• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reversible Conversion between Space-confined Lead Ions and Perovskite Nanocrystals for Confidential Information Storage

    2022-06-29 08:47:32ZHANGGuoqingQINPengHUANGFuqiang
    無機(jī)材料學(xué)報(bào) 2022年4期

    ZHANG Guoqing,QIN Peng,HUANG Fuqiang,3

    (1.State Key Laboratory of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China;2.School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China;3.State Key Laboratory of Rare Earth Materials Chemistry and Applications,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China)

    Abstract: Luminescent materials have been widely used in confidential information protection and anticounterfeiting.Luminescent lead halide perovskite nanocrystals,which can be converted from the lead source through a two-step method,are attractive candidates for information encryption and decryption.Herein,the reversible conversion between the invisible lead-organic framework and the luminescent MAPbBr3 nanocrystals is achieved,together with their further application on information storage by inkjet printing technology.The lead ions are embedded into the metal-organic frameworks through coordination with the 2-methylimidazole linkers.The inherent confined distribution of lead ions facilitates the in-situ growth of perovskite nanocrystals in the second step without the assistance of external bulky ligands.The recorded information was firstly encrypted by the lead organic frameworks,which is invisible under ambient and UV light.After reacting with methylammonium bromide,the perovskite nanocrystals are in-situ formed,and the information becomes readable under UV light.Using methylammonium bromide and water as the decryption and encryption reagents could also switch on/off the luminescence,therefore,realizing the confidential information storage.

    Key words: perovskite nanocrystal;photoluminescence;inkjet printing;information storage

    Nowadays information security plays more and more important roles in the military and economic fields.Among various information protection technologies,the stimuliresponsive luminescence has attracted lots of attention due to low cost and ease of fabrication.Initially,transparent fluorescent materials were directly employed for the confidential information encryption,and the decryption was completed according to the luminescent response of these materials under external stimuli (humidity,temperature and UV light).In addition to relying on those facile signal “switch on-off” determinations,higher-security encryptions were achieved through multimode emission integrated in one single ink[1-3],luminescence lifetimedependent emission[4-6]and emission intensity-based decoding[7-8].However,these elaborate emission inks complicate the whole fabrication process and increase the cost of preparation.Besides,the specific equipment is required to decrypt the encoding data,which is certainly inconvenient for the practical applications[9].Accordingly,the exploration of novel luminescent inks possessing cost advantage and competitive performance are alternatively desirable for the efficient anti-counterfeiting purposes.

    Recently,the organic-inorganic hybrid perovskites have emerged as effective photoluminescence materials due to high photoluminescence quantum yields,narrow emission bands and tunable emission spectra[10].Moreover,the soft ionic structure,low formation energy,together with the low cost facilitate their usage as smart luminescent materials.By space-confining the CsPbBr3nanocrystals into porous silica matrix,the reversible conversion between luminescent CsPbBr3and non-luminescent CsPb2Br5phase can be achieved by using water as the external stimuli.The printed information can be hidden and recovered through moisture treatment and evaporation,respectively[11].Besides phase transition,Huang,et al.[12-13]reported thein-situformation and decomposition of luminescent CsPbX3quantum dots within transparent glasses through femtosecond laser irradiation and thermal treatment,realizing the reversible information writing and erasing.Another attractive technique to realize the information protection and storage was developed by firstly constructing an invisible lead-based metal-organic frameworks and then converting the lead ions to luminescent perovskite nanocrystals with a two-step method.The photoluminescence can be quenched and recovered through solvent impregnation and halide salt conversion.With this strategy,the reversible on/off switching of photoluminescence for information encryption and decryption could be realized under ambient conditions[14].

    Herein,we utilize the strong interaction between 2-methylimidazole and lead ions to construct a novel space-confined lead framework (Pb-ZIF).The unique distribution of lead ions within the framework facilitates thein-situgrowth of perovskite nanocrystals after reacting with MABr (MA=CH3NH3).The obtained MAPbBr3NCs@Pb-ZIF exhibits bright luminescence under UV excitation.The recorded information was firstly encrypted by printing the Pb-ZIF ink on parchment paper,which is invisible under ambient and UV light.The subsequent MABr solution spray initializes thein-situgrowth of perovskite nanocrystals,making the encrypted information readable under UV light.Using methylammonium bromide and water as the decryption and encryption reagents could switch on/off the luminescence.Different from the direct printing of perovskite nanocrystals,this two-step strategy by separating the confidential information recording and displaying provides the information protection with a higher level.

    1 Experimental

    1.1 Sample preparation

    Pb-ZIF powder was synthesized using a similar modified procedure reported by Sadeghzadeh[15].Specifically,6 mmol 2-methylimidazole (Aladdin,98%) was ultrasonicaly dissolved in 50 mL deionized water (termed as solution A),and then 0.05 mol·L-1(20 mL) Pb(NO3)2(Adamas,99%) aqueous solution (solution B) was dropwise slowly added into solution A.A kind of clear and transparent solution C was obtained.Finally,an appropriate amount of ethanol (200 mL) was swiftly poured into the above solution C to precipitate Pb-ZIF powders.The obtained powder was rinsed three times with ethanol and then dried at 60 ℃ for further use.For the synthesis of MAPbBr3NCs@Pb-ZIF powder (similar to the conversion process reported by Zhang[14]),100 mg Pb-ZIF powder was dispersed in 10 mLn-hexane(Greagent,≥97%) under constant stirring (termed as suspension D).Then the predissolved MABr (Greatcell Solar) butanol solution (1.5 mL,20 mg/mL) was rapidly injected,and the white suspension D immediately turned into green emissive suspension E.The as-formed precipitate was then collected and dried (60 ℃) into powder for further characterizations.

    1.2 Information coding-decoding procedure

    The invisible transparent ink consisting of 1.99 g Pb(NO3)2,1.48 g 2-methylimidazole and 10 mLN,Ndimethylformamide (DMF ,Sigma Aldrich,99.8%) was loaded into the ink printer (Canon,PIXMA iP2780),and the predesigned various patterns were printed directly on the commercial available paper.Considering the limited amounts of solvent used for each printing procedure,the obtained coding information can be immediately implemented for decoding process.Similar to the conversion process of luminescent MAPbBr3NCs@Pb-ZIF powders,the spray of MABr butanol solution (20 mg/mL) was employed to realize thein-situformation of MAPbBr3NCs at the place where information was recorded.

    1.3 Characterization

    X-ray diffraction data were collected by using a Bruker D8 Advance powder diffractometer.TEM and corresponding SAED analyses were performed by using JEM-2100F microscope.SEM images and EDS mappings were conducted on JEOL 7800F microscope.Absorption spectra were determined by a Hitachi U-4100 UV-Vis spectrometer.Fluorescence spectrometer (Fluorolog,HORIBA FL-3) was used to record the PL and PL decay curves of the samples.The chemical nature of the powders was investigated by XPS Mg Kα excitation (RBD upgraded PHI-5000C ESCA system,PerkinElmer),the sample of MAPbBr3NCs@Pb-ZIF was treated with ion etching for 10 s to investigate the internal distribution of the corresponding elements.Thermogravimetric analysis (TGA)was measured on Netzsch STA449F3 instrument (5 ℃/min,under Argon atmosphere).

    2 Results and discussion

    A new metal-organic framework (Pb-ZIF) was constructed through the chemical bonding between 2-methylimidazole and lead ions.The MAPbBr3nanocrystals werein-situgrown within this framework after reacting with MABr (denoted as MAPbBr3NCs@Pb-ZIF).The detailed synthesis process was presented in the experimental section.The obtained MAPbBr3NCs@Pb-ZIF powder exhibits bright green emission under UV excitation (Fig.1).It is noted that the quantum-confinement is directly realized by the metal-organic framework,without the addition of bulky ligands or porous matrix.X-ray diffraction (XRD) patterns of Pb-ZIF and MAPbBr3NCs@Pb-ZIF powders are shown in Fig.S1.Pb-ZIF shows a sharp and intense peak at~12.5°,demonstrating the highly crystalline nature of the sample which is further confirmed by well-resolved diffraction spots in the selected area electron diffraction (SAED) pattern (Fig.2(b)).After reacting with MABr,new peaks at 14.9° and 25.9° are observed,corresponding to the (100) and (111) planes of cubic MAPbBr3(Pmˉ3m space group)[16].The diffraction peaks of MAPbBr3nanocrystals are much weaker than those of Pb-ZIF,indicating that the second conversion reaction might mainly occur on the surface of the Pb-ZIF framework,and no bulk perovskite are formed.These results also indicate that MAPbBr3NCs werein-situformed within Pb-ZIF framework,and its formation does not dramatically influence the crystal structure of the matrix.Nonetheless,the decreased main peaks intensity of Pb-ZIF along with unshifted diffraction angle implied the redistribution of electron density in the Pb-ZIF structures[17].Fig.2(c,d) show the scanning electron microscopy(SEM) images of the Pb-ZIF,which are well-organized flakes with a thicknesses of~250 nm.After the conversion reaction,the Pb-ZIF framework preserves the original shape but with the generation of small nanoparticles on its surface (Fig.2(e)).The elemental mapping of the prepared MAPbBr3NCs@Pb-ZIF (Fig.2(f)) shows uniform distribution of elements Br and Pb,which further confirms thein-situformation of the MAPbBr3perovskite nanocrystals.

    Fig.1 Schematic diagram of in-situ growth of MAPbBr3 NCs from Pb-ZIF framework and optical images of Pb-ZIF (left under ambient light),and MAPbBr3 NCs@Pb-ZIF (right under UV light)

    Fig.2 (a) TEM image and (b) SAED pattern of Pb-ZIF powders SEM images of (c,d) Pb-ZIF and (e) MAPbBr3 NCs@Pb-ZIF powders,and (f) elemental mappings of MAPbBr3 NCs@Pb-ZIF powder

    X-ray photoelectron spectroscopy (XPS) was conducted to investigate the coordination environment of ions in Pb-ZIF and MAPbBr3NCs@Pb-ZIF powders.Two new peaks assigned to Br3d5/2and Br3d3/2are observed at 68.3 and 69.0 eV (Fig.3(a,c))[18],indicating the insertion of Br ions after the reaction with MABr.Meanwhile,in the high-resolution Pb4f XPS spectrum (Fig.3(b)),two signals corresponding to Pb4f7/2and Pb4f5/2slightly shift to higher binding energy,which suggests that lead ions in MAPbBr3nanocrystals originate from the Pb-ZIF framework rather than the free Pb ions adsorbe on the surface.No metallic Pb states notorious as carrier trapping centers[19]are detected from high-resolution Pb4f XPS spectrum.It is noted that the loose structure of the Pb-ZIF framework can facilitate the diffusion of MABr and thus promote the conversion of Pb ions encapsulated inside which may account for the evident Br3d signals after ion etching (Fig.3(d)).

    Fig.3 XPS spectra of Pb-ZIF and MAPbBr3 NCs@Pb-ZIF samples

    Fig.4(a) shows the absorption spectra of the Pb-ZIF and MAPbBr3NCs@Pb-ZIF powders.The absorption of Pb-ZIF is negligible in the whole visible region,while MAPbBr3NCs@Pb-ZIF possesses a steep absorption edge near 530 nm.The excitonic absorption at 513 nm confirms the strong confinement of perovskite nanocrystals in the MAPbBr3NCs@Pb-ZIF.Generally the exciton binding energy (Eb) is slightly higher than the thermal energy (RT=26 meV) which results in the domination of free carriers in the MAPbBr3crystals[20-21].The notable excitonic feature in this case indicates the strong confinement of the sample.As can be seen from the steadystate photoluminescence (PL) spectrum (Fig.4(b)),the prepared MAPbBr3NCs@Pb-ZIF exhibits a sharp and narrow emission at 519 nm with a full width half maximum of only 25 nm under UV excitation.The confinement effect also leads to a blue-shifted PL emission compared with the bulk MAPbBr3crystals[16].The PL decay measurement was performed to investigate the recombination kinetics of the MAPbBr3NCs@Pb-ZIF powder (Fig.4(c)).With the bi-exponential fitting (Table S1),an average lifetime (τav) of 6.1 ns composed of trapassisted recombination lifetime (fast decay component,4 ns) and radiative recombination lifetime (slow decay component,16.3 ns) was calculated,which is similar to the mesoporous silica confined perovskite phosphor but shorter than the colloidal counterparts[22-23].Although 2-methylimidazole could act as passivating ligands,the surface or structure defects in the emissive powders still need to be further treated for more efficient radiative recombination,especially within this nanocrystalline regime.

    Taking advantage of the invisible feature of the Pb-ZIF intermediate and the strong luminescence of the final perovskite nanocrystals,this two-step strategy shows the potential to be used for information encryption and decryption through simple inkjet printing technology.As shown in Fig.4(d),the transparent and achromic ink was firstly prepared by dissolving the constituent species,Pb(NO3)2and 2-methylimidazole,in polar solventN,Ndimethylformamide (DMF).The mass production of the predesigned patterns could be realizedviainkjet printing.To guarantee efficient adhesion and penetration,the commercial paper with fibrous microstructure (Fig.5(a))was utilized as the information carrier.Benefitting from the negligible light response of Pb-ZIF (Fig.4(a) and Fig.S4(a)),the information deposited on the paper is completely invisible under UV and visible light (Fig.4(e)and Fig.S4(a)),ensuring that the recorded information is faithfully encrypted.After the spray of MABr solution(inn-butanol),the printed Pb-ZIF in the patterned area is locally converted to the luminescent MAPbBr3nanocrystals.Accordingly,the predesigned information was clearly distinguished.Fig.4(e) highlights the logo of Shanghai Institute of Ceramics,Chinese Academy of Sciences.Other complex luminescent patterns including QR code,lion dance and the Great Wall are also presented in Fig.4(e) and Fig.S2,indicating the designability and flexIbility of this strategy.

    SEM image (Fig.5(b)) further reveals that the Pb-ZIF crystals nucleate in the printed areas and are welldistributed on the surface of the substrate.No distinguishable absorption is detected under UV and visible light,providing the encrypted information with a highlevel security (Fig.S4(a,b)).After the local conversion to the MAPbBr3nanocrystals,the printed patterns exhibit strong photoluminescence under UV light (Fig.4(e)),ensuring that the protected information can be accurately identified.Taking into account the ionic characteristics of the organic-inorganic halide perovskites,the structure could be easily destroyed by polar solvents[24].As shown in Fig.5(d),the previously identified QR code no longer emits fluorescence under UV light after the water spray treatment,and thus the information is encrypted.After the water is completely volatilized,the emissive QR code patterns could be regenerated again with the spray of MABr solution.The printed pattern exhibits bright green photoluminescence under UV irradiation (Fig.5(d)),and the PL intensity maintains 74% of its initial value after five consecutive switching cycles (Fig.5(e)).In this method,the Pb-ZIF acts as a reservoir of lead source for the circular generation of perovskite nanocrystals,which allows the reversible on/off switching of the photoluminescence and realizes the information encryption and decryption.The prepared Pb-ZIF exhibits good thermal stability(Fig.S5),which is beneficial for the practical applications of this system.

    Fig.5 SEM images of (a) pristine commercial paper,(b) commercial paper after printed with Pb-ZIF ink,(c) commercial paper with MAPbBr3 NCs@Pb-ZIF NCs,(d) representative information encryption and decryption procedure,and (e) PL intensity of the printed MAPbBr3 NCs@Pb-ZIF patterns in the five cycles of encryption and decryption measurement

    3 Conclusion

    In conclusion,we have demonstrated thein-situconversion of luminescent perovskite nanocrystals from a novel spaced-confined lead-organic framework,which is constructed through the chemical bonding between lead ions and 2-methylimidazole ligand.The unique distribution of lead ions within the framework facilitates theinsitugrowth of perovskite nanocrystals after reacting with MABr.This two-step strategy from the invisible intermediate to the photoluminescent nanocrystals is further combined with the inkjet-printing technology to be used for information protection.The invisible Pb-ZIF ink endows the recorded information on parchment paper with a high-security level,and the subsequent MABr solution spray initializes thein-situgrowth of perovskite nanocrystals,making the encrypted information readable under UV light.The methylammonium bromide and water can be used as the decryption and encryption reagent to switch on/off the luminescence,thus protecting the recorded confidential information.

    Supporting materials

    Supporting materials related to this article can be found at https://doi.org/10.15541/jim20210270.

    亚洲av一区综合| 麻豆一二三区av精品| 色av中文字幕| 亚洲精品乱码久久久v下载方式 | 欧美激情久久久久久爽电影| 亚洲国产精品合色在线| 婷婷亚洲欧美| 欧美一区二区精品小视频在线| 成人三级黄色视频| 男人舔女人下体高潮全视频| 一a级毛片在线观看| 热99在线观看视频| 最新中文字幕久久久久| 免费电影在线观看免费观看| 哪里可以看免费的av片| 天天添夜夜摸| 观看美女的网站| 亚洲aⅴ乱码一区二区在线播放| 最近视频中文字幕2019在线8| 国产真人三级小视频在线观看| 2021天堂中文幕一二区在线观| 国产精品乱码一区二三区的特点| 日本熟妇午夜| 欧美不卡视频在线免费观看| 日本成人三级电影网站| 亚洲电影在线观看av| 欧美激情久久久久久爽电影| 老熟妇乱子伦视频在线观看| 少妇熟女aⅴ在线视频| 久久久精品大字幕| 亚洲国产精品久久男人天堂| 夜夜夜夜夜久久久久| 日韩亚洲欧美综合| 黄色片一级片一级黄色片| 亚洲一区高清亚洲精品| 久久久久国产精品人妻aⅴ院| 亚洲国产精品sss在线观看| 国产精品自产拍在线观看55亚洲| 免费看日本二区| 久久精品国产综合久久久| 此物有八面人人有两片| 狠狠狠狠99中文字幕| 国产精品亚洲av一区麻豆| 韩国av一区二区三区四区| 国产三级中文精品| 国产一区二区三区在线臀色熟女| 99久国产av精品| 欧美乱色亚洲激情| 亚洲美女黄片视频| 91久久精品国产一区二区成人 | 国产精品美女特级片免费视频播放器| 观看免费一级毛片| 婷婷精品国产亚洲av| 国产精品香港三级国产av潘金莲| 久久久久国内视频| 精品人妻一区二区三区麻豆 | 国内毛片毛片毛片毛片毛片| 亚洲精品456在线播放app | 看免费av毛片| 三级男女做爰猛烈吃奶摸视频| 日本 av在线| 丝袜美腿在线中文| 观看免费一级毛片| 悠悠久久av| 国产成人福利小说| 桃色一区二区三区在线观看| 99久久九九国产精品国产免费| 久久精品国产自在天天线| 91久久精品国产一区二区成人 | 日韩欧美精品v在线| 一个人免费在线观看的高清视频| 51国产日韩欧美| 波多野结衣巨乳人妻| 大型黄色视频在线免费观看| 偷拍熟女少妇极品色| 成人鲁丝片一二三区免费| 亚洲成av人片在线播放无| 午夜免费成人在线视频| 精品免费久久久久久久清纯| 久久久久精品国产欧美久久久| 久久国产精品影院| 一二三四社区在线视频社区8| 久久久色成人| 91在线观看av| 少妇丰满av| 国产高清有码在线观看视频| 中文在线观看免费www的网站| 麻豆成人av在线观看| 国产91精品成人一区二区三区| 桃红色精品国产亚洲av| 啦啦啦观看免费观看视频高清| 亚洲成人久久性| 有码 亚洲区| 黄色片一级片一级黄色片| 国产亚洲精品av在线| 日韩欧美精品v在线| 两个人视频免费观看高清| 成熟少妇高潮喷水视频| 亚洲 欧美 日韩 在线 免费| 九九热线精品视视频播放| 亚洲欧美激情综合另类| 亚洲色图av天堂| 欧美午夜高清在线| 天天躁日日操中文字幕| 最新在线观看一区二区三区| 亚洲在线自拍视频| 欧美中文综合在线视频| 99热精品在线国产| 亚洲不卡免费看| 麻豆一二三区av精品| 日本成人三级电影网站| 日韩免费av在线播放| 色在线成人网| 每晚都被弄得嗷嗷叫到高潮| 精品国产超薄肉色丝袜足j| 悠悠久久av| 午夜a级毛片| 国产一区二区三区在线臀色熟女| 亚洲av免费高清在线观看| 婷婷丁香在线五月| 亚洲一区二区三区不卡视频| 国产精品久久久久久久电影 | 禁无遮挡网站| 欧美黄色淫秽网站| 淫妇啪啪啪对白视频| 全区人妻精品视频| 免费无遮挡裸体视频| 天堂网av新在线| 亚洲中文日韩欧美视频| 又黄又爽又免费观看的视频| 日本五十路高清| 美女黄网站色视频| а√天堂www在线а√下载| tocl精华| 亚洲avbb在线观看| 一级毛片高清免费大全| 亚洲专区国产一区二区| www日本黄色视频网| 麻豆国产97在线/欧美| 久久久久国内视频| 成人亚洲精品av一区二区| 一区二区三区国产精品乱码| 亚洲av二区三区四区| 日韩免费av在线播放| www.999成人在线观看| 免费看十八禁软件| 老司机午夜福利在线观看视频| 最新美女视频免费是黄的| 十八禁网站免费在线| 亚洲精品一卡2卡三卡4卡5卡| 亚洲最大成人中文| 色哟哟哟哟哟哟| 色噜噜av男人的天堂激情| 久久久久久大精品| 男人的好看免费观看在线视频| 狂野欧美激情性xxxx| 国产综合懂色| 国产毛片a区久久久久| 中文字幕av成人在线电影| av欧美777| 中文字幕熟女人妻在线| 国产真实乱freesex| 国产aⅴ精品一区二区三区波| 欧美高清成人免费视频www| 每晚都被弄得嗷嗷叫到高潮| 舔av片在线| 欧美日韩亚洲国产一区二区在线观看| 久久久久久九九精品二区国产| 俄罗斯特黄特色一大片| 窝窝影院91人妻| 村上凉子中文字幕在线| 欧美在线一区亚洲| 日韩欧美在线二视频| 国内精品美女久久久久久| or卡值多少钱| 国产 一区 欧美 日韩| 欧美又色又爽又黄视频| 嫁个100分男人电影在线观看| a级一级毛片免费在线观看| 亚洲成人中文字幕在线播放| 麻豆国产av国片精品| 国产伦在线观看视频一区| 国产蜜桃级精品一区二区三区| 国产欧美日韩一区二区精品| 婷婷精品国产亚洲av| 亚洲国产欧美人成| 丰满人妻熟妇乱又伦精品不卡| 老熟妇仑乱视频hdxx| 18禁美女被吸乳视频| 国产精品一区二区免费欧美| 欧美bdsm另类| 免费在线观看成人毛片| 国产午夜福利久久久久久| 深爱激情五月婷婷| 免费在线观看日本一区| 一a级毛片在线观看| 国产淫片久久久久久久久 | 夜夜躁狠狠躁天天躁| 男女午夜视频在线观看| 久久久色成人| 变态另类成人亚洲欧美熟女| 日本免费a在线| 两个人看的免费小视频| www日本黄色视频网| 欧美色视频一区免费| 欧美乱色亚洲激情| 国产精品日韩av在线免费观看| 人妻久久中文字幕网| 国产99白浆流出| 日韩欧美免费精品| 99热精品在线国产| 午夜免费观看网址| 精品日产1卡2卡| 一进一出抽搐gif免费好疼| а√天堂www在线а√下载| 日韩大尺度精品在线看网址| 九九久久精品国产亚洲av麻豆| 久99久视频精品免费| 少妇高潮的动态图| 叶爱在线成人免费视频播放| 淫妇啪啪啪对白视频| 欧美在线黄色| 国产亚洲欧美98| 精品国产超薄肉色丝袜足j| 观看美女的网站| 人妻丰满熟妇av一区二区三区| 少妇人妻一区二区三区视频| 美女 人体艺术 gogo| 欧美不卡视频在线免费观看| 嫩草影院精品99| 国产高清videossex| 欧美又色又爽又黄视频| 麻豆成人午夜福利视频| 在线天堂最新版资源| 俄罗斯特黄特色一大片| 亚洲av中文字字幕乱码综合| 国产高清视频在线观看网站| 久久草成人影院| av在线蜜桃| av视频在线观看入口| 国产伦精品一区二区三区四那| 精品国产三级普通话版| 欧美黄色淫秽网站| 两个人的视频大全免费| 欧美黑人巨大hd| 在线播放无遮挡| 精品乱码久久久久久99久播| 法律面前人人平等表现在哪些方面| 成人国产一区最新在线观看| 精品欧美国产一区二区三| 老熟妇乱子伦视频在线观看| 性色av乱码一区二区三区2| 脱女人内裤的视频| 深夜精品福利| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 男女下面进入的视频免费午夜| 国产亚洲精品久久久com| 久久久久久久久中文| 亚洲av成人不卡在线观看播放网| АⅤ资源中文在线天堂| 免费看a级黄色片| 午夜a级毛片| 俄罗斯特黄特色一大片| 国产麻豆成人av免费视频| 小蜜桃在线观看免费完整版高清| 久久久久久人人人人人| 国产av不卡久久| av女优亚洲男人天堂| 最近最新中文字幕大全电影3| 亚洲av二区三区四区| 搡女人真爽免费视频火全软件 | 国产一区在线观看成人免费| 久久久久久久午夜电影| 欧美色视频一区免费| 观看免费一级毛片| 精品国产亚洲在线| 丰满的人妻完整版| 国产亚洲av嫩草精品影院| 美女被艹到高潮喷水动态| 久久久久亚洲av毛片大全| 国产伦人伦偷精品视频| 国产精品久久电影中文字幕| 小说图片视频综合网站| АⅤ资源中文在线天堂| 在线看三级毛片| 99久久九九国产精品国产免费| 国产私拍福利视频在线观看| 精品欧美国产一区二区三| 中文字幕高清在线视频| 亚洲国产精品sss在线观看| 欧美成人一区二区免费高清观看| 怎么达到女性高潮| 久久久久亚洲av毛片大全| 母亲3免费完整高清在线观看| 亚洲无线观看免费| 国产精品三级大全| 国产探花在线观看一区二区| 亚洲精品色激情综合| 国产成人啪精品午夜网站| 精品久久久久久,| 成人性生交大片免费视频hd| 免费在线观看影片大全网站| 精品欧美国产一区二区三| 欧美区成人在线视频| 91在线精品国自产拍蜜月 | 搡老妇女老女人老熟妇| 搞女人的毛片| 免费观看人在逋| 国产亚洲精品综合一区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 99热精品在线国产| 国产成人福利小说| 亚洲av成人精品一区久久| 国产精品av视频在线免费观看| 老司机午夜福利在线观看视频| 99国产极品粉嫩在线观看| 别揉我奶头~嗯~啊~动态视频| 一区二区三区激情视频| 桃红色精品国产亚洲av| 日本黄色视频三级网站网址| 亚洲成av人片免费观看| 日本黄色视频三级网站网址| 国产v大片淫在线免费观看| 精品人妻偷拍中文字幕| 久久久国产成人免费| 亚洲中文字幕日韩| 午夜福利在线观看吧| 白带黄色成豆腐渣| 男女视频在线观看网站免费| 国语自产精品视频在线第100页| 少妇裸体淫交视频免费看高清| 人人妻人人看人人澡| 老汉色av国产亚洲站长工具| 国产综合懂色| 久久久久久久久大av| 亚洲精品乱码久久久v下载方式 | 国产精品电影一区二区三区| 哪里可以看免费的av片| 免费一级毛片在线播放高清视频| 国产91精品成人一区二区三区| 国产久久久一区二区三区| 国产不卡一卡二| 欧美一级毛片孕妇| 欧美bdsm另类| 久久伊人香网站| avwww免费| 蜜桃亚洲精品一区二区三区| 色噜噜av男人的天堂激情| 99久国产av精品| 91av网一区二区| www国产在线视频色| 午夜福利18| 亚洲人成伊人成综合网2020| 欧美日本亚洲视频在线播放| www国产在线视频色| 午夜福利18| 美女高潮的动态| 欧美日本亚洲视频在线播放| 免费看日本二区| 国产真实伦视频高清在线观看 | bbb黄色大片| 成人av一区二区三区在线看| 18禁黄网站禁片午夜丰满| 日韩免费av在线播放| 在线观看免费午夜福利视频| 此物有八面人人有两片| 色视频www国产| 欧美日本亚洲视频在线播放| 中出人妻视频一区二区| eeuss影院久久| 成熟少妇高潮喷水视频| 久久婷婷人人爽人人干人人爱| 精品久久久久久成人av| 久久精品国产亚洲av香蕉五月| 校园春色视频在线观看| 国产蜜桃级精品一区二区三区| 高清在线国产一区| 久久久久久久久久黄片| 人妻丰满熟妇av一区二区三区| 十八禁网站免费在线| 免费观看精品视频网站| 亚洲av日韩精品久久久久久密| 真人做人爱边吃奶动态| 成人特级av手机在线观看| 成人精品一区二区免费| 极品教师在线免费播放| 老司机深夜福利视频在线观看| 天美传媒精品一区二区| 岛国在线观看网站| 夜夜爽天天搞| 国产精品久久久久久久电影 | 男女午夜视频在线观看| 精品午夜福利视频在线观看一区| 男女做爰动态图高潮gif福利片| 日本三级黄在线观看| 国产精品久久久久久精品电影| av黄色大香蕉| 五月玫瑰六月丁香| 国产激情欧美一区二区| 舔av片在线| 欧美乱色亚洲激情| 免费人成视频x8x8入口观看| 三级男女做爰猛烈吃奶摸视频| 18禁裸乳无遮挡免费网站照片| 成年女人看的毛片在线观看| bbb黄色大片| 亚洲真实伦在线观看| 热99re8久久精品国产| 动漫黄色视频在线观看| 国产精品 国内视频| 免费av观看视频| 深夜精品福利| 亚洲男人的天堂狠狠| 最好的美女福利视频网| 一区二区三区免费毛片| 国产亚洲精品av在线| 一二三四社区在线视频社区8| 亚洲av电影不卡..在线观看| 色哟哟哟哟哟哟| 亚洲国产精品成人综合色| 欧美最黄视频在线播放免费| av欧美777| 亚洲第一欧美日韩一区二区三区| av在线蜜桃| 亚洲av日韩精品久久久久久密| 看免费av毛片| 久久久久久久久大av| 欧美成人免费av一区二区三区| 男人舔奶头视频| 99在线视频只有这里精品首页| 久久国产精品影院| 69人妻影院| 久久久久免费精品人妻一区二区| 国产黄a三级三级三级人| 亚洲欧美日韩高清在线视频| 丰满的人妻完整版| 色综合欧美亚洲国产小说| 午夜福利在线在线| 最近在线观看免费完整版| 亚洲专区国产一区二区| 最近视频中文字幕2019在线8| 黑人欧美特级aaaaaa片| 日韩 欧美 亚洲 中文字幕| 欧美日韩福利视频一区二区| 香蕉久久夜色| 精品国产美女av久久久久小说| 国产成人aa在线观看| 嫩草影院精品99| 午夜精品在线福利| 精品不卡国产一区二区三区| 狠狠狠狠99中文字幕| 久久精品国产综合久久久| 床上黄色一级片| 天堂网av新在线| 99久久精品热视频| 桃色一区二区三区在线观看| 精品电影一区二区在线| 老鸭窝网址在线观看| 国产精品乱码一区二三区的特点| 精品久久久久久久毛片微露脸| 日日夜夜操网爽| 一二三四社区在线视频社区8| 午夜精品一区二区三区免费看| 国产91精品成人一区二区三区| 亚洲第一电影网av| av欧美777| 亚洲人成网站在线播| 一a级毛片在线观看| 91麻豆av在线| 丁香欧美五月| 国产成人欧美在线观看| 国产野战对白在线观看| 午夜激情欧美在线| 国产乱人视频| 精品一区二区三区视频在线 | 狠狠狠狠99中文字幕| 熟妇人妻久久中文字幕3abv| 琪琪午夜伦伦电影理论片6080| 两个人看的免费小视频| 精品乱码久久久久久99久播| 国产精品一区二区免费欧美| 香蕉av资源在线| 黄色丝袜av网址大全| 婷婷精品国产亚洲av在线| 欧美成人一区二区免费高清观看| 亚洲成av人片在线播放无| 国产一区二区亚洲精品在线观看| xxx96com| 亚洲国产精品sss在线观看| 国产精品亚洲av一区麻豆| 最近最新免费中文字幕在线| 婷婷亚洲欧美| 亚洲aⅴ乱码一区二区在线播放| www日本在线高清视频| 亚洲性夜色夜夜综合| 天堂网av新在线| 国产精品免费一区二区三区在线| 精品日产1卡2卡| 亚洲成人中文字幕在线播放| 狂野欧美激情性xxxx| 亚洲精品日韩av片在线观看 | 亚洲国产欧美网| a级毛片a级免费在线| 成人欧美大片| 国产亚洲欧美在线一区二区| 成人一区二区视频在线观看| 久久香蕉国产精品| 真人做人爱边吃奶动态| 欧美性猛交黑人性爽| 在线观看舔阴道视频| 99国产综合亚洲精品| 搡老熟女国产l中国老女人| 国产精品女同一区二区软件 | 在线观看免费午夜福利视频| 好男人电影高清在线观看| 无人区码免费观看不卡| 国产精品综合久久久久久久免费| 99在线视频只有这里精品首页| 1000部很黄的大片| 可以在线观看的亚洲视频| 国内少妇人妻偷人精品xxx网站| xxxwww97欧美| 久久中文看片网| 91在线观看av| 高清毛片免费观看视频网站| 日本与韩国留学比较| 最新美女视频免费是黄的| 黄色视频,在线免费观看| 小说图片视频综合网站| xxxwww97欧美| 久久久久久久久久黄片| 国产精品99久久久久久久久| 免费观看的影片在线观看| 国内少妇人妻偷人精品xxx网站| 99久久精品国产亚洲精品| 国产av在哪里看| 少妇的丰满在线观看| 国产高清三级在线| 18禁国产床啪视频网站| 校园春色视频在线观看| 深夜精品福利| 欧美日本视频| 日韩av在线大香蕉| 熟女电影av网| 日韩有码中文字幕| 村上凉子中文字幕在线| 老司机午夜十八禁免费视频| 精品久久久久久,| 精品午夜福利视频在线观看一区| 最新中文字幕久久久久| 中文字幕人妻熟人妻熟丝袜美 | 亚洲成a人片在线一区二区| 日韩成人在线观看一区二区三区| 精品99又大又爽又粗少妇毛片 | 欧美日韩综合久久久久久 | 久久久久久九九精品二区国产| aaaaa片日本免费| 欧美bdsm另类| 国产综合懂色| 有码 亚洲区| 国产亚洲精品一区二区www| 免费搜索国产男女视频| 国产精品久久久久久久电影 | 悠悠久久av| 日韩有码中文字幕| 精品人妻1区二区| 免费看日本二区| 亚洲熟妇熟女久久| 白带黄色成豆腐渣| 亚洲欧美激情综合另类| 日韩欧美三级三区| 国内精品一区二区在线观看| 欧美日韩一级在线毛片| 久久99热这里只有精品18| 韩国av一区二区三区四区| 成年人黄色毛片网站| 一级a爱片免费观看的视频| av专区在线播放| 在线观看午夜福利视频| 日韩成人在线观看一区二区三区| 99热精品在线国产| 国产精品久久视频播放| 亚洲自拍偷在线| 啦啦啦韩国在线观看视频| 精品久久久久久久末码| 男女午夜视频在线观看| 中文字幕久久专区| 亚洲五月天丁香| 久久人人精品亚洲av| 久久久精品大字幕| 久久亚洲真实| 2021天堂中文幕一二区在线观| 高潮久久久久久久久久久不卡| 夜夜爽天天搞| 国产三级在线视频| 高潮久久久久久久久久久不卡| 老鸭窝网址在线观看| 日本与韩国留学比较| 欧美最黄视频在线播放免费| 18美女黄网站色大片免费观看| 村上凉子中文字幕在线| 窝窝影院91人妻| www.www免费av| 五月伊人婷婷丁香| 色综合婷婷激情| 亚洲av免费高清在线观看| 国产主播在线观看一区二区| 亚洲无线观看免费| 国产淫片久久久久久久久 | 欧美日韩中文字幕国产精品一区二区三区| 九九在线视频观看精品| 成熟少妇高潮喷水视频| 国产精品自产拍在线观看55亚洲| 人妻夜夜爽99麻豆av| av黄色大香蕉|