码| 国产精品久久久久久精品电影小说| 亚洲久久久国产精品| 亚洲欧洲日产国产| 老女人水多毛片| 美女主播在线视频| 狂野欧美白嫩少妇大欣赏| 在线天堂最新版资源| 亚洲色图综合在线观看| 欧美激情 高清一区二区三区| 国产成人91sexporn| 99热这里只有是精品在线观看| 国产精品一区二区三区四区免费观看| 欧美精品国产亚洲| 午夜精品国产一区二区电影| 亚洲精品日韩av片在线观看| 久久99热6这里只有精品| 22中文网久久字幕| 在线免费观看不下载黄p国产| 热99久久久久精品小说推荐| 国产伦精品一区二区三区视频9| 99热6这里只有精品| 寂寞人妻少妇视频99o| 国产成人免费无遮挡视频| 人妻 亚洲 视频| 国产一区亚洲一区在线观看| 国产深夜福利视频在线观看| 成人手机av| a级毛色黄片| av网站免费在线观看视频| 欧美日韩国产mv在线观看视频| 赤兔流量卡办理| 97超视频在线观看视频| 18禁动态无遮挡网站| 免费高清在线观看视频在线观看| 亚洲精品日本国产第一区| 人人妻人人澡人人爽人人夜夜| 91久久精品国产一区二区三区| av黄色大香蕉| 国产精品一国产av| 一级,二级,三级黄色视频| 看十八女毛片水多多多| 搡老乐熟女国产| 欧美精品高潮呻吟av久久| 亚洲伊人久久精品综合| 国产无遮挡羞羞视频在线观看| 精品酒店卫生间| 免费黄网站久久成人精品| 日韩av不卡免费在线播放| 免费黄色在线免费观看| 在线观看免费日韩欧美大片 | 91精品一卡2卡3卡4卡| 国产亚洲最大av| 日韩精品免费视频一区二区三区 | 女性生殖器流出的白浆| 久久久久久久精品精品| 人妻一区二区av| 亚洲av电影在线观看一区二区三区| tube8黄色片| 亚洲欧美成人综合另类久久久| a级毛色黄片| 最新的欧美精品一区二区| 九色亚洲精品在线播放| 人妻夜夜爽99麻豆av| 国产亚洲精品久久久com| 99视频精品全部免费 在线| 精品国产国语对白av| 老司机影院毛片| 久久午夜福利片| 国产精品一区二区在线观看99| 亚洲精品av麻豆狂野| 亚洲精品美女久久av网站| 国产高清国产精品国产三级| av专区在线播放| 国国产精品蜜臀av免费| 国产淫语在线视频| 亚洲内射少妇av| 在线观看免费视频网站a站| 亚洲av福利一区| 亚洲av成人精品一区久久| 97超视频在线观看视频| 午夜福利视频在线观看免费| 色婷婷av一区二区三区视频| 国产乱人偷精品视频| 亚洲怡红院男人天堂| 丝瓜视频免费看黄片| 国产一区二区在线观看av| 成年av动漫网址| 亚洲欧洲国产日韩| 亚洲精品乱码久久久v下载方式| 国产 一区精品| 亚洲精品中文字幕在线视频| 久久99精品国语久久久| 性色av一级| 国产精品无大码| 美女视频免费永久观看网站| 欧美日韩在线观看h| 婷婷成人精品国产| av免费观看日本| 熟妇人妻不卡中文字幕| 亚洲美女视频黄频| 亚洲少妇的诱惑av| 日韩大片免费观看网站| 国产高清三级在线| 亚洲综合色网址| 日韩一区二区视频免费看| 97在线视频观看| 久久亚洲国产成人精品v| 综合色丁香网| 国产一区二区三区综合在线观看 | 啦啦啦在线观看免费高清www| 亚洲国产毛片av蜜桃av| 国产男人的电影天堂91| 久久狼人影院|