• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variable viscosity effects on the flow of MHD hybrid nanofluid containing dust particles over a needle with Hall current—a Xue model exploration

    2022-06-29 07:54:04MuhammadRamzanandHammadAlotaibi
    Communications in Theoretical Physics 2022年5期

    Muhammad Ramzan and Hammad Alotaibi

    1 Department of Computer Science,Bahria University,Islamabad,44000,Pakistan

    2 Department of Mathematics,College of Science,Taif University,PO Box 11099,Taif 21944,Saudi Arabia

    Abstract This study scrutinizes the flow of engine oil-based suspended carbon nanotubes magnetohydrodynamics(MHD)hybrid nanofluid with dust particles over a thin moving needle following the Xue model.The analysis also incorporates the effects of variable viscosity with Hall current.For heat transfer analysis,the effects of the Cattaneo–Christov theory and heat generation/absorption with thermal slip are integrated into the temperature equation.The Tiwari–Das nanofluid model is used to develop the envisioned mathematical model.Using similarity transformation,the governing equations for the flow are translated into ordinary differential equations.The bvp4c method based on Runge–Kutta is used,along with a shooting approach.Graphs are used to examine and depict the consequences of significant parameters on involved profiles.The results revealed that the temperature of the fluid and boundary layer thickness is diminished as the solid volume fraction is raised.Also,with an enhancement in the variable viscosity parameter,the velocity distribution becomes more pronounced.The results are substantiated by assessing them with an available study.

    Keywords:hybrid nanofluid,dusty fluid,variable viscosity,Cattaneo–Christov heat flux model,Hall current

    Nomenclature

    Introduction

    The use of liquid flow for cooling in a range of applications for instance automobiles,metallic plate cooling,and electronics has gained great popularity.In all of these cooling systems,various convectional fluids such as water,ethylene glycol,water mixtures,and other basic fluids are exercised as coolants.Several researchers have made significant contributions to improving the thermal conductivity of coolants for many years.Choi and Eastman[1]proposed the utilization of nanoparticles to increase the thermal conductivity of base liquids.Nanofluids are essentially a mixture of solid nanoparticles and liquid coolants that have been combined.The introduction of this new kind of coolant completely transformed the current manufacturing world.The ability of nanoparticles to enrich the heat transfer phenomena of the base fluid is quite remarkable.Many studies followed up on the pioneering work of Choi and Eastman[1]by looking into the impression of putting different solid nanoparticles into a variety of working fluids along with different geometries and finding interesting results[2–6].The cuttingedge nanofluid,‘hybrid nanofluid,’has recently been the subject of several discreet research using two kinds of nanoparticles submerged in a base fluid.To maximize the heat transfer rate of a hybrid nanofluid,a proper combination of nanoparticles must be used.Hybrid nanofluids have a wide variety of applications in medical,lubricating,solar heating,microfluidics,nuclear system and cooling,and thermal management of vehicles.In comparison to ordinary nanofluid,the hybrid nanofluid is more efficient as a cooling agent.The concept of a hybrid nanofluid is discussed in several scholarly works.Wainiet al[7]demonstrated the flow of the hybrid nanofluid with(PHF)prescribed heat flux over a thin needle erected vertically.It is noticed that rising the volume fraction of copper(Cu)nanoparticles and lowering the needle size results in a rise in the skin friction coefficient and the heat flux rate on the needle.Additionally,Sulochanaet al[8]scrutinized the Al–Cu/menthol flow of the nanofluid(hybrid)across a thin needle with(thermal)radiation effects.It is discovered that increasing the needle thickness has a substantial effect on the heat transfer rate of hybrid nanoliquid.Mousaviet al[9]established the hybrid nanofluid flow comprising TiO2–Cu/H2O along a thin needle accompanying the radiation effects.The results reveal that dual solutions exist for the reverse direction of the free stream of the thin needle.Rameshet al[10]deliberated the heat transmission of a hybrid liquid across a thin needle in a spongy medium with different effects.Further literature on hybrid nanofluids is available in the[11–18].

    It is well established that heat transfer happens between two bodies or inside the same body as a result of a temperature difference.Heat transfer is a tremendously important phenomenon in industrial,technical,and biological applications.Fourier was the first to explain the heat transmission process[19].However,it has the drawback of producing a parabolic energy equation for the temperature distribution.Cattaneo[20]solved this problem by adding the thermal relaxation period to the basic Fourier formula of heat conduction.Finally,Christov[21]replaced the Cattaneo law with an Oldroyd upper convected derivative in the Maxwell–Cattaneo model to preserve the formulation’s material invariance.Cattaneo–Christov(C–C)heat flux model consistency concerns have been examined by Ciarletta and Straughan[22]in both specific and systematic approaches.The latest research has highlighted the significance of the C–C heat flux in varied models[23–27].

    Numerous researchers have devoted years to studying the heat transfer properties of dusty fluid flow,which is a two-phase fluid,to better understand a variety of real-world challenges,particularly in the meteorological,medical,and engineering domains.Dust particles are employed in a diverse application,including the petroleum industry,soil erosion caused by natural winds,crude oil purification,aerosol and fluidization,paint spraying,dust entrainment after nuclear explosions in clouds,and wastewater management[28–30].Saffman[31]developed the first dusty fluid flow equations and analyzed the stability of the laminar flow of a dusty gas with equally distributed particles.Later,Chakrabarti[32]studied dusty gas utilizing boundary layer theory.Numerous scholars have since worked on dusty fluid flow on different geometries.Recently,Kumaret al[33]considered the flow of suspended carbon nanotubes(CNTs)in a dusty nanofluid across a stretched porous rotating disk.The results indicate that SWCNT-water-based fluid exhibits a higher rate of heat transfer than MWCNTs water-based fluid in both the dust and fluid phases.Gireeshaet al[34]used numerical simulations to investigate the significance of nonlinear thermal radiation and hall currents on a dusty fluid on a heated stretched sheet,whereas Abbaset al[35]investigated dusty fluid flow in a spongy media while taking slip and MHD into account.More work on dust phase fluid can be found in[36–39].

    The main contribution of this investigation is to deal with the MHD nanofluid flow with CNTs in engine oil with thermal slip across a thin moving needle in two dimensions.Dust particles are also studied concerning Hall current and varying viscosity.C–C theory and heat generation/absorption are also cogitated in the temperature equation for heat transfer analysis.CNTs-based hybrid nanofluid’s thermal conductivity is analyzed using a new model named the Xue model.Using the relevant similarity transformations,the resultant system of a highly nonlinear system is numerically resolved.The findings are presented using graphs.The leading objective of the present exploration is to look for the answers to the ensuing questions:

    ?What are the consequences of solid volume fraction on the dust and hybrid nanofluid phases?

    ?How does solid volume fraction affect the temperature of the hybrid nanofluid and dust phases?

    ?What is the impact of fluid particles’ interaction parameters on the fluid velocity and dust phases?

    ?How hybrid nanofluid particle interaction parameter affects the fluid and dust phases?

    ?What is the consequence of the Eckert number on the fluid temperature?

    Mathematical modeling

    We consider a hybrid nanofluid flow past a moving needle with temperature-dependent viscosity(figure 1).The Xue model is adopted with single-wall and multi-wall CNTs immersed into the engine oil(base fluid).The radius of the cylindrical needle is presumed asR=r(X).Here,the needle’s leading edge is along theX-axis andR,Xare assumed as the radial and axial coordinates.Here,the transverse curvature is considered nevertheless the pressure gradient in the body direction is ignored.The wall temperatureTwand the temperature far away from the wall∞Tare taken as constant withTw>T∞.The movement of the needle is observed with a constant velocityVw.

    Nanofluid phase:[5,43]

    Dust phase:[42]

    the stretching velocity and thermal slip boundary conditions are given as:

    Table 1 presents the attributes of the CNTs and the engine oil(base fluid).

    Table 1.Thermal and physical traits of engine oil and CNTs(SWCNTs and MWCNTs)[44].

    Table 2.Numerical calculations of skin friction whenPr=6.2,M=0.2,φ1=0.03,α=0.2.

    Table 3.Verification of the current problem for the varied values of c whereφi,d= 0= λ =βv= m =M with Ishak et al[40],Afridi et al[41],and Tlili et al[42].

    The variable viscosity,thermal conductivity,density,and specific heat for SWCNTs/engine oil(nanofluid)and SWCNTs-MWCNTs/engine oil(hybrid nanofluid)are specified as[44,45]:

    Simple nanofluidHybrid nanofluid()α=ρ k C,pnf nfnf()()μ μ=??φ θθ 11,nf f 2.5 r()()()()αρC,μ μ φφ==???θθ k 111,p f hnfhnf hnf hnf 12.522.5 r()()()()ρρφ ρφ=+?CC C1,pp p nfSWCNT f()()(){()()()}ρρφφ φ ρφ ρC=??×?+CC C 1 1,ppT p fp hnfSWCN22 1 1MWCNT()ρφρφ ρ=+ 1?,nfSWCNTf(){()}ρφ ρφ φ ρφ ρ=+ ?×?+1 1,hnf2 SWCNT2 1 f1 MWCNT()()()()()()φφ φφ=?+?+?+?+kk 12ln 12ln.k kk kk k k kk kk k nf f T NT f f SWCNTf SWCNT SWCNf SWCf SWCNTf f()()()()()()φφ φφ=?+?+?+?+kk 12ln 12ln,k kk kk k k kk kk k hnf nf 22 22 Tnf bf SWCNT SWCNnf SWCNTnf SWCNTnf SWCNTnf nf()()()()()()φφ φφ=?+?+?+?+k kk 12ln 12ln.k kk kk k k kk k k nf f 11 11 T T T T MWCNT MWCNf MWCNf f f MWCNf MWCNf f

    The solid volume fraction of SWCNTs is denoted byφ2and that of the MWCNTs is clarified byφ1,specific heat and thermal conductivity of regular fluid are correspondingly defined byCpandkf.

    Similarity analysis

    Using the similarity transformation[46]:

    Applying equation(8),the above nanoparticle phase equations are transmuted to:

    and the dust phase equation becomes:

    with the transformed conditions:

    The parameters involved in equations(9)–(13)is identified as:

    Physical engineering quantities

    The surface drag coefficient and the rate of heat flux are identified as:

    Using equation(10)in(17)we gained,

    Numerical appraisal

    By implementing the Runge–Kutta-based MATLAB function bvp4c,the existing problem solution is found numerically.In addition,we ‘shoot’ directions in this method in different ways until we have the appropriate boundary value.This is a technique that is very simple and effective.We take the convergence criterion to reach the solution,which is10?5.The solution is achieved graphically concerning different variables for the velocity and temperature for both the fluid phase and the dust phase.

    Outcomes and discussion

    This section describes the salient parameters’correlation with the associated profiles.The values of the involved parameters are taken as:m=2,θr=0.1,βv=0.3,α=0.2,γT=0.5,δ=0.1,λ=0.2,M=0.2,Pr=6.2,βT=3,Ec=0.01,Dc=0.1,c=0.01.Figures 2–5 demonstrate the significance of solid volume fraction of SWCNTs and MWCNTs on velocity and temperature fields of fluid and dust phase.Figures 2 and 3 scrutinized the impact of solid volume fraction on velocity distribution for fluid and dust phases.It is found that the velocity of the fluid and dust phases is enhanced with an increase in the solid volume fraction.The thermal conductivity of the fluid is directly proportionate with the volume fraction that improves the fluid velocity for both fluid and dust phases.Nevertheless,the temperature profile and its related boundary layer thickness diminish for enlarged estimation of solid volume fraction(see in figure 4).While the dust phase temperature and their accompanying boundary layer thickness are enhanced(figure 5).To identify the influence of fluid particles’ interaction parameterβvon both velocities figures 6 and 7 are sketched.It is seen that both the velocities are diminished forβ.vThis is owing to intensified fluid particles interaction that creates an opposing force to the fluid flow.This phenomenon continues till the dust phase fluid velocity accesses the fluid phase velocity.That is why declined velocities are seen here.Figures 8 and 9 are plotted for both velocity profiles for varied values of dust particles mass concentrationα.Velocity distribution for both fluid and dust phase reduces for enlarged values ofα.The accumulation of the dust particles into the fluid strengthens the surface drag force that eventually resists the fluid motion.That is why diminished velocities for both phases are observed.The temperature of the fluid and dust phase is an escalating function of the fluid particle interaction parameterβT(figures 10 and 11).It is understood from the figures that increasing values ofβTsimmer down the fluid.Thus,βTacts as a controlling agent for the flow behavior.The influence of the Eckert numberEcon the fluid temperature is exhibited in figure 12.It is concluded that the temperature profile enhances for significant estimates ofEc.The physical explanation for this outcome is an improvement in kinetic energy and the collision among nanofluid molecules because of its direct association with the Eckert number.Figure 13 examines the impact of the thermal relaxation parameterγTon the temperature field.It is comprehended that the temperature of the fluid is on the decline for numerous values ofγT.Higher estimates of theγTspecify the qualities of the insulating material that lowers the fluid temperature.That is why we see a diminishing thermal profile.Figure 14 highlighted the impression of the heat generation parameterDcon the temperature profile.It is inspected that the temperature and its correlated thermal boundary layer thickness enhance with the large estimation of heat generation parameter.It is because excessive energy is produced for large estimates of heat generation that eventually boosts the fluid temperature.

    Figure 1.Flow problem model.

    Figure 2.Association ofφ 1,φ2 and f′(η).

    Figure 3.Association ofφ 1,φ2 andfp′(η).

    Figure 4.Association ofφ1,φ2 and θ (η).

    Figure 5.Association ofφ 1,φ2 and θp (η).

    Figure 6.Association of βv and f′(η).

    Figure 7.Association of βv andfp′(η).

    Figure 8.Association of α and f′(η).

    Figure 9.Association of α andfp′(η).

    Figure 10.Association of βT and θ (η).

    Figure 11.Association of βT and θp (η).

    Figure 12.Association of Ec and θ (η).

    Figure 13.Association of γT and θ (η).

    Figure 14.Association of Dc and temperature field θ (η).

    Table 2 demonstrates the surface drag coefficient for numerous values of varied parameters.It is demonstrated that the drag coefficient augments with higher the estimation of solid volume fraction and variable viscosity parameter while its declines with higher the estimation of Hall current parameter,fluid particles interaction parameter,and volume fraction of dust particles.

    The current result shows good accord with earlier published findings Ishaket al[40],Afridiet al[41],and Tliliet al[42](see in table 3).

    Concluding remarks

    This research has been established to explore the impact of the magnetohydrodynamics(MHD)2D,nanoliquid flow of engine oil as a working fluid.CNTs were inserted with thermal slip over a thin moving needle following Xue model.Variable viscosity and thermal C–C heat flux and the heat generation/absorption were supported by the thermal slip.The constructed model has been numerically handled using the bvp4c function of MATLAB software.The corresponding profiles are plotted against their relevant parameters and the findings are described coherently.The following are the most significant outcomes:

    ?The fluid phase and dust phase velocities are boosted as the estimates of solid volume fraction increase.

    ?For larger solid volume fraction estimation,temperature distribution and boundary layer thickness dwindled,while dust phase temperature raised.

    ?The fluid and dust phases velocities have dwindled for the improved fluid particles interaction parameter.

    ?Velocity distribution for fluid and dust phase reduces for enlarged values of dust particles mass concentration.

    ?The temperature distribution heightens for greater estimates of the Eckert number.

    Acknowledgments

    The authors are thankful for the Taif University research supporting project number(TURSP-2020/304),Taif University,Saudi Arabia.

    Conflict of interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Author contribution statement

    MR supervised and conceived the idea;HA wrote the manuscript.

    国产免费福利视频在线观看| 亚洲国产欧美一区二区综合| 国产亚洲精品久久久久5区| 狠狠狠狠99中文字幕| 天堂中文最新版在线下载| 男女之事视频高清在线观看| 免费看十八禁软件| 最黄视频免费看| 99久久精品国产亚洲精品| 老司机福利观看| 亚洲avbb在线观看| 日日摸夜夜添夜夜添小说| 色综合婷婷激情| 亚洲自偷自拍图片 自拍| 两人在一起打扑克的视频| 久久影院123| 亚洲中文av在线| 嫩草影视91久久| 国产不卡av网站在线观看| 亚洲精品美女久久av网站| 日韩熟女老妇一区二区性免费视频| 国产伦人伦偷精品视频| 香蕉国产在线看| 久久久国产成人免费| 又大又爽又粗| 国产区一区二久久| av天堂久久9| 啦啦啦视频在线资源免费观看| 丝袜美足系列| 国产视频一区二区在线看| 精品国产亚洲在线| 久久国产精品男人的天堂亚洲| 国产xxxxx性猛交| 色94色欧美一区二区| 91精品三级在线观看| 国内毛片毛片毛片毛片毛片| 国产精品久久久久久人妻精品电影 | 美女扒开内裤让男人捅视频| 国产高清videossex| 国产成人av激情在线播放| 香蕉久久夜色| 国产精品久久久久久精品古装| 亚洲精品国产区一区二| 亚洲国产欧美日韩在线播放| tube8黄色片| 另类亚洲欧美激情| 国产亚洲精品久久久久5区| 超色免费av| 日韩有码中文字幕| 一级片'在线观看视频| 国产在线精品亚洲第一网站| av国产精品久久久久影院| 久久99热这里只频精品6学生| 在线观看舔阴道视频| 不卡av一区二区三区| 岛国在线观看网站| 999精品在线视频| 亚洲全国av大片| 美女高潮喷水抽搐中文字幕| 麻豆av在线久日| 一级片'在线观看视频| 国产成+人综合+亚洲专区| 亚洲专区中文字幕在线| 成人免费观看视频高清| 热99re8久久精品国产| 国产精品一区二区免费欧美| 国产精品1区2区在线观看. | 伦理电影免费视频| 一区二区三区乱码不卡18| 91大片在线观看| 99久久国产精品久久久| 免费观看av网站的网址| 成年动漫av网址| 国产高清视频在线播放一区| 一二三四在线观看免费中文在| 大片免费播放器 马上看| 国产精品免费大片| 亚洲国产av影院在线观看| 99riav亚洲国产免费| 99国产精品一区二区蜜桃av | 精品国产一区二区久久| 高清av免费在线| 久久影院123| 国产老妇伦熟女老妇高清| 亚洲精品国产区一区二| videosex国产| 少妇被粗大的猛进出69影院| 99精品久久久久人妻精品| 成人国语在线视频| 少妇猛男粗大的猛烈进出视频| 国产成人精品久久二区二区免费| 五月天丁香电影| 亚洲国产欧美日韩在线播放| 亚洲第一av免费看| 啪啪无遮挡十八禁网站| 国产单亲对白刺激| 日日爽夜夜爽网站| 12—13女人毛片做爰片一| 精品一区二区三卡| 亚洲性夜色夜夜综合| 男女边摸边吃奶| 日韩一卡2卡3卡4卡2021年| 大码成人一级视频| 香蕉国产在线看| 天堂俺去俺来也www色官网| 中文字幕最新亚洲高清| 一进一出抽搐动态| 1024视频免费在线观看| 男女免费视频国产| 国产亚洲精品久久久久5区| 国产不卡av网站在线观看| 久久精品国产亚洲av香蕉五月 | 国产精品自产拍在线观看55亚洲 | 欧美日韩亚洲国产一区二区在线观看 | 丝袜美足系列| 婷婷成人精品国产| 蜜桃在线观看..| 俄罗斯特黄特色一大片| 十八禁网站网址无遮挡| 亚洲性夜色夜夜综合| av有码第一页| 精品亚洲成a人片在线观看| 成人av一区二区三区在线看| 侵犯人妻中文字幕一二三四区| 欧美乱码精品一区二区三区| 啦啦啦视频在线资源免费观看| 成人国产av品久久久| 久久久久国产一级毛片高清牌| 一进一出抽搐动态| 日本wwww免费看| 中文字幕人妻熟女乱码| 日韩人妻精品一区2区三区| 1024视频免费在线观看| 黄色片一级片一级黄色片| bbb黄色大片| 国产亚洲午夜精品一区二区久久| 老司机深夜福利视频在线观看| 纯流量卡能插随身wifi吗| 两个人免费观看高清视频| 性高湖久久久久久久久免费观看| 亚洲五月婷婷丁香| 美女扒开内裤让男人捅视频| 757午夜福利合集在线观看| 999精品在线视频| 一区福利在线观看| 啪啪无遮挡十八禁网站| 亚洲国产中文字幕在线视频| 欧美黄色淫秽网站| 啦啦啦中文免费视频观看日本| 老司机亚洲免费影院| 亚洲专区中文字幕在线| 日本黄色日本黄色录像| 最近最新免费中文字幕在线| 人人妻人人澡人人看| 欧美大码av| 曰老女人黄片| 成年动漫av网址| 精品国产一区二区三区久久久樱花| 一边摸一边抽搐一进一小说 | 啪啪无遮挡十八禁网站| 老司机午夜福利在线观看视频 | 亚洲视频免费观看视频| 国产福利在线免费观看视频| 一区二区av电影网| 脱女人内裤的视频| www.自偷自拍.com| 国产av精品麻豆| 男女免费视频国产| 首页视频小说图片口味搜索| 午夜免费鲁丝| 国产日韩欧美视频二区| 亚洲久久久国产精品| 麻豆av在线久日| 伦理电影免费视频| 不卡一级毛片| 日韩熟女老妇一区二区性免费视频| 久久精品亚洲av国产电影网| 热99re8久久精品国产| 久久久久久久久免费视频了| 成年版毛片免费区| 精品人妻在线不人妻| 免费高清在线观看日韩| 国产精品美女特级片免费视频播放器 | 精品福利永久在线观看| 久久久精品国产亚洲av高清涩受| 免费一级毛片在线播放高清视频 | 在线观看免费视频日本深夜| 天天躁狠狠躁夜夜躁狠狠躁| 极品教师在线免费播放| 十分钟在线观看高清视频www| 丁香六月欧美| 成人av一区二区三区在线看| 在线天堂中文资源库| 黄片大片在线免费观看| 亚洲精品国产一区二区精华液| 国产成人av激情在线播放| 亚洲欧美日韩另类电影网站| 一进一出好大好爽视频| 久久免费观看电影| www.精华液| 国产精品熟女久久久久浪| 久久婷婷成人综合色麻豆| 黄色 视频免费看| 国产视频一区二区在线看| 丝袜在线中文字幕| 欧美老熟妇乱子伦牲交| 日韩视频一区二区在线观看| 久久这里只有精品19| 久久国产亚洲av麻豆专区| 亚洲午夜精品一区,二区,三区| 午夜福利视频在线观看免费| 国产一区二区三区在线臀色熟女 | 两性午夜刺激爽爽歪歪视频在线观看 | 99国产极品粉嫩在线观看| 国产成人精品无人区| 99精品在免费线老司机午夜| 精品视频人人做人人爽| 两人在一起打扑克的视频| 中文亚洲av片在线观看爽 | e午夜精品久久久久久久| 亚洲专区国产一区二区| 亚洲国产精品一区二区三区在线| 99精品在免费线老司机午夜| 考比视频在线观看| 国产单亲对白刺激| 九色亚洲精品在线播放| 午夜福利欧美成人| 五月开心婷婷网| 国产精品美女特级片免费视频播放器 | 午夜久久久在线观看| 亚洲欧美日韩高清在线视频 | 在线天堂中文资源库| 大香蕉久久成人网| 精品国产乱子伦一区二区三区| 在线观看免费视频日本深夜| 高清视频免费观看一区二区| 最黄视频免费看| 一级毛片精品| 国产在线一区二区三区精| 99国产极品粉嫩在线观看| 香蕉丝袜av| 狂野欧美激情性xxxx| 777久久人妻少妇嫩草av网站| 韩国精品一区二区三区| 免费高清在线观看日韩| 精品午夜福利视频在线观看一区 | 美国免费a级毛片| 极品少妇高潮喷水抽搐| 黄频高清免费视频| 亚洲国产中文字幕在线视频| 亚洲精品av麻豆狂野| 大型黄色视频在线免费观看| 国产男女超爽视频在线观看| 99久久精品国产亚洲精品| 亚洲va日本ⅴa欧美va伊人久久| 日韩成人在线观看一区二区三区| 男女床上黄色一级片免费看| 成年人黄色毛片网站| 正在播放国产对白刺激| 12—13女人毛片做爰片一| 国产成人精品在线电影| 可以免费在线观看a视频的电影网站| 欧美激情久久久久久爽电影 | 啦啦啦 在线观看视频| 国产精品美女特级片免费视频播放器 | 视频区图区小说| 久久精品国产综合久久久| 水蜜桃什么品种好| 黄片小视频在线播放| 最新的欧美精品一区二区| 亚洲情色 制服丝袜| 黑人巨大精品欧美一区二区mp4| 国产主播在线观看一区二区| 中亚洲国语对白在线视频| 9色porny在线观看| 嫩草影视91久久| 肉色欧美久久久久久久蜜桃| 免费久久久久久久精品成人欧美视频| 亚洲欧美精品综合一区二区三区| 男女床上黄色一级片免费看| 婷婷丁香在线五月| 黑人巨大精品欧美一区二区mp4| 亚洲成av片中文字幕在线观看| 国产国语露脸激情在线看| 免费日韩欧美在线观看| 他把我摸到了高潮在线观看 | 久久精品熟女亚洲av麻豆精品| 天堂中文最新版在线下载| 男女高潮啪啪啪动态图| 亚洲熟女毛片儿| 老汉色av国产亚洲站长工具| 免费在线观看黄色视频的| 搡老熟女国产l中国老女人| 老熟女久久久| 天堂中文最新版在线下载| 国产高清videossex| 欧美 日韩 精品 国产| 欧美黄色片欧美黄色片| 最新在线观看一区二区三区| av国产精品久久久久影院| 不卡一级毛片| 叶爱在线成人免费视频播放| 大片电影免费在线观看免费| 国产视频一区二区在线看| av天堂在线播放| 精品福利永久在线观看| 亚洲精品乱久久久久久| 免费一级毛片在线播放高清视频 | 国产野战对白在线观看| 亚洲九九香蕉| 国产一区二区在线观看av| 欧美中文综合在线视频| 搡老熟女国产l中国老女人| 日韩一区二区三区影片| 欧美黄色片欧美黄色片| 制服诱惑二区| 成人精品一区二区免费| 丝袜在线中文字幕| 免费少妇av软件| 男女免费视频国产| 久久久久视频综合| 无限看片的www在线观看| 另类精品久久| 女人被躁到高潮嗷嗷叫费观| 精品视频人人做人人爽| 精品久久久久久久毛片微露脸| 欧美黄色淫秽网站| 午夜日韩欧美国产| 国产深夜福利视频在线观看| 国产伦理片在线播放av一区| 国产成人一区二区三区免费视频网站| 欧美日韩av久久| 国产一区二区三区综合在线观看| 操美女的视频在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲av日韩精品久久久久久密| 国产亚洲午夜精品一区二区久久| 亚洲av成人不卡在线观看播放网| a级毛片在线看网站| 日日爽夜夜爽网站| 两个人免费观看高清视频| 国产精品美女特级片免费视频播放器 | 777米奇影视久久| 精品一区二区三区视频在线观看免费 | 欧美在线黄色| 又大又爽又粗| 亚洲欧美一区二区三区久久| 久久精品熟女亚洲av麻豆精品| 国产熟女午夜一区二区三区| 成年人午夜在线观看视频| 国产男靠女视频免费网站| 母亲3免费完整高清在线观看| 久久国产精品人妻蜜桃| 国产男靠女视频免费网站| 一边摸一边抽搐一进一小说 | 色综合欧美亚洲国产小说| 精品亚洲乱码少妇综合久久| 2018国产大陆天天弄谢| 欧美日韩黄片免| 国产黄色免费在线视频| 国产精品亚洲一级av第二区| 国产精品偷伦视频观看了| 亚洲熟女毛片儿| 亚洲av欧美aⅴ国产| 欧美激情久久久久久爽电影 | av不卡在线播放| 免费女性裸体啪啪无遮挡网站| 91九色精品人成在线观看| 成在线人永久免费视频| 一本久久精品| 国产av精品麻豆| 国产亚洲精品一区二区www | 久久久久视频综合| 免费少妇av软件| 人妻久久中文字幕网| 99re在线观看精品视频| √禁漫天堂资源中文www| 国产淫语在线视频| 欧美精品av麻豆av| 99国产精品免费福利视频| 久久人人爽av亚洲精品天堂| 国产欧美亚洲国产| 成人精品一区二区免费| 久久中文字幕人妻熟女| www日本在线高清视频| 免费女性裸体啪啪无遮挡网站| 我要看黄色一级片免费的| 一夜夜www| 超碰成人久久| 交换朋友夫妻互换小说| 下体分泌物呈黄色| 欧美日韩成人在线一区二区| 不卡一级毛片| 三级毛片av免费| 欧美+亚洲+日韩+国产| 视频区图区小说| 午夜免费成人在线视频| 国产单亲对白刺激| h视频一区二区三区| 在线播放国产精品三级| 午夜福利,免费看| 高潮久久久久久久久久久不卡| 欧美黑人欧美精品刺激| 午夜福利视频精品| 极品教师在线免费播放| 色老头精品视频在线观看| 母亲3免费完整高清在线观看| 变态另类成人亚洲欧美熟女 | 日韩制服丝袜自拍偷拍| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲伊人色综图| 免费不卡黄色视频| 国产又色又爽无遮挡免费看| 亚洲国产中文字幕在线视频| 欧美变态另类bdsm刘玥| 黑人欧美特级aaaaaa片| 黄色视频不卡| 日韩免费高清中文字幕av| 欧美激情高清一区二区三区| 亚洲一区中文字幕在线| 桃红色精品国产亚洲av| 三上悠亚av全集在线观看| 人人妻人人澡人人看| 涩涩av久久男人的天堂| 777米奇影视久久| 久久久精品免费免费高清| 最近最新中文字幕大全电影3 | 亚洲精品中文字幕一二三四区 | 国产极品粉嫩免费观看在线| 无遮挡黄片免费观看| 老司机福利观看| 日韩欧美一区二区三区在线观看 | 9191精品国产免费久久| 免费观看av网站的网址| 久久国产精品影院| 99精品久久久久人妻精品| 亚洲精品在线观看二区| 2018国产大陆天天弄谢| 人人妻人人爽人人添夜夜欢视频| 建设人人有责人人尽责人人享有的| 国产亚洲精品久久久久5区| 午夜日韩欧美国产| 亚洲精品粉嫩美女一区| 国产一区二区 视频在线| 日韩欧美一区视频在线观看| 国产成人免费观看mmmm| 老熟妇仑乱视频hdxx| 1024视频免费在线观看| 欧美 亚洲 国产 日韩一| 成年人免费黄色播放视频| 久久影院123| 久久久精品免费免费高清| 老司机午夜福利在线观看视频 | 黑丝袜美女国产一区| 脱女人内裤的视频| 国产精品免费一区二区三区在线 | 成人黄色视频免费在线看| 黄色视频在线播放观看不卡| 日本a在线网址| 日韩免费高清中文字幕av| 90打野战视频偷拍视频| 国产99久久九九免费精品| 国产伦理片在线播放av一区| 黄色丝袜av网址大全| 成年动漫av网址| 人妻久久中文字幕网| 欧美精品高潮呻吟av久久| 菩萨蛮人人尽说江南好唐韦庄| 日韩一区二区三区影片| 免费看十八禁软件| 亚洲精品一卡2卡三卡4卡5卡| 大型av网站在线播放| 在线十欧美十亚洲十日本专区| 亚洲av欧美aⅴ国产| 国产无遮挡羞羞视频在线观看| 国产麻豆69| av在线播放免费不卡| 久久影院123| 久久av网站| 亚洲国产欧美网| 久久精品人人爽人人爽视色| a级毛片黄视频| 汤姆久久久久久久影院中文字幕| 日韩制服丝袜自拍偷拍| 午夜久久久在线观看| 精品少妇黑人巨大在线播放| 欧美乱码精品一区二区三区| 高清黄色对白视频在线免费看| 不卡av一区二区三区| 亚洲一码二码三码区别大吗| 国产精品久久久久久精品古装| 亚洲国产av影院在线观看| 自线自在国产av| 视频区图区小说| 极品少妇高潮喷水抽搐| 正在播放国产对白刺激| 国产成人精品在线电影| 97人妻天天添夜夜摸| 美女主播在线视频| 黑人巨大精品欧美一区二区蜜桃| 视频区图区小说| 亚洲精品在线观看二区| 久久久精品94久久精品| 十八禁网站网址无遮挡| 国产av国产精品国产| 十八禁网站免费在线| 久久精品国产综合久久久| a级毛片在线看网站| 纯流量卡能插随身wifi吗| 婷婷丁香在线五月| 国产欧美日韩精品亚洲av| 中文字幕精品免费在线观看视频| 桃红色精品国产亚洲av| 涩涩av久久男人的天堂| 成人18禁高潮啪啪吃奶动态图| 精品久久久久久久毛片微露脸| 九色亚洲精品在线播放| 无人区码免费观看不卡 | 久久久精品94久久精品| 久久久国产精品麻豆| 757午夜福利合集在线观看| 如日韩欧美国产精品一区二区三区| 精品亚洲乱码少妇综合久久| 国产高清videossex| 色94色欧美一区二区| 午夜精品国产一区二区电影| 午夜激情久久久久久久| 99在线人妻在线中文字幕 | 男女午夜视频在线观看| 久久影院123| 极品教师在线免费播放| 亚洲成人免费电影在线观看| 亚洲免费av在线视频| 他把我摸到了高潮在线观看 | 日韩人妻精品一区2区三区| 午夜精品国产一区二区电影| 一本色道久久久久久精品综合| 亚洲精品一二三| 精品久久久精品久久久| 国产精品成人在线| 丁香欧美五月| 一级毛片女人18水好多| 51午夜福利影视在线观看| 久久婷婷成人综合色麻豆| 91麻豆av在线| 黄色视频不卡| 国产精品98久久久久久宅男小说| 免费在线观看黄色视频的| 国产主播在线观看一区二区| 热re99久久国产66热| 一边摸一边抽搐一进一小说 | 免费观看av网站的网址| 婷婷成人精品国产| 高清av免费在线| 性高湖久久久久久久久免费观看| 亚洲欧美精品综合一区二区三区| 亚洲国产av新网站| 亚洲精品一二三| 夜夜骑夜夜射夜夜干| 制服诱惑二区| 国产精品香港三级国产av潘金莲| 成人精品一区二区免费| 99riav亚洲国产免费| 在线观看人妻少妇| 黄色怎么调成土黄色| 精品国产一区二区三区久久久樱花| 亚洲精品成人av观看孕妇| 十分钟在线观看高清视频www| 男女床上黄色一级片免费看| 久久久久网色| 精品国产一区二区久久| 久久中文看片网| 亚洲va日本ⅴa欧美va伊人久久| 国产色视频综合| 巨乳人妻的诱惑在线观看| 一级毛片女人18水好多| 电影成人av| 黑人巨大精品欧美一区二区蜜桃| 中文字幕最新亚洲高清| 狠狠婷婷综合久久久久久88av| 精品国产超薄肉色丝袜足j| 久久久久视频综合| 岛国毛片在线播放| 又紧又爽又黄一区二区| 国产单亲对白刺激| 欧美激情极品国产一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 99热网站在线观看| 欧美激情 高清一区二区三区| 不卡av一区二区三区| 国产精品美女特级片免费视频播放器 | 久久九九热精品免费| 精品国产一区二区三区四区第35| 美女福利国产在线| 免费看十八禁软件| 国产成人系列免费观看| 精品国内亚洲2022精品成人 | 国产国语露脸激情在线看| 国产一卡二卡三卡精品| 99国产精品一区二区三区| 一进一出抽搐动态| 久久av网站| 9热在线视频观看99| 日本撒尿小便嘘嘘汇集6| 十八禁网站免费在线| 亚洲精品一卡2卡三卡4卡5卡| 菩萨蛮人人尽说江南好唐韦庄| 日本精品一区二区三区蜜桃| 欧美激情久久久久久爽电影 | 精品一品国产午夜福利视频| 99九九在线精品视频| 一区在线观看完整版| 在线永久观看黄色视频| 午夜日韩欧美国产| 亚洲熟女精品中文字幕|