• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variable viscosity effects on the flow of MHD hybrid nanofluid containing dust particles over a needle with Hall current—a Xue model exploration

    2022-06-29 07:54:04MuhammadRamzanandHammadAlotaibi
    Communications in Theoretical Physics 2022年5期

    Muhammad Ramzan and Hammad Alotaibi

    1 Department of Computer Science,Bahria University,Islamabad,44000,Pakistan

    2 Department of Mathematics,College of Science,Taif University,PO Box 11099,Taif 21944,Saudi Arabia

    Abstract This study scrutinizes the flow of engine oil-based suspended carbon nanotubes magnetohydrodynamics(MHD)hybrid nanofluid with dust particles over a thin moving needle following the Xue model.The analysis also incorporates the effects of variable viscosity with Hall current.For heat transfer analysis,the effects of the Cattaneo–Christov theory and heat generation/absorption with thermal slip are integrated into the temperature equation.The Tiwari–Das nanofluid model is used to develop the envisioned mathematical model.Using similarity transformation,the governing equations for the flow are translated into ordinary differential equations.The bvp4c method based on Runge–Kutta is used,along with a shooting approach.Graphs are used to examine and depict the consequences of significant parameters on involved profiles.The results revealed that the temperature of the fluid and boundary layer thickness is diminished as the solid volume fraction is raised.Also,with an enhancement in the variable viscosity parameter,the velocity distribution becomes more pronounced.The results are substantiated by assessing them with an available study.

    Keywords:hybrid nanofluid,dusty fluid,variable viscosity,Cattaneo–Christov heat flux model,Hall current

    Nomenclature

    Introduction

    The use of liquid flow for cooling in a range of applications for instance automobiles,metallic plate cooling,and electronics has gained great popularity.In all of these cooling systems,various convectional fluids such as water,ethylene glycol,water mixtures,and other basic fluids are exercised as coolants.Several researchers have made significant contributions to improving the thermal conductivity of coolants for many years.Choi and Eastman[1]proposed the utilization of nanoparticles to increase the thermal conductivity of base liquids.Nanofluids are essentially a mixture of solid nanoparticles and liquid coolants that have been combined.The introduction of this new kind of coolant completely transformed the current manufacturing world.The ability of nanoparticles to enrich the heat transfer phenomena of the base fluid is quite remarkable.Many studies followed up on the pioneering work of Choi and Eastman[1]by looking into the impression of putting different solid nanoparticles into a variety of working fluids along with different geometries and finding interesting results[2–6].The cuttingedge nanofluid,‘hybrid nanofluid,’has recently been the subject of several discreet research using two kinds of nanoparticles submerged in a base fluid.To maximize the heat transfer rate of a hybrid nanofluid,a proper combination of nanoparticles must be used.Hybrid nanofluids have a wide variety of applications in medical,lubricating,solar heating,microfluidics,nuclear system and cooling,and thermal management of vehicles.In comparison to ordinary nanofluid,the hybrid nanofluid is more efficient as a cooling agent.The concept of a hybrid nanofluid is discussed in several scholarly works.Wainiet al[7]demonstrated the flow of the hybrid nanofluid with(PHF)prescribed heat flux over a thin needle erected vertically.It is noticed that rising the volume fraction of copper(Cu)nanoparticles and lowering the needle size results in a rise in the skin friction coefficient and the heat flux rate on the needle.Additionally,Sulochanaet al[8]scrutinized the Al–Cu/menthol flow of the nanofluid(hybrid)across a thin needle with(thermal)radiation effects.It is discovered that increasing the needle thickness has a substantial effect on the heat transfer rate of hybrid nanoliquid.Mousaviet al[9]established the hybrid nanofluid flow comprising TiO2–Cu/H2O along a thin needle accompanying the radiation effects.The results reveal that dual solutions exist for the reverse direction of the free stream of the thin needle.Rameshet al[10]deliberated the heat transmission of a hybrid liquid across a thin needle in a spongy medium with different effects.Further literature on hybrid nanofluids is available in the[11–18].

    It is well established that heat transfer happens between two bodies or inside the same body as a result of a temperature difference.Heat transfer is a tremendously important phenomenon in industrial,technical,and biological applications.Fourier was the first to explain the heat transmission process[19].However,it has the drawback of producing a parabolic energy equation for the temperature distribution.Cattaneo[20]solved this problem by adding the thermal relaxation period to the basic Fourier formula of heat conduction.Finally,Christov[21]replaced the Cattaneo law with an Oldroyd upper convected derivative in the Maxwell–Cattaneo model to preserve the formulation’s material invariance.Cattaneo–Christov(C–C)heat flux model consistency concerns have been examined by Ciarletta and Straughan[22]in both specific and systematic approaches.The latest research has highlighted the significance of the C–C heat flux in varied models[23–27].

    Numerous researchers have devoted years to studying the heat transfer properties of dusty fluid flow,which is a two-phase fluid,to better understand a variety of real-world challenges,particularly in the meteorological,medical,and engineering domains.Dust particles are employed in a diverse application,including the petroleum industry,soil erosion caused by natural winds,crude oil purification,aerosol and fluidization,paint spraying,dust entrainment after nuclear explosions in clouds,and wastewater management[28–30].Saffman[31]developed the first dusty fluid flow equations and analyzed the stability of the laminar flow of a dusty gas with equally distributed particles.Later,Chakrabarti[32]studied dusty gas utilizing boundary layer theory.Numerous scholars have since worked on dusty fluid flow on different geometries.Recently,Kumaret al[33]considered the flow of suspended carbon nanotubes(CNTs)in a dusty nanofluid across a stretched porous rotating disk.The results indicate that SWCNT-water-based fluid exhibits a higher rate of heat transfer than MWCNTs water-based fluid in both the dust and fluid phases.Gireeshaet al[34]used numerical simulations to investigate the significance of nonlinear thermal radiation and hall currents on a dusty fluid on a heated stretched sheet,whereas Abbaset al[35]investigated dusty fluid flow in a spongy media while taking slip and MHD into account.More work on dust phase fluid can be found in[36–39].

    The main contribution of this investigation is to deal with the MHD nanofluid flow with CNTs in engine oil with thermal slip across a thin moving needle in two dimensions.Dust particles are also studied concerning Hall current and varying viscosity.C–C theory and heat generation/absorption are also cogitated in the temperature equation for heat transfer analysis.CNTs-based hybrid nanofluid’s thermal conductivity is analyzed using a new model named the Xue model.Using the relevant similarity transformations,the resultant system of a highly nonlinear system is numerically resolved.The findings are presented using graphs.The leading objective of the present exploration is to look for the answers to the ensuing questions:

    ?What are the consequences of solid volume fraction on the dust and hybrid nanofluid phases?

    ?How does solid volume fraction affect the temperature of the hybrid nanofluid and dust phases?

    ?What is the impact of fluid particles’ interaction parameters on the fluid velocity and dust phases?

    ?How hybrid nanofluid particle interaction parameter affects the fluid and dust phases?

    ?What is the consequence of the Eckert number on the fluid temperature?

    Mathematical modeling

    We consider a hybrid nanofluid flow past a moving needle with temperature-dependent viscosity(figure 1).The Xue model is adopted with single-wall and multi-wall CNTs immersed into the engine oil(base fluid).The radius of the cylindrical needle is presumed asR=r(X).Here,the needle’s leading edge is along theX-axis andR,Xare assumed as the radial and axial coordinates.Here,the transverse curvature is considered nevertheless the pressure gradient in the body direction is ignored.The wall temperatureTwand the temperature far away from the wall∞Tare taken as constant withTw>T∞.The movement of the needle is observed with a constant velocityVw.

    Nanofluid phase:[5,43]

    Dust phase:[42]

    the stretching velocity and thermal slip boundary conditions are given as:

    Table 1 presents the attributes of the CNTs and the engine oil(base fluid).

    Table 1.Thermal and physical traits of engine oil and CNTs(SWCNTs and MWCNTs)[44].

    Table 2.Numerical calculations of skin friction whenPr=6.2,M=0.2,φ1=0.03,α=0.2.

    Table 3.Verification of the current problem for the varied values of c whereφi,d= 0= λ =βv= m =M with Ishak et al[40],Afridi et al[41],and Tlili et al[42].

    The variable viscosity,thermal conductivity,density,and specific heat for SWCNTs/engine oil(nanofluid)and SWCNTs-MWCNTs/engine oil(hybrid nanofluid)are specified as[44,45]:

    Simple nanofluidHybrid nanofluid()α=ρ k C,pnf nfnf()()μ μ=??φ θθ 11,nf f 2.5 r()()()()αρC,μ μ φφ==???θθ k 111,p f hnfhnf hnf hnf 12.522.5 r()()()()ρρφ ρφ=+?CC C1,pp p nfSWCNT f()()(){()()()}ρρφφ φ ρφ ρC=??×?+CC C 1 1,ppT p fp hnfSWCN22 1 1MWCNT()ρφρφ ρ=+ 1?,nfSWCNTf(){()}ρφ ρφ φ ρφ ρ=+ ?×?+1 1,hnf2 SWCNT2 1 f1 MWCNT()()()()()()φφ φφ=?+?+?+?+kk 12ln 12ln.k kk kk k k kk kk k nf f T NT f f SWCNTf SWCNT SWCNf SWCf SWCNTf f()()()()()()φφ φφ=?+?+?+?+kk 12ln 12ln,k kk kk k k kk kk k hnf nf 22 22 Tnf bf SWCNT SWCNnf SWCNTnf SWCNTnf SWCNTnf nf()()()()()()φφ φφ=?+?+?+?+k kk 12ln 12ln.k kk kk k k kk k k nf f 11 11 T T T T MWCNT MWCNf MWCNf f f MWCNf MWCNf f

    The solid volume fraction of SWCNTs is denoted byφ2and that of the MWCNTs is clarified byφ1,specific heat and thermal conductivity of regular fluid are correspondingly defined byCpandkf.

    Similarity analysis

    Using the similarity transformation[46]:

    Applying equation(8),the above nanoparticle phase equations are transmuted to:

    and the dust phase equation becomes:

    with the transformed conditions:

    The parameters involved in equations(9)–(13)is identified as:

    Physical engineering quantities

    The surface drag coefficient and the rate of heat flux are identified as:

    Using equation(10)in(17)we gained,

    Numerical appraisal

    By implementing the Runge–Kutta-based MATLAB function bvp4c,the existing problem solution is found numerically.In addition,we ‘shoot’ directions in this method in different ways until we have the appropriate boundary value.This is a technique that is very simple and effective.We take the convergence criterion to reach the solution,which is10?5.The solution is achieved graphically concerning different variables for the velocity and temperature for both the fluid phase and the dust phase.

    Outcomes and discussion

    This section describes the salient parameters’correlation with the associated profiles.The values of the involved parameters are taken as:m=2,θr=0.1,βv=0.3,α=0.2,γT=0.5,δ=0.1,λ=0.2,M=0.2,Pr=6.2,βT=3,Ec=0.01,Dc=0.1,c=0.01.Figures 2–5 demonstrate the significance of solid volume fraction of SWCNTs and MWCNTs on velocity and temperature fields of fluid and dust phase.Figures 2 and 3 scrutinized the impact of solid volume fraction on velocity distribution for fluid and dust phases.It is found that the velocity of the fluid and dust phases is enhanced with an increase in the solid volume fraction.The thermal conductivity of the fluid is directly proportionate with the volume fraction that improves the fluid velocity for both fluid and dust phases.Nevertheless,the temperature profile and its related boundary layer thickness diminish for enlarged estimation of solid volume fraction(see in figure 4).While the dust phase temperature and their accompanying boundary layer thickness are enhanced(figure 5).To identify the influence of fluid particles’ interaction parameterβvon both velocities figures 6 and 7 are sketched.It is seen that both the velocities are diminished forβ.vThis is owing to intensified fluid particles interaction that creates an opposing force to the fluid flow.This phenomenon continues till the dust phase fluid velocity accesses the fluid phase velocity.That is why declined velocities are seen here.Figures 8 and 9 are plotted for both velocity profiles for varied values of dust particles mass concentrationα.Velocity distribution for both fluid and dust phase reduces for enlarged values ofα.The accumulation of the dust particles into the fluid strengthens the surface drag force that eventually resists the fluid motion.That is why diminished velocities for both phases are observed.The temperature of the fluid and dust phase is an escalating function of the fluid particle interaction parameterβT(figures 10 and 11).It is understood from the figures that increasing values ofβTsimmer down the fluid.Thus,βTacts as a controlling agent for the flow behavior.The influence of the Eckert numberEcon the fluid temperature is exhibited in figure 12.It is concluded that the temperature profile enhances for significant estimates ofEc.The physical explanation for this outcome is an improvement in kinetic energy and the collision among nanofluid molecules because of its direct association with the Eckert number.Figure 13 examines the impact of the thermal relaxation parameterγTon the temperature field.It is comprehended that the temperature of the fluid is on the decline for numerous values ofγT.Higher estimates of theγTspecify the qualities of the insulating material that lowers the fluid temperature.That is why we see a diminishing thermal profile.Figure 14 highlighted the impression of the heat generation parameterDcon the temperature profile.It is inspected that the temperature and its correlated thermal boundary layer thickness enhance with the large estimation of heat generation parameter.It is because excessive energy is produced for large estimates of heat generation that eventually boosts the fluid temperature.

    Figure 1.Flow problem model.

    Figure 2.Association ofφ 1,φ2 and f′(η).

    Figure 3.Association ofφ 1,φ2 andfp′(η).

    Figure 4.Association ofφ1,φ2 and θ (η).

    Figure 5.Association ofφ 1,φ2 and θp (η).

    Figure 6.Association of βv and f′(η).

    Figure 7.Association of βv andfp′(η).

    Figure 8.Association of α and f′(η).

    Figure 9.Association of α andfp′(η).

    Figure 10.Association of βT and θ (η).

    Figure 11.Association of βT and θp (η).

    Figure 12.Association of Ec and θ (η).

    Figure 13.Association of γT and θ (η).

    Figure 14.Association of Dc and temperature field θ (η).

    Table 2 demonstrates the surface drag coefficient for numerous values of varied parameters.It is demonstrated that the drag coefficient augments with higher the estimation of solid volume fraction and variable viscosity parameter while its declines with higher the estimation of Hall current parameter,fluid particles interaction parameter,and volume fraction of dust particles.

    The current result shows good accord with earlier published findings Ishaket al[40],Afridiet al[41],and Tliliet al[42](see in table 3).

    Concluding remarks

    This research has been established to explore the impact of the magnetohydrodynamics(MHD)2D,nanoliquid flow of engine oil as a working fluid.CNTs were inserted with thermal slip over a thin moving needle following Xue model.Variable viscosity and thermal C–C heat flux and the heat generation/absorption were supported by the thermal slip.The constructed model has been numerically handled using the bvp4c function of MATLAB software.The corresponding profiles are plotted against their relevant parameters and the findings are described coherently.The following are the most significant outcomes:

    ?The fluid phase and dust phase velocities are boosted as the estimates of solid volume fraction increase.

    ?For larger solid volume fraction estimation,temperature distribution and boundary layer thickness dwindled,while dust phase temperature raised.

    ?The fluid and dust phases velocities have dwindled for the improved fluid particles interaction parameter.

    ?Velocity distribution for fluid and dust phase reduces for enlarged values of dust particles mass concentration.

    ?The temperature distribution heightens for greater estimates of the Eckert number.

    Acknowledgments

    The authors are thankful for the Taif University research supporting project number(TURSP-2020/304),Taif University,Saudi Arabia.

    Conflict of interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Author contribution statement

    MR supervised and conceived the idea;HA wrote the manuscript.

    日本一本二区三区精品| 一个人观看的视频www高清免费观看 | 两个人视频免费观看高清| 亚洲片人在线观看| 色哟哟哟哟哟哟| 一本综合久久免费| 精品国产乱子伦一区二区三区| 美女高潮的动态| 99精品久久久久人妻精品| 男女之事视频高清在线观看| 听说在线观看完整版免费高清| 国产男靠女视频免费网站| 不卡一级毛片| 成人高潮视频无遮挡免费网站| 久久伊人香网站| 日本撒尿小便嘘嘘汇集6| 亚洲精品粉嫩美女一区| 久久精品夜夜夜夜夜久久蜜豆| 此物有八面人人有两片| 又紧又爽又黄一区二区| 亚洲一区二区三区不卡视频| 精品久久久久久久人妻蜜臀av| 精品99又大又爽又粗少妇毛片 | 日韩有码中文字幕| 中国美女看黄片| 嫩草影院精品99| 久久婷婷人人爽人人干人人爱| 女人高潮潮喷娇喘18禁视频| 欧美午夜高清在线| 亚洲成av人片在线播放无| 日本三级黄在线观看| 亚洲欧美激情综合另类| 精品欧美国产一区二区三| 黄色视频,在线免费观看| 在线永久观看黄色视频| 欧美在线黄色| 又粗又爽又猛毛片免费看| 亚洲va日本ⅴa欧美va伊人久久| 久久久久免费精品人妻一区二区| 国产av麻豆久久久久久久| 最近最新中文字幕大全电影3| 在线播放国产精品三级| 亚洲欧美精品综合久久99| av女优亚洲男人天堂 | 精品一区二区三区av网在线观看| svipshipincom国产片| 99久久精品国产亚洲精品| 嫩草影院入口| 国产伦人伦偷精品视频| 91av网站免费观看| 最近视频中文字幕2019在线8| 噜噜噜噜噜久久久久久91| 精品乱码久久久久久99久播| 男女做爰动态图高潮gif福利片| 亚洲第一电影网av| 亚洲色图 男人天堂 中文字幕| a级毛片在线看网站| 一边摸一边抽搐一进一小说| 亚洲国产欧美一区二区综合| 18禁裸乳无遮挡免费网站照片| 美女cb高潮喷水在线观看 | 成人欧美大片| 午夜精品一区二区三区免费看| 国产av麻豆久久久久久久| 国产成人精品久久二区二区免费| 中文字幕高清在线视频| 久久精品亚洲精品国产色婷小说| 国产精品乱码一区二三区的特点| 国产熟女xx| 中文资源天堂在线| 久久精品国产综合久久久| netflix在线观看网站| 日日摸夜夜添夜夜添小说| 精品久久久久久久久久免费视频| xxx96com| 国产激情偷乱视频一区二区| 国产精品野战在线观看| 久久人妻av系列| 久久热在线av| av黄色大香蕉| 中文在线观看免费www的网站| 欧美日韩亚洲国产一区二区在线观看| 欧洲精品卡2卡3卡4卡5卡区| 婷婷丁香在线五月| 免费在线观看成人毛片| 国产日本99.免费观看| svipshipincom国产片| 国产精品 欧美亚洲| 99国产精品一区二区蜜桃av| 偷拍熟女少妇极品色| 长腿黑丝高跟| 变态另类丝袜制服| 亚洲,欧美精品.| 国产蜜桃级精品一区二区三区| 日本 av在线| 19禁男女啪啪无遮挡网站| 亚洲va日本ⅴa欧美va伊人久久| 91久久精品国产一区二区成人 | 婷婷丁香在线五月| 精品久久久久久久毛片微露脸| 97碰自拍视频| 中文资源天堂在线| 亚洲黑人精品在线| 欧美一区二区精品小视频在线| 免费一级毛片在线播放高清视频| 国产高清视频在线播放一区| 国产一区二区激情短视频| 嫩草影院精品99| 床上黄色一级片| 脱女人内裤的视频| 国产成人一区二区三区免费视频网站| 亚洲av熟女| 香蕉av资源在线| av天堂在线播放| 天堂√8在线中文| 一边摸一边抽搐一进一小说| 99久久精品国产亚洲精品| 69av精品久久久久久| 天天添夜夜摸| 亚洲中文av在线| 成年女人永久免费观看视频| 日本成人三级电影网站| 亚洲国产欧美网| 两性午夜刺激爽爽歪歪视频在线观看| 国产真人三级小视频在线观看| 夜夜爽天天搞| 最近最新中文字幕大全电影3| 精品一区二区三区视频在线观看免费| 舔av片在线| 女人被狂操c到高潮| 国产亚洲精品综合一区在线观看| 亚洲熟女毛片儿| 国语自产精品视频在线第100页| 两个人看的免费小视频| 欧美另类亚洲清纯唯美| 亚洲精品456在线播放app | 怎么达到女性高潮| 婷婷精品国产亚洲av在线| 深夜精品福利| 亚洲,欧美精品.| 亚洲精品一区av在线观看| 人人妻人人澡欧美一区二区| 1000部很黄的大片| 999久久久精品免费观看国产| 久久国产精品影院| 亚洲真实伦在线观看| av国产免费在线观看| 免费在线观看日本一区| 日本三级黄在线观看| 久久草成人影院| 成熟少妇高潮喷水视频| aaaaa片日本免费| 法律面前人人平等表现在哪些方面| 国产探花在线观看一区二区| 两性夫妻黄色片| 18美女黄网站色大片免费观看| 夜夜爽天天搞| 国产麻豆成人av免费视频| 99riav亚洲国产免费| 性色avwww在线观看| 级片在线观看| 又黄又粗又硬又大视频| 精品久久久久久久久久免费视频| 亚洲av成人精品一区久久| 色综合欧美亚洲国产小说| 欧洲精品卡2卡3卡4卡5卡区| 高潮久久久久久久久久久不卡| 欧美高清成人免费视频www| 日本黄大片高清| 色综合亚洲欧美另类图片| 亚洲精品国产精品久久久不卡| 美女午夜性视频免费| 婷婷六月久久综合丁香| 99re在线观看精品视频| 亚洲18禁久久av| 免费观看人在逋| 18美女黄网站色大片免费观看| 欧美极品一区二区三区四区| 国产成人精品久久二区二区免费| 国内久久婷婷六月综合欲色啪| 最近最新中文字幕大全电影3| 99久国产av精品| 久久草成人影院| 久久久久久久久免费视频了| 亚洲最大成人中文| 日本五十路高清| 国产主播在线观看一区二区| 欧美av亚洲av综合av国产av| av欧美777| av欧美777| 国产三级黄色录像| 在线观看美女被高潮喷水网站 | 欧美一级a爱片免费观看看| 色视频www国产| 亚洲精品456在线播放app | 一夜夜www| 日本 欧美在线| 久久久久久久久免费视频了| 精品不卡国产一区二区三区| 黄色成人免费大全| 手机成人av网站| 久久久久国产精品人妻aⅴ院| 欧美不卡视频在线免费观看| 亚洲av成人不卡在线观看播放网| 成人国产一区最新在线观看| 一夜夜www| 国产精品永久免费网站| 久久久久免费精品人妻一区二区| 亚洲国产色片| 99在线视频只有这里精品首页| 亚洲av第一区精品v没综合| a在线观看视频网站| 国产成人aa在线观看| 亚洲欧美激情综合另类| 亚洲人成网站在线播放欧美日韩| 亚洲精品国产精品久久久不卡| av视频在线观看入口| 在线免费观看的www视频| 精品久久久久久久毛片微露脸| 免费观看的影片在线观看| 黄色丝袜av网址大全| 波多野结衣巨乳人妻| 欧美日韩国产亚洲二区| 日韩欧美 国产精品| 午夜影院日韩av| 视频区欧美日本亚洲| 成年女人毛片免费观看观看9| 亚洲一区二区三区色噜噜| 岛国在线免费视频观看| 黑人操中国人逼视频| 久久久久久九九精品二区国产| 美女黄网站色视频| 岛国在线免费视频观看| 老鸭窝网址在线观看| а√天堂www在线а√下载| 久久久久九九精品影院| 久久久色成人| 国产成人aa在线观看| 久久伊人香网站| 又粗又爽又猛毛片免费看| 久久精品91无色码中文字幕| 国产熟女xx| 午夜福利18| 嫩草影院精品99| 国产成人精品久久二区二区91| 国产精品久久久久久人妻精品电影| 一本一本综合久久| 亚洲精品乱码久久久v下载方式 | 亚洲五月婷婷丁香| 怎么达到女性高潮| 国产精品久久久人人做人人爽| 69av精品久久久久久| 亚洲国产中文字幕在线视频| 亚洲午夜精品一区,二区,三区| 九九在线视频观看精品| 免费av不卡在线播放| 亚洲 欧美 日韩 在线 免费| 好男人电影高清在线观看| 日本精品一区二区三区蜜桃| 变态另类丝袜制服| 在线观看午夜福利视频| 在线十欧美十亚洲十日本专区| 床上黄色一级片| 很黄的视频免费| 日日夜夜操网爽| 国产视频一区二区在线看| 村上凉子中文字幕在线| 深夜精品福利| 成人av在线播放网站| 亚洲av电影不卡..在线观看| svipshipincom国产片| 国产午夜精品论理片| 九九久久精品国产亚洲av麻豆 | 国产伦精品一区二区三区四那| 午夜福利在线在线| 午夜福利免费观看在线| 性色avwww在线观看| 欧美成狂野欧美在线观看| 99久久综合精品五月天人人| 人人妻人人看人人澡| 国产亚洲av高清不卡| 美女大奶头视频| 极品教师在线免费播放| www国产在线视频色| 国产99白浆流出| 欧美日韩中文字幕国产精品一区二区三区| 免费在线观看亚洲国产| 超碰成人久久| 国产三级在线视频| 在线视频色国产色| 丰满人妻一区二区三区视频av | 国产精品一区二区三区四区免费观看 | 亚洲va日本ⅴa欧美va伊人久久| 身体一侧抽搐| 婷婷六月久久综合丁香| 日本a在线网址| 99riav亚洲国产免费| 午夜成年电影在线免费观看| 国产精品一区二区精品视频观看| 亚洲一区二区三区色噜噜| 中文字幕人成人乱码亚洲影| 男女视频在线观看网站免费| 国产成人啪精品午夜网站| 一进一出抽搐gif免费好疼| 狠狠狠狠99中文字幕| www.熟女人妻精品国产| 精品不卡国产一区二区三区| ponron亚洲| 欧美午夜高清在线| 日本免费a在线| 熟女少妇亚洲综合色aaa.| 亚洲专区字幕在线| 亚洲av成人不卡在线观看播放网| 国产高清视频在线观看网站| 亚洲国产色片| 亚洲自偷自拍图片 自拍| 18禁国产床啪视频网站| 精品欧美国产一区二区三| 国产1区2区3区精品| 村上凉子中文字幕在线| 免费大片18禁| 精品一区二区三区四区五区乱码| 成人欧美大片| 啦啦啦免费观看视频1| 国产精品女同一区二区软件 | 老鸭窝网址在线观看| 一区二区三区国产精品乱码| 男女下面进入的视频免费午夜| 免费看十八禁软件| 脱女人内裤的视频| 国产亚洲av高清不卡| 亚洲熟妇中文字幕五十中出| 无人区码免费观看不卡| 色老头精品视频在线观看| 美女大奶头视频| 制服丝袜大香蕉在线| 美女 人体艺术 gogo| 免费观看精品视频网站| 久久精品91蜜桃| or卡值多少钱| 99热这里只有精品一区 | 欧美性猛交黑人性爽| 一卡2卡三卡四卡精品乱码亚洲| 麻豆成人av在线观看| 97超视频在线观看视频| 性色avwww在线观看| 国产成人啪精品午夜网站| 一级黄色大片毛片| 国产精品免费一区二区三区在线| 麻豆成人午夜福利视频| 在线观看舔阴道视频| 午夜免费成人在线视频| 我要搜黄色片| 亚洲成av人片免费观看| 一级毛片高清免费大全| 久久人人精品亚洲av| 亚洲五月天丁香| 国产成人av激情在线播放| 村上凉子中文字幕在线| 欧美黑人巨大hd| 国产精品 欧美亚洲| 婷婷精品国产亚洲av| 美女免费视频网站| 制服丝袜大香蕉在线| 日韩欧美在线二视频| 欧美日韩黄片免| 99国产综合亚洲精品| 精品午夜福利视频在线观看一区| 国产精品一区二区精品视频观看| 变态另类丝袜制服| 久久久久性生活片| 99视频精品全部免费 在线 | 亚洲人与动物交配视频| 天堂av国产一区二区熟女人妻| 国产三级在线视频| 俺也久久电影网| 国产在线精品亚洲第一网站| 亚洲熟女毛片儿| 俄罗斯特黄特色一大片| 亚洲男人的天堂狠狠| 啦啦啦免费观看视频1| 成年免费大片在线观看| 国产一级毛片七仙女欲春2| 91av网站免费观看| 久久热在线av| 国产精品98久久久久久宅男小说| 一区福利在线观看| 久久亚洲真实| 久久久久精品国产欧美久久久| 黄色 视频免费看| 久久精品影院6| av片东京热男人的天堂| 9191精品国产免费久久| 国产一区二区在线观看日韩 | 十八禁网站免费在线| 亚洲av电影不卡..在线观看| 国内少妇人妻偷人精品xxx网站 | 欧美极品一区二区三区四区| 国内精品一区二区在线观看| 亚洲美女视频黄频| 老鸭窝网址在线观看| 国产成人aa在线观看| 天堂av国产一区二区熟女人妻| 搡老岳熟女国产| 久9热在线精品视频| 久久精品91蜜桃| 欧美激情在线99| 99热精品在线国产| 欧美日本亚洲视频在线播放| 日本a在线网址| 午夜精品一区二区三区免费看| 不卡一级毛片| 51午夜福利影视在线观看| 真实男女啪啪啪动态图| 在线观看66精品国产| 色噜噜av男人的天堂激情| 69av精品久久久久久| 日日摸夜夜添夜夜添小说| 日本 av在线| 国产精品 欧美亚洲| 国产精品一及| 丰满人妻熟妇乱又伦精品不卡| 欧美在线黄色| bbb黄色大片| 国产精品久久久久久久电影 | 人妻夜夜爽99麻豆av| 深夜精品福利| 在线免费观看不下载黄p国产 | 色视频www国产| 亚洲av五月六月丁香网| 噜噜噜噜噜久久久久久91| av黄色大香蕉| 波多野结衣高清作品| 精品久久久久久久人妻蜜臀av| 九色成人免费人妻av| 午夜福利成人在线免费观看| 此物有八面人人有两片| 欧美乱妇无乱码| 精品国内亚洲2022精品成人| 日韩 欧美 亚洲 中文字幕| 在线观看午夜福利视频| 一级毛片精品| av天堂在线播放| 久久精品91无色码中文字幕| 人妻丰满熟妇av一区二区三区| 欧美+亚洲+日韩+国产| 高清毛片免费观看视频网站| 国产亚洲精品一区二区www| 狠狠狠狠99中文字幕| 在线观看66精品国产| tocl精华| 国产三级在线视频| 欧美成人免费av一区二区三区| 国产三级中文精品| 麻豆国产av国片精品| 欧美不卡视频在线免费观看| 国产精品日韩av在线免费观看| 伦理电影免费视频| av片东京热男人的天堂| 欧美一区二区国产精品久久精品| a级毛片在线看网站| 免费一级毛片在线播放高清视频| 97超视频在线观看视频| 97超级碰碰碰精品色视频在线观看| 丁香六月欧美| 他把我摸到了高潮在线观看| 夜夜夜夜夜久久久久| 午夜免费成人在线视频| 亚洲成人久久爱视频| 好男人电影高清在线观看| 久久精品国产99精品国产亚洲性色| 午夜视频精品福利| 精品欧美国产一区二区三| 欧美日韩黄片免| 久久九九热精品免费| 国产精品1区2区在线观看.| 免费看美女性在线毛片视频| av黄色大香蕉| 99re在线观看精品视频| xxxwww97欧美| 成人特级黄色片久久久久久久| 亚洲av日韩精品久久久久久密| 久久国产精品人妻蜜桃| 亚洲国产看品久久| 日本撒尿小便嘘嘘汇集6| 九九在线视频观看精品| 精品久久久久久久末码| 国产精品亚洲美女久久久| 久久久久久久精品吃奶| 我的老师免费观看完整版| 亚洲一区高清亚洲精品| 宅男免费午夜| 91在线观看av| 叶爱在线成人免费视频播放| 好看av亚洲va欧美ⅴa在| 中文字幕熟女人妻在线| 丁香六月欧美| 亚洲av美国av| 91麻豆av在线| 午夜视频精品福利| 国模一区二区三区四区视频 | 亚洲熟妇中文字幕五十中出| 法律面前人人平等表现在哪些方面| 亚洲真实伦在线观看| 久99久视频精品免费| 国产一级毛片七仙女欲春2| 又大又爽又粗| 欧美三级亚洲精品| 两人在一起打扑克的视频| 精品国产三级普通话版| 级片在线观看| 日韩欧美三级三区| 淫妇啪啪啪对白视频| 丰满人妻一区二区三区视频av | 成人特级av手机在线观看| 淫妇啪啪啪对白视频| 亚洲片人在线观看| 午夜成年电影在线免费观看| 亚洲成人精品中文字幕电影| 操出白浆在线播放| 人妻夜夜爽99麻豆av| 美女cb高潮喷水在线观看 | 母亲3免费完整高清在线观看| av福利片在线观看| 女警被强在线播放| 欧美+亚洲+日韩+国产| 97超级碰碰碰精品色视频在线观看| 女人高潮潮喷娇喘18禁视频| 久久这里只有精品19| 久久久久久九九精品二区国产| 最近在线观看免费完整版| av天堂中文字幕网| 国产成人精品无人区| 99久久99久久久精品蜜桃| 叶爱在线成人免费视频播放| 亚洲av片天天在线观看| 亚洲熟妇中文字幕五十中出| 99久久成人亚洲精品观看| 美女免费视频网站| 久久草成人影院| 国产男靠女视频免费网站| www.www免费av| 日韩免费av在线播放| 亚洲色图 男人天堂 中文字幕| 999精品在线视频| 国产亚洲av嫩草精品影院| 身体一侧抽搐| 午夜福利视频1000在线观看| 亚洲电影在线观看av| 高清毛片免费观看视频网站| h日本视频在线播放| 成人午夜高清在线视频| 亚洲国产精品合色在线| 听说在线观看完整版免费高清| 精品久久久久久久久久免费视频| 美女黄网站色视频| 黑人欧美特级aaaaaa片| 亚洲18禁久久av| 99精品在免费线老司机午夜| 露出奶头的视频| 欧美精品啪啪一区二区三区| 最近在线观看免费完整版| 波多野结衣高清无吗| 成年女人毛片免费观看观看9| 巨乳人妻的诱惑在线观看| 免费看日本二区| 日本免费一区二区三区高清不卡| 麻豆成人午夜福利视频| 999久久久精品免费观看国产| 成年人黄色毛片网站| 欧美日韩黄片免| 国产成人一区二区三区免费视频网站| 黄色 视频免费看| 后天国语完整版免费观看| 一级毛片精品| 亚洲av免费在线观看| 国产欧美日韩精品一区二区| 欧美日韩中文字幕国产精品一区二区三区| 一级毛片精品| 88av欧美| 国内精品久久久久精免费| 亚洲av日韩精品久久久久久密| netflix在线观看网站| 91在线精品国自产拍蜜月 | 日本一本二区三区精品| 国产成年人精品一区二区| 99热这里只有精品一区 | 欧美激情在线99| 国产亚洲av高清不卡| 国产精华一区二区三区| 午夜福利在线观看免费完整高清在 | 悠悠久久av| 久久久久性生活片| 欧美日本亚洲视频在线播放| 99久久综合精品五月天人人| 欧美又色又爽又黄视频| 中亚洲国语对白在线视频| 变态另类成人亚洲欧美熟女| 欧美成人一区二区免费高清观看 | 欧美成人性av电影在线观看| 国产毛片a区久久久久| 亚洲av熟女| 亚洲电影在线观看av| 成人av在线播放网站| 国产精品久久久久久亚洲av鲁大| 狂野欧美激情性xxxx| 久久亚洲精品不卡| 亚洲av成人精品一区久久| 久久精品aⅴ一区二区三区四区| 欧美丝袜亚洲另类 | 亚洲avbb在线观看| 久久99热这里只有精品18| 国产欧美日韩精品一区二区| 国产精品女同一区二区软件 | 久久精品91蜜桃|