• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Potential energy surface and formation of superheavy nuclei with the Skyrme energy-density functional

    2022-06-29 07:53:58ChengPengandZhaoQingFeng
    Communications in Theoretical Physics 2022年5期

    Cheng Peng and Zhao-Qing Feng

    School of Physics and Optoelectronics,South China University of Technology,Guangzhou 510640,China

    Abstract With the Skyrme energy-density functional theory,the nucleus–nucleus potential is calculated and the potential energy surface is obtained with different effective forces for accurately estimating the formation cross sections of superheavy nuclei in massive fusion reactions.The width and height of the potential pocket are influenced by the Skyrme effective forces SkM,SkM*,SkP,SIII,Ska,and SLy4,which correspond to the different equations of state for the isospin symmetry nuclear matter.It is found that the nucleus–nucleus potential is associated with the collision orientation and Skyrme forces.A more repulsive nuclear potential is pronounced with increasing the incompressible modulus of nuclear matter,which hinders the formation of superheavy nuclei.The available data in the fusion-evaporation reaction of 48Ca+238U are nicely reproduced with the SkM* parameter by implementing the potential into the dinuclear system model.

    Keywords:Skyrme force,nucleus–nucleus potential,energy density functional,DNS model

    1.Introduction

    Heavy-ion fusion reactions have attracted much attention since the first experiments at Crocker Laboratory with the cyclotron accelerator in the 1950s[1].The multidimensional quantum tunneling,collective excitation,nucleon or cluster transfer etc,influence the fusion dynamics and fusion probability[2].Up to now,the nuclear fusion reactions have been extensively investigated,in particular on the topics of weakly bound nuclei induced reactions[3],nuclear fusion at deep sub-barrier energies for astrophysical interests[4]and synthesis of superheavy nuclei(SHN)[5,6].Roughly,onethird of nuclides on the nuclear chart were synthesized in laboratories via fusion reactions[7].The hunting of superheavy nuclei(SHN)in nature or synthesizing SHN in laboratories,in particular around the ‘island of stability’predicted theoretically,is a topical issue in the past and today.The cold-fusion reactions with208Pb or209Bi based targets were firstly proposed by Oganessianet al[8].The superheavy elements(SHEs)from Bh to Cn were successfully synthesized in cold-fusion reactions at GSI(Darmstadt,Germany)with the heavy-ion accelerator UNILAC and the SHIP separator[9,10].Experiments on the synthesis of element Nh(Z=113)in the70Zn+209Bi reaction have been performed successfully at RIKEN(Tokyo,Japan)[11].The SHEs from Fl(Z=114)to Og(Z=118)have been synthesized at the Flerov Laboratory of Nuclear Reactions(FLNR)at Dubna(Russia)with the double-magic nuclide48Ca bombarding actinide nuclei[12,13].With constructing the new facilities in the world such as RIBF(RIKEN,Japan)[14],SPIRAL2(GANIL in Caen,France)[15],FRIB(MSU,USA)[16],HIAF(IMP in Huizhou,China)[17],experiments on SHNs on the ‘island of stability’ using the neutron-rich radioactive beams induced fusion reactions or via the multinucleon transfer(MNT)reactions might be possible.Sophisticated models are expected for understanding the nuclear dynamics of SHN formation close to the ‘island of stability’ via the massive fusion reactions or MNT mechanism,i.e.,the quasifission dynamics,fusion–fission,incomplete and complete fusion reactions,preequilibrium cluster emission,deepinelastic collisions etc.

    Figure 1.Schematic picture of relative motion in two colliding nuclei.

    The fusion dynamics are governed by the nucleus–nucleus(NN)interaction potential,which is estimated with the frozen density or time-dependent density profile of the colliding system.Recently,it has been found that the Pauli exclusion principle is of significance in the nuclear potential and influences the width of the potential pocket[18–20].An empirical formula was proposed by Bass for estimating the Coulomb barrier and fusion cross-section[21].In the light and medium reaction systems,the compound nucleus is formed after overcoming the Coulomb barrier.However,the quasifission mechanism appears in the heavy colliding systems,in which the disintegration of the colliding system after a few nucleon transfers hinders the compound nucleus formation.The neck dynamics,shape evolution,collective excitation,and nucleon transfer influence the NN potential.It has been known that the NN potential in the fusion reactions is associated with the shape evolution and beam energy by the dynamical models,e.g.,the time-dependent Hartree–Fock(TDHF)approach[22,23]and the quantum molecular dynamics(QMD)model[24].There are mainly two sorts of NN potential,namely,the phenomenological potentials such as the Woods–Saxon potential[25,26],proximity potential[27],potentials(Yukawa-plus-exponential,DDM3Y,Migdal etc)via the double-folding method[28–31],and the adiabatic potential[32].It is also possible to construct the NN potential within the energy-density functional approach based on the effective nucleon–nucleon interaction,i.e.,the Skyrme force[33–36],the finite-range Gogny interaction[37]etc.The advantage of the energy-density functional approach establishes a unified description of nuclear structure,nuclear dynamics and nuclear matter based on the effective nucleon–nucleon interaction.

    In this work,the NN potential is calculated within the Skyrme energy-density functional.The potential energy surface is obtained with the approach and the production of SHN is discussed by implementing it into the dinuclear system model.The article is organized as follows.In section 2 we give a brief description of Skyrme’s energy-density functional theory and the NN potential.The driving potential and SHN production in the reaction of48Ca+238U are shown in section 3.A summary and perspective on the NN potential from the microscopical method are presented in section 4.

    2.Brief description of the model

    2.1.Skyrme energy density functional and nucleus–nucleus potential

    The nucleus–nucleus potential is a basic quantity for describing the nuclear dynamics in the low-energy heavy-ion collisions.The interaction potential in binary collisions depends on the collision orientation and is composed of nuclear and Coulomb contributions as follows[38,39]

    Here the Coulomb potential is calculated by Wong’s formula[25].αidenotes the symbolsRi,θi,βiwithi=P,Tbeing the projectile or target nucleus and the relative momentum of inertia.Ri,θi,βirepresent the nuclear radii,quadrupole deformations,and polar angles between the beam direction and the symmetry axes of deformed nuclei,respectively.Ris the center-of-mass distance of the projectile and target nuclides.Shown in figure 1 is the definition of the quantitiesR1,R2,θ1,θ2and the integration variablesr,θ.The deformation effect is included in the nuclear and Coulomb potentials,which results in the orientation dependence of the Coulomb barrier and influences the quasifission dynamics in the massive fusion reactions.The multiple integral with the energy-density functional by the Skyrme force is performed in the spherical coordinate system(r,θ and φ).

    The nuclear potential is calculated by the Skyrme energydensity functional as[40,41]

    TheEsys,EPandETare the binding energies contributed from the nucleon–nucleon force of the colliding system,projectile and target nuclei by the relation of

    respectively.The energy-density functional ε[ρp(r),ρn(r)]is derived from the Skyrme force as(see in detail in the appendix)

    with the spin-exchange operator

    The zero-range effective forces between nucleons in the nuclear environment provide the energy-density functional and are available for the ground-state properties of finite nuclei and nuclear matter at saturation density[42].

    The energies of the colliding system,projectile,and target nuclei are calculated by

    and

    respectively.The density profiles of proton and neutron distributions for projectile and target nuclides are taken to be frozen of the Woods–Saxon form as

    with the diffuseness coefficientsaibeing the values of 0.55-0.65 fm and the saturation density ρ01i=0.06–0.09 fm?3calculated by the Skyrme–Hartree–Fock method.The projectile radii with the quadrupole deformation are given by

    With the help of the well-known extended Thomas–Fermi(ETF)approximation,the kinetic energy term is obtained up to the second-order extension.The energy-density is expressed as[34]

    with the kinetic energy term

    with

    Here the local density ρiwithi=n,p,ρ=ρn+ρpand the kinetic energy density τ=τn+τpare satisfied in the calculation.The potential part in the energy-density functional is given by

    The parameterst0,t1,t2,t3,x0,x1,x2,x3,the density-dependent stiffness α and the spin-orbit strengthW0are listed in table 1.The six sets of Skyrme parameters SkP[43],SkM,SkM*[44],SLy4[45],Ska[46],SIII[47]are taken in the calculation.The binding energy,root-mean-square radii of finite nuclei around the magic numbers,and nuclear matter properties at saturation density are self-consistently described with the forces.

    Table 1.Parameters of the Skyrme forces used in the calculation.

    Figure 2.Comparison of the nucleus–nucleus potentials from different Skyrme forces and Migdal force in collisions of 70Zn+208Pb(left panel)and 138Ba+138Ba(right panel),respectively.

    The nucleus–nucleus potential is of importance in heavyion fusion reactions and determines the height of the Coulomb barrier,the width and shape of the potential pocket,the quasifission barrier etc[48,49].Consequently,the quasifission yields,fusion–fission products,fusion crosssection,isotopic distribution,angular and kinetic energy spectra in the deep-inelastic collisions or multinucleon transfer reactions,are influenced by the potential.As a test,the potentials calculated by the energy-density functional and double-folding method with the Migdal force[31]are compared in figure 2 in collisions of70Zn+208Pb(left panel)and138Ba +138Ba(right panel),respectively.We select the Skyrme forces SkP,SkM,SLy4,Ska and SIII corresponding to the different incompressible modulus of nuclear matter at the normal density.The hard EOS with SIII leads to a rapid increase of the potential by approaching the projectile-target distance because of the repulsive nuclear potential.The Coulomb potential exhibits repulsive interaction and is obvious in the symmetric system.The nuclear potential(difference of nucleus–nucleus potential and Coulomb potential)with the Migdal force rapidly varies from the attractive to repulsive interaction with decreasing the distance.A wider and deeper pocket is formed in the reaction of70Zn+208Pb,which is favorable for the compound nucleus formation.It should be mentioned that the self-consistent description of nuclear structure,reaction and matter is established with the Skyrme energy-density functional in comparison with the double-folding method.

    The deformation,collective excitation,shape evolution,initial orientation etc influence the nucleus–nucleus potential[50,52,51].In a realistic nuclear reaction,the density profile varies with the evolution time of the colliding system and leads to the complicated NN potential.Two typical approximations are usually used in the reaction models,i.e.,sudden approximation and adiabatic approach.In the calculation,the sudden approximation with the frozen nuclear density is used in the potential energy surface and the estimation of SHN production.As a typical reaction system,the48Ca induced fusion reactions on the actinide nuclides were chosen for successful synthesizing the SHN withZ=112–118 at Dubna.Shown in figure 3 is a comparison of the NN potentials calculated with different Skyrme forces and the double-folding method and the initial angle of symmetry axis and collision direction.The Coulomb barriers with the range of 185–205 MeV are obtained with the Skyrme forces and close to the values of proximity potential(Vb=198.5 MeV)and static barrier(Vb=187 MeV)by the quantum molecular dynamics model[24].

    Figure 3.The nucleus–nucleus potentials with different Skyrme forces(left panel)and the collision orientation with SkM*(right panel)in the reaction of 48Ca+238U.

    2.2.Formation of a superheavy nucleus in fusion-evaporation reaction

    The formation of superheavy nuclei in a massive fusion reaction is complicated and associated with nucleon transfer,shape evolution,neck formation,relative motion energy,and angular momentum dissipation.In the dinuclear system model,the density profiles of colliding nuclei are taken to be frozen and the neck dynamics are not taken into account.The nucleon transfer is coupled to the relative degrees of freedom via a set of master equations by the potential energy surface(PES).The PES is given by

    withQgg(Z1,N1)=B(Z1,N1)+B(Z2,N2)?B(Zcom,Ncom).TheB(Zi,Ni)(i=1,2)andB(Zcom,Ncom)are the negative binding energies of the fragment(Zi,Ni)and the compound nucleus(Zcom,Ncom),respectively.The binding energies were obtained from the calculation of the finite-range liquid-drop model[53].It should be noted that a more precise mass table was proposed by Wanget alwith the macroscopic-microscopic approach[54].The symbol{α}denotes the quantities ofZ1,N1,θ1,θ2,β1,β2.The βirepresent the quadrupole deformations of two DNS fragments at the ground state.θidenotes the angles between the collision orientations and the symmetry axes of deformed nuclei.The nucleus–nucleus potential between fragments(Z1,N1)and(Z2,N2)includes the nuclear and Coulomb interaction.In the calculation,the distanceRbetween the centers of the two fragments is chosen to be the value at the touching configuration,in which the DNS is assumed to be formed.The tip–tip orientation is chosen in the calculation of the SHN cross-section,which manifests the elongation shape along the collision direction and is favorable for nucleon transfer.The nuclear structure effects,i.e.,shell effect,odd–even etc,are included in the binding energy.It should be noted that the dynamical deformation is not implemented into the binding energy.

    The DNS model has been applied to the quasifission and fusion dynamics,multinucleon transfer reactions,and deepinelastic collisions,in which the dissipation of relative motion and rotation of colliding system into the internal degrees of freedom is assumed at the touching configuration.The DNS system evolves along two main degrees of freedom to form a compound nucleus,namely,the radial motion via the decay of DNS and the nucleon transfer via the mass asymmetry η=(A1?A2)/(A1+A2)or the charge asymmetry ηZ=(Z1?Z2)/(Z1+Z2)[55,56].In accordance with the temporal sequence,the system undergoes the capture by overcoming the Coulomb barrier,the competition of quasifission and complete fusion by cascade nucleon transfer,and the formation of cold residue nuclide by evaporating γ-rays,neutrons,lightly charged particles and binary fission.The production cross-section of the superheavy residue is estimated by the sum of the partial wave with the angular momentumJat the incident center-of-mass-energyEc.m.as,

    Here,T(Ec.m.,J)is the penetration probability and is given by the Hill–Wheeler formula and a Gaussian-type barrier distribution[39].The distribution function is taken as the Gaussian form,with the normalization constant satisfying the unity relation ∫f(B)dB=1.The quantitiesBmand Δ are evaluated byBm=(BC+BS)/2 and Δ=(BC?BS)/2,respectively.TheBCandBSare the Coulomb barrier at waist-to-waist orientation and the minimum barrier by varying the quadrupole deformation of the colliding partners.The fusion probabilityPCNis described by the DNS model and takes into account the competition of the quasifission and fission of the heavy fragment[56],in which the nucleon transfer is described by solving a set of microscopically derived master equations by distinguishing protons and neutrons.The survival probabilityWsuris calculated with the Weisskopf statistical theory[57],in which the decay of the compound nucleus formed in the fusion reaction is cooled by evaporating γ rays and light particles including neutrons,protons,α in competition with binary fission.

    Figure 4.Potential energy surface as functions of the mass asymmetry and the center of mass distance in the reaction of 48Ca+238U calculated with the Skyrme forces SkP and SIII,respectively.

    3.Results and discussion

    The nucleus–nucleus potential is of significance in the lowenergy heavy-ion collisions,i.e.,the quasifission dynamics,fusion–fission reaction,and fusion-evaporation for synthesizing the heavy or superheavy nuclei.The energy density function approach manifests a bridge between the nucleon–nucleon force and the nuclear equation of state.The effective Skyrme force is expected for a unified description of the massive fusion reaction and density dependence of nuclear matter.The potential energy surface governs the nuclear dynamics in the fusion-evaporation and fusion–fission reactions.Shown in figure 4 is the PES as functions of the mass asymmetry and the center of mass distance of DNS fragments in the reaction of48Ca+238U calculated with the Skyrme forces SkP and SIII,respectively.The hard equation of state by SIII with the incompressible modulus of 352 MeV leads to a rapid increase when the two fragments approach because of the more repulsive nucleon–nucleon force at the overlapping density above the saturation density.It has been known that the nucleus–nucleus potential manifests the attractive interaction when the local density is below the normal nuclear density and the appearance of the Coulomb barrier or platform in the potential configuration.The mass symmetric fragments with η →0 have a large positive interaction potential and negativeQgg.The competition results in the bump structure in the PES along the mass asymmetry degree of freedom.On the other hand,the collision orientation affects the interaction potential and also the PES for the deformed binary fragments.The nose–nose orientation is taken in the calculation.It is noticed that the density profile is assumed to be fixed in the calculation of PES,which is different from the multidimensional adiabatic potential used in Langevin equations[32].

    Figure 5.The driving potentials in the tip–tip and belly–belly collisions for the reaction 48Ca + 238U with the force SkM*.

    The driving potential is taken from the PES of DNS fragments at the touching configuration,namely,the minimal value in the potential pocket.The structure of the driving potential influences the quasifission yields,fusion–fission products,isotopic distribution in the multinucleon transfer reaction,SHN formation etc.The dependence of collision orientation of the driving potential in the reaction of48Ca +238U with the force SkM*is shown in figure 5.The entrance system is indicated at the position ηi,which is located at the minimum in the tip–tip collision and the maximal value of the driving potential in the belly–belly orientation at the beginning of nucleon transfer.The driving potential exhibits the symmetric structure with the mass asymmetry and is chosen with the lower potential between transferring a proton and neutron at the fixed collision angle and quadrupole deformations of DNS fragments.The distribution probability is obtained with the driving potential by solving a set of master equations.The fusion probability is counted via the left side of the B.G.(Businaro–Gallone)point.The inner fusion barrier is estimated by the difference between the B.G.position and the entrance point.The diffusion to the right side from the entrance position with ηi=?0.664 leads to the formation of quasifission products.The bump in the belly–belly collision prevents the quasifission reaction and is favorable for the compound nucleus formation.The local minimum in the spectrum is caused by the shell correction on the binding energy.

    Figure 6.Comparison of evaporation residue excitation functions in the reaction of 48Ca+238U for producing copernicium.

    An accurate estimation of the driving potential is of significance in the calculation of fusion probability,which is complicated and not well understood up to now.The fusion hindrance after overcoming the Coulomb barrier in colliding partners leads to the lowering of fusion probability to form a compound nucleus.The interaction time,shape evolution,dissipation of relative motion energy and angular momentum,coupling of nucleon transfer to the dynamical deformation,friction coefficient,mass tensor,neck dynamics etc,influence the compound nucleus formation in the heavy-mass fusion reactions.Shown in figure 6 is a comparison of SHN production in the reaction of48Ca+238U calculated by the Skyrme energy density functional with SkM*and the double folding approach with the Migdal force.It is pronounced that the available data from Dubna[58]are nicely reproduced with the density functional approach.The Migdal force is usually taken in the calculation of driving potential in the DNS model[39].It should be noticed that the frozen density is taken into account in the nuclear potential for both methods.It is obvious that the broader and more depth potential pocket is formed with the Skyrme force SkM*as shown in figure 3,which reduces the inner fusion barrier and enhances the production cross-section of SHN.Similarly,the Skyrme parameters with the stiff equation of state lead to the decrease of evaporation residue cross section owing to the narrower potential pocket.The Pauli principle and nuclear equation of state in the formation of SHN are still interesting and need to be investigated.

    4.Conclusions

    In summary,the nucleus–nucleus potential is calculated with the Skyrme energy density functional,which is associated with the nuclear equation of state via the parameters SkM,SkM*,SkP,SIII,Ska and SLy4.A broad and deep potential pocket is obtained by decreasing the incompressible modulus of nuclear matter with the Skyrme forces,which is favorable for DNS formation.The repulsive nuclear potential is obvious with SIII when the overlap density is above the saturation density.There is roughly a 20 MeV difference for the Coulomb barriers of various Skyrme forces.The density profiles of projectile and target nuclides depend on the collision orientation for the deformed nuclei and lead to the difference in the interaction potential.The potential rapidly increases with reducing the center of mass distance of colliding partners after the touching configuration.The potential energy surface is associated with the nucleon–nucleon forces and manifests the structure effect.The Dubna data for synthesizing the copernicium(Z=112)in the reaction of48Ca+238U are nicely reproduced by the energy density functional with SkM*,which corresponds to the soft nuclear equation of state(K=217 MeV)and the wider potential pocket in comparison with the usual double-folding approach with Migdal force.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Projects No.12 175 072 and No.11 722 546)and the Talent Program of South China University of Technology(Projects No.20 210 115).

    Appendix

    The Hamiltonian of theN-body system is written as

    So the expectation value of the Hamiltonian in a Slater determinant|HF〉is given by

    The total energy ofN—nucleon system is also expressed by the energy-density functional as

    The density function can be obtained by summing up all possible single-particle states φi(r,σ,q)with the spinand isospin symbolsfor neutron andfor proton).The nucleon density,kinetic energy density and spin-orbit current density can be obtained with the state function as

    and

    respectively.For example,the first term witht0andx0is obtained by including the exchange operator to the matrix element as

    with the spatial exchange operatorPM,the spin exchangePσand the isospin exchangePτ.The energy is calculated by substituting the state variables(i,σ,q)forkand leads to

    The energy-density functional is given by

    with the total density ρ=ρn+ρp.Similarly,one can get the other terms in equation(13).

    日本猛色少妇xxxxx猛交久久| 亚洲成人一二三区av| 在线观看国产h片| 久久久久视频综合| 中文欧美无线码| 永久网站在线| 国产免费现黄频在线看| 久久亚洲国产成人精品v| 久久久精品94久久精品| 国产精品国产av在线观看| 侵犯人妻中文字幕一二三四区| 精品少妇久久久久久888优播| 国产一区二区 视频在线| 汤姆久久久久久久影院中文字幕| 寂寞人妻少妇视频99o| 在线天堂中文资源库| 国产野战对白在线观看| 午夜激情av网站| 性色avwww在线观看| 国产亚洲午夜精品一区二区久久| 精品酒店卫生间| 丝袜喷水一区| 精品少妇一区二区三区视频日本电影 | 永久免费av网站大全| 亚洲精品美女久久av网站| 午夜福利乱码中文字幕| 秋霞在线观看毛片| 毛片一级片免费看久久久久| 99热网站在线观看| 汤姆久久久久久久影院中文字幕| 中文字幕人妻丝袜制服| 欧美老熟妇乱子伦牲交| 欧美av亚洲av综合av国产av | 多毛熟女@视频| 色网站视频免费| 精品国产一区二区三区四区第35| 亚洲国产最新在线播放| 黄色毛片三级朝国网站| 亚洲国产精品一区三区| av在线观看视频网站免费| 美女午夜性视频免费| 久久精品国产a三级三级三级| 欧美日韩亚洲高清精品| 国产精品久久久久成人av| 高清不卡的av网站| 亚洲精品久久午夜乱码| 久久久久精品久久久久真实原创| 婷婷色麻豆天堂久久| 视频在线观看一区二区三区| 欧美日韩综合久久久久久| 国产不卡av网站在线观看| 在线观看免费视频网站a站| av在线app专区| 18禁动态无遮挡网站| 婷婷成人精品国产| 国产黄色视频一区二区在线观看| 男人爽女人下面视频在线观看| 午夜福利影视在线免费观看| 精品少妇久久久久久888优播| 日韩 亚洲 欧美在线| www.精华液| 极品人妻少妇av视频| 国产精品成人在线| 一区在线观看完整版| 这个男人来自地球电影免费观看 | 精品酒店卫生间| 久久久久精品人妻al黑| 18+在线观看网站| 久热这里只有精品99| 国产免费又黄又爽又色| 久久久久久久亚洲中文字幕| 亚洲av在线观看美女高潮| 在线观看www视频免费| 少妇 在线观看| av女优亚洲男人天堂| 嫩草影院入口| 啦啦啦视频在线资源免费观看| 国产高清国产精品国产三级| 亚洲av.av天堂| 亚洲av.av天堂| 99久久中文字幕三级久久日本| 最新中文字幕久久久久| 国产欧美日韩综合在线一区二区| 91aial.com中文字幕在线观看| 欧美精品一区二区大全| 欧美xxⅹ黑人| 免费观看在线日韩| 狠狠婷婷综合久久久久久88av| 亚洲在久久综合| 熟女av电影| 美女高潮到喷水免费观看| 不卡视频在线观看欧美| 午夜免费男女啪啪视频观看| h视频一区二区三区| 国产免费又黄又爽又色| 丝瓜视频免费看黄片| 久久人人97超碰香蕉20202| 久久久久久人妻| 久久精品国产a三级三级三级| 亚洲美女搞黄在线观看| 亚洲少妇的诱惑av| 亚洲美女搞黄在线观看| 女的被弄到高潮叫床怎么办| 日日啪夜夜爽| 天天躁夜夜躁狠狠躁躁| 欧美成人午夜精品| 一二三四在线观看免费中文在| 亚洲欧美一区二区三区国产| 欧美 亚洲 国产 日韩一| 国产精品嫩草影院av在线观看| av电影中文网址| 高清不卡的av网站| 亚洲国产精品一区三区| 成人国语在线视频| 国产精品一区二区在线不卡| 国产一区二区 视频在线| 9191精品国产免费久久| 久久久久精品性色| 亚洲国产欧美日韩在线播放| 国产成人精品一,二区| 黄片小视频在线播放| 黄色配什么色好看| 寂寞人妻少妇视频99o| 午夜av观看不卡| 女人精品久久久久毛片| 男女国产视频网站| 大片免费播放器 马上看| 下体分泌物呈黄色| 一二三四在线观看免费中文在| 丝袜美足系列| 久久国内精品自在自线图片| 亚洲,一卡二卡三卡| av国产久精品久网站免费入址| 国产精品免费视频内射| 纯流量卡能插随身wifi吗| 午夜影院在线不卡| 尾随美女入室| 国产av精品麻豆| 欧美日韩成人在线一区二区| 精品一区二区三区四区五区乱码 | 97精品久久久久久久久久精品| 日本91视频免费播放| 欧美老熟妇乱子伦牲交| 色网站视频免费| 欧美日韩成人在线一区二区| 日本vs欧美在线观看视频| 欧美精品av麻豆av| 国产精品久久久久久av不卡| a级毛片黄视频| 日韩制服丝袜自拍偷拍| 赤兔流量卡办理| 大陆偷拍与自拍| 亚洲精品自拍成人| 日韩不卡一区二区三区视频在线| 亚洲内射少妇av| 黄色毛片三级朝国网站| 亚洲国产色片| 中文字幕亚洲精品专区| 亚洲一级一片aⅴ在线观看| 搡女人真爽免费视频火全软件| 免费久久久久久久精品成人欧美视频| 色视频在线一区二区三区| 亚洲精品国产av成人精品| 亚洲五月色婷婷综合| 久久精品国产亚洲av天美| 久热这里只有精品99| 国产白丝娇喘喷水9色精品| 欧美精品一区二区大全| 久久精品国产自在天天线| 又粗又硬又长又爽又黄的视频| 我的亚洲天堂| 欧美人与性动交α欧美软件| 国产亚洲一区二区精品| 国产精品麻豆人妻色哟哟久久| 中文字幕人妻丝袜一区二区 | 亚洲第一区二区三区不卡| 两性夫妻黄色片| 十分钟在线观看高清视频www| 亚洲av电影在线观看一区二区三区| 欧美精品亚洲一区二区| 极品少妇高潮喷水抽搐| 在线天堂最新版资源| av片东京热男人的天堂| 在线观看免费高清a一片| 在线亚洲精品国产二区图片欧美| 欧美+日韩+精品| 久久精品亚洲av国产电影网| 一边亲一边摸免费视频| 最近中文字幕高清免费大全6| 国产精品久久久久成人av| 免费看av在线观看网站| 亚洲国产毛片av蜜桃av| 深夜精品福利| 免费观看av网站的网址| 欧美人与性动交α欧美精品济南到 | 亚洲人成电影观看| 国产亚洲欧美精品永久| 最近2019中文字幕mv第一页| 亚洲三区欧美一区| 在线观看免费视频网站a站| 久久免费观看电影| 亚洲情色 制服丝袜| 一区二区三区激情视频| 日韩一区二区视频免费看| 捣出白浆h1v1| 日韩精品有码人妻一区| 久久午夜综合久久蜜桃| 黄色怎么调成土黄色| 在线观看免费高清a一片| 亚洲欧美精品综合一区二区三区 | 精品国产一区二区三区久久久樱花| 91aial.com中文字幕在线观看| 国产成人精品婷婷| 啦啦啦中文免费视频观看日本| av国产久精品久网站免费入址| 啦啦啦啦在线视频资源| 午夜免费观看性视频| 国产高清不卡午夜福利| 黄片无遮挡物在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲色图综合在线观看| 免费黄色在线免费观看| 久久精品国产a三级三级三级| 少妇的逼水好多| 亚洲中文av在线| 香蕉国产在线看| 亚洲av福利一区| xxxhd国产人妻xxx| 麻豆乱淫一区二区| 欧美97在线视频| 欧美激情高清一区二区三区 | 天天躁夜夜躁狠狠久久av| 一级片'在线观看视频| 国语对白做爰xxxⅹ性视频网站| 久久久久久免费高清国产稀缺| 国产午夜精品一二区理论片| 中文字幕另类日韩欧美亚洲嫩草| 亚洲熟女精品中文字幕| 中文字幕最新亚洲高清| 欧美国产精品va在线观看不卡| av在线app专区| 1024香蕉在线观看| 亚洲av欧美aⅴ国产| 成人国语在线视频| 久久国产亚洲av麻豆专区| 一级黄片播放器| av在线app专区| 亚洲在久久综合| 老鸭窝网址在线观看| 亚洲国产欧美在线一区| 人人妻人人添人人爽欧美一区卜| 色婷婷久久久亚洲欧美| 亚洲第一av免费看| 国产精品一区二区在线观看99| 最黄视频免费看| 免费av中文字幕在线| av电影中文网址| 久热久热在线精品观看| 亚洲第一av免费看| 黑丝袜美女国产一区| 中文欧美无线码| 中文字幕最新亚洲高清| 欧美 亚洲 国产 日韩一| av线在线观看网站| 人体艺术视频欧美日本| 久久久久精品久久久久真实原创| 国产亚洲最大av| 亚洲精品日本国产第一区| 老女人水多毛片| 人体艺术视频欧美日本| 亚洲欧洲国产日韩| 亚洲,一卡二卡三卡| 国产精品亚洲av一区麻豆 | 亚洲av中文av极速乱| 有码 亚洲区| 看免费av毛片| 国产精品久久久久久久久免| 亚洲精品美女久久久久99蜜臀 | 亚洲精品在线美女| 日韩精品免费视频一区二区三区| 国产一区二区激情短视频 | 免费不卡的大黄色大毛片视频在线观看| 啦啦啦中文免费视频观看日本| 亚洲成人一二三区av| 午夜免费男女啪啪视频观看| 老鸭窝网址在线观看| 欧美日韩亚洲国产一区二区在线观看 | 男女边摸边吃奶| 有码 亚洲区| 夜夜骑夜夜射夜夜干| 亚洲少妇的诱惑av| 国产av码专区亚洲av| 各种免费的搞黄视频| 久久 成人 亚洲| 亚洲伊人色综图| 成人免费观看视频高清| 亚洲国产av新网站| 人妻人人澡人人爽人人| 少妇精品久久久久久久| 国产高清不卡午夜福利| 欧美精品一区二区免费开放| 成人18禁高潮啪啪吃奶动态图| 青春草国产在线视频| 黄片小视频在线播放| 欧美亚洲 丝袜 人妻 在线| 丰满乱子伦码专区| 免费观看无遮挡的男女| www.自偷自拍.com| 叶爱在线成人免费视频播放| 桃花免费在线播放| 国产老妇伦熟女老妇高清| 国产精品国产av在线观看| 亚洲精品,欧美精品| 高清不卡的av网站| 三上悠亚av全集在线观看| 欧美激情极品国产一区二区三区| 亚洲av.av天堂| 九色亚洲精品在线播放| 两个人免费观看高清视频| 欧美日韩精品成人综合77777| 老司机亚洲免费影院| 丁香六月天网| www.av在线官网国产| 欧美日韩一级在线毛片| 91精品伊人久久大香线蕉| 精品99又大又爽又粗少妇毛片| 岛国毛片在线播放| 婷婷色综合大香蕉| 99九九在线精品视频| 丁香六月天网| 国产免费福利视频在线观看| 一本—道久久a久久精品蜜桃钙片| 2021少妇久久久久久久久久久| 日韩视频在线欧美| 亚洲精品,欧美精品| 好男人视频免费观看在线| 午夜影院在线不卡| 两性夫妻黄色片| 丝袜美足系列| 赤兔流量卡办理| 一区二区av电影网| 一级毛片我不卡| 一级爰片在线观看| 亚洲激情五月婷婷啪啪| 久久人人爽av亚洲精品天堂| 如何舔出高潮| 欧美最新免费一区二区三区| 爱豆传媒免费全集在线观看| 在线 av 中文字幕| 两个人免费观看高清视频| 麻豆av在线久日| 久久久久久久久免费视频了| 黄色 视频免费看| 国产在线免费精品| 日韩不卡一区二区三区视频在线| 好男人视频免费观看在线| 国产色婷婷99| 91午夜精品亚洲一区二区三区| 久久午夜综合久久蜜桃| 女人被躁到高潮嗷嗷叫费观| 黑丝袜美女国产一区| 成年女人毛片免费观看观看9 | 少妇猛男粗大的猛烈进出视频| 飞空精品影院首页| 精品人妻熟女毛片av久久网站| 国产极品粉嫩免费观看在线| 精品少妇内射三级| 一级爰片在线观看| 国产福利在线免费观看视频| 午夜久久久在线观看| 欧美成人午夜精品| 91精品三级在线观看| 99热国产这里只有精品6| 精品少妇内射三级| 国产色婷婷99| 久久精品亚洲av国产电影网| 色播在线永久视频| av视频免费观看在线观看| 中文字幕人妻熟女乱码| 亚洲国产欧美网| 国产精品香港三级国产av潘金莲 | 久热久热在线精品观看| 亚洲成色77777| 欧美精品国产亚洲| 亚洲精品中文字幕在线视频| 最近中文字幕2019免费版| 国产精品三级大全| 婷婷成人精品国产| 免费高清在线观看日韩| 日韩av免费高清视频| 妹子高潮喷水视频| 免费女性裸体啪啪无遮挡网站| av不卡在线播放| 免费在线观看完整版高清| 亚洲伊人久久精品综合| 美女国产高潮福利片在线看| a级片在线免费高清观看视频| 欧美日韩视频精品一区| 国产精品99久久99久久久不卡 | 亚洲成av片中文字幕在线观看 | 夜夜骑夜夜射夜夜干| 欧美+日韩+精品| 国产成人精品婷婷| 婷婷色av中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 亚洲情色 制服丝袜| 国产爽快片一区二区三区| 人体艺术视频欧美日本| 国产视频首页在线观看| 丝瓜视频免费看黄片| 久久99精品国语久久久| 欧美日韩国产mv在线观看视频| av视频免费观看在线观看| 精品国产一区二区久久| 欧美精品亚洲一区二区| 欧美最新免费一区二区三区| 亚洲内射少妇av| 中文字幕亚洲精品专区| 国产成人精品久久久久久| 啦啦啦中文免费视频观看日本| 伊人久久大香线蕉亚洲五| 亚洲av日韩在线播放| 日韩成人av中文字幕在线观看| 国产xxxxx性猛交| 久久精品久久久久久噜噜老黄| 水蜜桃什么品种好| www.av在线官网国产| 大片电影免费在线观看免费| 成人二区视频| 高清黄色对白视频在线免费看| 日本av手机在线免费观看| 精品亚洲成国产av| 午夜av观看不卡| 亚洲一区中文字幕在线| 国产探花极品一区二区| 菩萨蛮人人尽说江南好唐韦庄| 国产精品免费视频内射| 国产精品一区二区在线观看99| 精品第一国产精品| 亚洲国产毛片av蜜桃av| 男人操女人黄网站| 一级a爱视频在线免费观看| 黄频高清免费视频| 亚洲成色77777| 男女国产视频网站| 涩涩av久久男人的天堂| 久久精品亚洲av国产电影网| 日韩免费高清中文字幕av| 人妻一区二区av| 中文精品一卡2卡3卡4更新| 久久人人爽人人片av| 成人亚洲精品一区在线观看| 男女边吃奶边做爰视频| 国产欧美日韩一区二区三区在线| 国产精品 国内视频| 91精品伊人久久大香线蕉| 精品人妻在线不人妻| 国产熟女午夜一区二区三区| 久久国产亚洲av麻豆专区| 80岁老熟妇乱子伦牲交| 国产精品亚洲av一区麻豆 | 亚洲精品在线美女| 亚洲国产精品一区二区三区在线| 亚洲,一卡二卡三卡| 午夜福利一区二区在线看| 中文字幕色久视频| 欧美成人精品欧美一级黄| 电影成人av| 春色校园在线视频观看| av有码第一页| 亚洲av电影在线观看一区二区三区| 国产亚洲精品第一综合不卡| 日本色播在线视频| 性色avwww在线观看| 黄片小视频在线播放| 又大又黄又爽视频免费| 欧美精品亚洲一区二区| av视频免费观看在线观看| 亚洲精品,欧美精品| 老司机影院成人| 日本欧美视频一区| 久久精品亚洲av国产电影网| 久久久久国产精品人妻一区二区| 你懂的网址亚洲精品在线观看| 免费观看性生交大片5| 国产午夜精品一二区理论片| 日韩大片免费观看网站| 香蕉精品网在线| 国产精品国产三级专区第一集| 超碰成人久久| 国产精品一区二区在线观看99| 成人影院久久| 亚洲第一av免费看| 久久久久精品久久久久真实原创| 亚洲精品第二区| 人体艺术视频欧美日本| 午夜91福利影院| 女性生殖器流出的白浆| 高清不卡的av网站| 国产探花极品一区二区| 在线观看国产h片| 日韩一区二区视频免费看| av又黄又爽大尺度在线免费看| 国产在线一区二区三区精| 观看av在线不卡| 国产精品一二三区在线看| 男女边摸边吃奶| 九色亚洲精品在线播放| 日韩人妻精品一区2区三区| 五月天丁香电影| 免费女性裸体啪啪无遮挡网站| 国产1区2区3区精品| 人妻一区二区av| 国产片内射在线| 午夜福利一区二区在线看| av网站在线播放免费| 国产精品久久久av美女十八| 色吧在线观看| 欧美成人午夜免费资源| 欧美bdsm另类| 亚洲av综合色区一区| 超色免费av| 久久人人爽人人片av| 国产成人精品无人区| 一本大道久久a久久精品| 老司机影院毛片| 色播在线永久视频| 国产精品.久久久| 少妇猛男粗大的猛烈进出视频| 久久精品国产亚洲av涩爱| 青青草视频在线视频观看| 宅男免费午夜| 久久人妻熟女aⅴ| 美女福利国产在线| 久久久久国产网址| 91在线精品国自产拍蜜月| 久久亚洲国产成人精品v| 国产片内射在线| 两个人免费观看高清视频| 夫妻午夜视频| 亚洲精品久久成人aⅴ小说| www.精华液| 国产淫语在线视频| 一级片'在线观看视频| 青春草视频在线免费观看| 啦啦啦在线观看免费高清www| 国产xxxxx性猛交| 午夜激情久久久久久久| 巨乳人妻的诱惑在线观看| 久久久久国产一级毛片高清牌| 少妇精品久久久久久久| 中文字幕色久视频| 久久国产精品男人的天堂亚洲| 免费不卡的大黄色大毛片视频在线观看| 久久久国产欧美日韩av| 国产精品人妻久久久影院| 在线观看一区二区三区激情| 777米奇影视久久| 亚洲三级黄色毛片| 自拍欧美九色日韩亚洲蝌蚪91| 男人添女人高潮全过程视频| 国产精品三级大全| 久久毛片免费看一区二区三区| 免费av中文字幕在线| 国产精品国产av在线观看| 亚洲欧洲日产国产| 日韩一区二区视频免费看| 精品一区在线观看国产| 高清视频免费观看一区二区| 亚洲精品久久午夜乱码| 亚洲经典国产精华液单| 美女福利国产在线| 美女脱内裤让男人舔精品视频| 亚洲综合精品二区| 亚洲第一区二区三区不卡| 久久久久网色| 边亲边吃奶的免费视频| 日韩 亚洲 欧美在线| 只有这里有精品99| 香蕉精品网在线| 最黄视频免费看| 久久精品国产鲁丝片午夜精品| 桃花免费在线播放| 在线观看一区二区三区激情| 国产激情久久老熟女| 少妇的逼水好多| 久久久久久久精品精品| 岛国毛片在线播放| 精品卡一卡二卡四卡免费| 丝袜美腿诱惑在线| 国产精品久久久久成人av| 久久久亚洲精品成人影院| 日韩一区二区三区影片| 成人黄色视频免费在线看| 久久久久久人人人人人| 精品一区二区免费观看| 波多野结衣av一区二区av| 国产精品亚洲av一区麻豆 | 中文字幕亚洲精品专区| 亚洲伊人久久精品综合| 国产亚洲av片在线观看秒播厂| 亚洲精品乱久久久久久| 国产淫语在线视频| 一级毛片电影观看| 免费在线观看完整版高清| 国产日韩一区二区三区精品不卡| 中文字幕人妻丝袜一区二区 | 国产精品一国产av| 啦啦啦啦在线视频资源| 观看av在线不卡| 国产日韩欧美亚洲二区| av网站在线播放免费| 另类亚洲欧美激情| 啦啦啦中文免费视频观看日本| 90打野战视频偷拍视频|