• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diabetes mellitus susceptibility with varied diseased phenotypes and its comparison with phenome interactome networks

    2022-06-27 08:30:40MadhusmitaRoutBhumandeepKourSugunakarVureeSajithaLuluKrishnaMohanMedicherlaPrashanthSuravaihala
    World Journal of Clinical Cases 2022年18期

    lNTRODUCTlON

    Diabetes mellitus occurs as a result of insufficient insulin production or impaired insulin sensitivity, and it has become a serious threat to people's health[1,2]. It is a heterogeneous problem with numerous aetiologies comprising three main types,

    type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus(T2DM), and gestational diabetes mellitus (GDM). Understanding the biological mechanisms associated would allow us to identify candidate proteins and genes[3]. The emergence of genome-wide association studies (GWASs) has substantially enhanced our understanding of the genetic basis of disease risk in the past few years. Prior to the introduction of GWASs in 2006, very little information was available about the genes that influence common complicated or multifactorial diseases and quantitative traits.These research findings imply that susceptibility to prevalent diseases is influenced by a variety of genetic topologies, including common genetic variants with minimal effects and uncommon variants with substantial impact sizes[4-6]. Nevertheless, the combination of candidate T2DM genes discovered using GWASs does not fully confirm established features of disease pathogenesis. Several system-level approaches have been used to bridge the gap between genome and phenome correlation[7]. Computational analyses of disease linked genes using interactome and toxicogenomic data help us to connect T2DM candidate genes found in GWAS with disease pathophysiology, including abnormal pancreatic cell formation and function, and insulin sensitivity. On the other hand, computational predictions of potential proteins/genes are less expensive and time-saving than experimental methods[8,9]. In order to unravel the genetic roots of common disorders, it is necessary to understand the complexity of the gene-phenotype connection. Recent research employing the human interactome and phenome has uncovered not just common phenotypic and genetic overlap between diseases but also a modular architecture of the genetic landscape of human diseases, opening up new avenues for reducing the complexity of human diseases[10,11]. Because diseases are rarely caused by the malfunction of a single protein, a more comprehensive and robust interactome is essential for identifying groups of interconnected proteins associated with disease aetiology[12].

    PHENOME lNTERACTlON NETWORKS

    The phenome interaction networks are used to study a wide range of phenotypic traits based on the analysis of the complete genome; it follows a genotypic to phenotypic approach in order to analyse the phenotypic traits[13]. The diseases with overlapping clinical signs can be predicted because of the mutation in different genes which are playing a role in similar functions. More recently, the studies on humans as well as model organisms have revealed that the primary or secondary association between proteins can also be one of the reasons of the same phenotype that means the mutation in particular protein along with its direct or indirect association with a single or multiple proteins can be responsible for overlapping of the clinical manifestations[14]. The opposite scenario can also be analysed using a phenome-interactome network, in case of pleiotropy, the cases in which a single gene is responsible for different phenotypic traits[15]. The protein-protein interaction (PPI) network models are used to analyse the phenomic traits, which in turn is helpful in understanding cell signalling and drug development in the diseased as well as normal cell physiology; basically, it is important to understand almost every process of the cell. PPI networks are the mathematical representation of physical interaction between similar or different proteins for the analysis of phenomes. The mathematical representation of interaction among different proteins in PPIs is based upon graph theory where the proteins are represented as nodes and edges to depict the type of interaction between two different interacting proteins[16]. PPI networks help to find the genes for a particular disease with a huge accuracy and when PPIs are implemented on the large datasets, it could lead to prediction of novel gene candidates[11]. The phenome interaction networks are quite important to understand and mine the genes associated with a particular disease. The genes that are responsible for similar functions have a higher chance of having the same phenotypes; therefore, understanding phenotypic as well as genotypic data is a must in order to understand the origination and development of a disease at the systems biology level for the better treatment[17]. The origin and cause of several complex diseases including cancer, diabetes, and obesity can be understood by PPI network analysis[18].

    GDM

    GDM is categorised as insulin resistance leading to hyperglycemia during pregnancy, which mostly retracts after parturition. According to the World Health Organization, the prevalence rate is 15.8%accounting to about 20.4 million live births, with the majority of cases in pregnant women above the age of 35 years. The International Diabetes Federation in 2019 estimated a prevalence of 28.5% in India with incidence varying in each state due to challenges in screening strategies and paucity of consensus among physicians and healthcare providers in prepartum and postpartum management of GDM[19].The diagnostic criteria may differ worldwide, and understanding the pathophysiology is crucial as it affects both the mother and the fetus during gestation, delivery, and later stages of life making them susceptible to diabetes, obesity, and cardiovascular complications in the long term[20]. Major challenges that have governed this disease are the guidelines for screening and diagnosis. The testing criteria are different with varying forms of oral glucose tolerance test being followed worldwide[21]. Management of GDM is another challenge as both the mother and fetus are at risk in their current milieu. Studies have highlighted the importance of treating GDM, reducing the risk of perinatal morbidity and improving post-delivery outcomes[22]. Glucose intolerance leads to the manifestation of the disease,hence the benchmark of GDM treatment should be glycaemic control which is achieved through lifestyle intervention such as diet and exercise, pharmacological intervention such as insulin, oral drugs,and herbal medicines, and finally postnatal management[23].

    The Goose Girl is finally gaining some autonomy. She is able to cast a simple spell, using her own magic, to save her hair from Curdken s attentions. This spell also brings her to the attention of the old king and helps him to recognize that she must be more than she appears. She is gaining some maturity through her adversity.

    One evening the Lion said to the King: So you think you have got twelve huntsmen, do you? Yes, certainly, said the King, they _are_ twelve huntsmen

    Pregnant women with GDM have an inherent risk of developing T2DM post-delivery or later on in life. The offspring is also susceptible to any form of diabetes postnatally or in the long term. The genetic factors responsible for GDM and future risk of developing T2DM through epidemiological and physiological studies reveal commonality in susceptibility loci, which implies that most of the diabetes genes are involved in causing GDM. The few key genes that share common variants are

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    and

    [24,25]. Genetic similarities between T1DM and GDM is less studied, and a study among Asian Indian women with GDM showed the presence of pancreatic autoantibodies like GAD which is a biomarker for T1DM[26]. Maturity onset diabetes of young (MODY) has different types and each type is characterised by a single gene, and few studies have shown that mutations in

    and

    are MODY genes which predispose to GDM[27].

    This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BYNC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

    PROSTATE CANCER AND DlABETES, LlNCO1128

    “Yes, there is always snow and ice,” said the reindeer; “and it is a glorious place; you can leap and run about freely on the sparkling ice plains. The Snow Queen has her summer tent there, but her strong castle is at the North Pole, on an island called Spitzbergen.”

    LlNC01128

    Soon after this a shepherd happened to pass by with his flock, and while he was slowly following the sheep, who paused here and there by the wayside to browse34 on the tender grass, he heard a pitiful voice wailing35, They insist on my taking her, and I don t want her, for I am too old, and I really can t have her

    CONCLUSlON

    Rout M wrote the first draft; Kour B wrote the sections on diabetes; Suravajhala P proofread the manuscript with sections on phenome-interactome networks; all authors chipped in laterally; Kour B and Rout M are equal contributing first authors.

    ACKNOWLEDGEMENTS

    The authors declare no conflict of interest for this article.

    In a study, GEO datasets of osteosarcoma (OS) were analysed for LINC01128 expression to clear its oncogenic role. It revealed that increased expression of LINC01128 in OS patients is accompanied with their shorter survival. However, its knockdown turned down the proliferation, migration, and invasion.In OS, LINC01128 is identified to work as a sponge in triggering Wnt/β-Catenin signaling by promoting MMP2 expression through miR-299-3p[49]. In promoting cervical cancer development again, it functions as a sponge for miR-383-5p[50]. In cervical cancer tissues, the expression of LINC01128 is found significantly high and its fall suggests that it might lower the SFN (stratifin) at both the mRNA and protein levels. SFN, a known potential biomarker in cervical cancer, is also majorly expressed in the early stage of lung adenocarcinomas. It clearly explains how LINC01128 could accelerate cell processes like cell proliferation, migration, and invasion and even can inhibit the apoptosis through SFN upregulation and release by binding miR-383-5p and also working as its antagonist[51,52]. miR-383 is under regulation of LINC01128. However, overexpression of miR-383 in T2DM serum reverses the cell apoptosis under high glucose in mouse β cells by

    and

    suppression[53]. Also, high LINC01128 was seen in stage III-IV CRC and mediated PRMT5 function, which is a mediator of methylation of proteins[54]. In pancreatic cancer, it was found as an EMT-LPS (epithelial mesenchymal transition related lncRNA prognostic signature) molecule[55].

    FOOTNOTES

    The phenome-interactome networks have been a powerful approach to understand and characterize networks. There is a greater scope of relevance underlying the pathophysiology mentioned above. To fully comprehend the importance of phenome-interactome networks and diabetes associated metabolism, it is vital to ensure that there is a healthy diet regimen followed which also addresses the clinical implications of its absorption, bioavailability, and human health benefits. Integrated systems approaches can be used to discover the novel genes and pathways with an emphasis on the molecular physiological insights gained through systems/nutrigenomic modules and thereby candidate DEGs could be detected. Furthermore, standard operating procedures, recommendations, and guidelines in consideration of the aforementioned diabetes phenotypes for better dissemination of phenomeinteractome predictions will help avoid the risk of over/under treatment. In addition, post next generation sequencing, a large focus nowadays should be on the development of NGS/genotyping panels which can set a precedent for a global consortium effort bridging the gap between the nutritional deficiency diseases and diabetes.

    As glucose level in the body is regulated by insulin, a hormone (peptide) which increases the glucose uptake and its assimilation. However, insulin resistance is stated when it becomes unable to perform this function in a diabetic patient. On the other hand, the beta cell continuously secretes insulin to make up and maintain balance but it results in hyperinsulinemia[36]. This increased level will trigger the production of IGF-1 from liver cells. IGF-1 will then bind to its tyrosine kinase receptor IGF-1R and stimulate various metabolic and mitogenic signalling pathways to control processes like cancer cell proliferation, differentiation, and apoptosis. Later, some downstream targets like PI3KB and rat sarcoma-mitogen-activated protein kinase/extracellular signal regulated kinase signaling pathways get stimulated. PI3KB signaling has a role in cancer cell survival and migration, while the rat sarcoma mitogen-activated protein kinase/extracellular signal regulated kinase signaling pathway controls cancer cell proliferation and metabolism[37]. Hence, patients who have diabetes show increased levels of IGF-1, bringing in them more susceptibility towards a higher risk of developing different cancers like breast, prostate, and colorectal cancer[38]. However, the growth factor IGF-II which shares locus with lncH19 (IGF-II/H19) forms an imprinted gene. This silencing is found disrupted in different cancers including prostate cancer. The association of adipose tissue and obesity is a known risk factor for both T2DM and prostate cancer by disturbing cellular environments. As a result, hyperglycaemia or inflammatory metabolic situations are hypothesized to be the cause of this loss of imprinting (LOI)[39]. Differentially expressed lncRNA (LINC01128) is already known to increase the rate of cervical cancer progression and is also predicted as a biomarker of gestational hypertension[40,41]. Similarly, Pradeep Tiwari

    [28] in 2019 suggested that LINC01128 could serve as a biomarker for diabetes diagnosis and prognosis (Figure 1). Metformin, an antidiabetic drug from several studies, has been proved to not only effect on glucose metabolism but also show interactions with androgen receptors. It plays a role in stabilizing prostate specific antigen (PSA) levels[42]. In certain therapy, another commonly used method for T2DM, it is reported that glucagon-like peptide-1 receptor expression plays an anti-prostate cancer effect. It is helping in attenuating cell cycle progression. So, its forceful activation to express can be a potential therapeutic approach[43]. Therefore, both metformin and certain therapies help in blocking cell cycle progression by reducing mTOR activity[44]. Hypogonadism (decrease in level of testosterone)is also found associated with both diabetes and prostate cancer (PCa). A fall in its serum level is capable of causing high graded PCa. Hence, T2DM is suggested to be a crucial predictor of high graded PCa especially with benign prostatic hyperplasia[45]. For early possible detection, PSA levels are broadly used, but its concentration shows variation due to several other comorbidities, age, and lifestyle, which makes it to demand more precise analysis of test results. Based on a linear aggression analysis, there is a fall in PSA in patients who are taking antidiabetics and obese people on hemodilution. This establishes an inverse relationship between diabetes obesity and PSA level. Such study suggests to deliberately check the PSA level, especially in diabetic and obese patients[46]. Both PCa and DM incidence is rising parallel with age. Despite the fact diabetes mellitus reduces the risk of PCa, DM can also increase its mortality[47]. The understanding of association between DM and PCa is still insufficient. Moreover,obesity makes its pathophysiology a more complex situation[48].

    The authors gratefully acknowledge Arvinpreet Kaur, Mehak Chopra, Berenice, Kiran Telukunta,Anshu Bharadwaj, Harpreet Singh, and Purnima Sharma for subtle scientific deliberations.

    Integrating phenotypic data with genotypic data through a computationally created high-confidence interaction network to analyse human diseases concurrently defines a phenome-interactome network[14]. An organized study on genes expressed in thigh subcutaneous adipose tissue of Asian Indian Type 2 Diabetes Mellitus revealed evidence of “sick thigh fat” as a causative disease. The phenomeinteractome network had a significant correlation of differentially expressed genes (DEGs) and hub proteins with its phenotypic traits obtained at the clinical, biochemical, and radiological, cellular, and molecular levels, thus enumerating their role in T2DM, T1DM, and obesity[28]. RNA-seq analysis enables identification of differentially expressed genes and their role in a disease. The depth of the literature available on RNA-seq analysis performed on pregnant ladies with GDM is negligible. The GDM is a condition in which the intrauterine milieu, especially the placenta, plays a central role in altering the course of the fetus. Hence, having an understanding of the key genes regulated in the placenta is paramount for the disease diagnosis. Most of the literature available on RNA-seq analysis is centred on identifying DEGs in the placenta, umbilical cord, and amniocytes[29-32]. Studies have identified that non-coding RNAs such as long non-coding (lnc)RNAs, microRNAs, and circular RNAs play a central role in GDM pathogenesis. MicroRNAs have been identified as non-invasive early diagnostic biomarkers for GDM[33]. LncRNA-associated feed-forward loops network had a strong correlation between dysregulated glucose metabolism and hormone regulation in GDM cases[34]. The mechanism governing the pathophysiology of the disease is still not clear and the studies available are limited. Hence, the current problem is to understand the genetic background that affects both the mother and fetus with changes in the intrauterine environment and thus identify early diagnostic biomarkers. GDM is associated with a number of comorbidities due to the multifactorial nature of the disease. A study to identify key genes involved in GDM maternal and placental milieu revealed associations with T2DM, T1DM, obesity, hyperglycaemia, preeclampsia, neonatal diabetes, MODY,neurological disorders, cardiovascular disease, preeclampsia, hepatitis C, rheumatoid arthritis, and neoplasms[35]. Hence, the need to identify genes governing this disease and the variations that might affect the phenotype needs to be understood.

    India

    Madhusmita Rout 0000-0001-6011-5887; Bhumandeep Kour 0000-0003-2961-9272; Sugunakar Vuree 0000-0002-3262-434X; Sajitha S Lulu 0000-0002-3392-4168; Krishna Mohan Medicherla 0000-0001-7099-7721; Prashanth Suravajhala 0000-0002-8535-278X.

    Liu JH

    Why are you in college at such a young, innocent age? I asked. She jokingly replied, I m here to meet a rich husband, get married, have a couple of children, and then retire and travel. No, seriously? I asked. I was curious what may have motivated her to be taking on this challenge at her age.

    Wang TQ

    Liu JH

    1 Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005 ; 365 :1333 -1346 [PMID: 15823385 DOI: 10 .1016 /S0140 -6736 (05 )61032 -X]

    2 Brunetti A, Chiefari E, Foti D. Recent advances in the molecular genetics of type 2 diabetes mellitus.

    2014 ; 5 : 128 -140 [PMID: 24748926 DOI: 10 .4239 /wjd.v5 .i2 .128 ]

    3 Tang X, Hu X, Yang X, Fan Y, Li Y, Hu W, Liao Y, Zheng MC, Peng W, Gao L. Predicting diabetes mellitus genes

    protein-protein interaction and protein subcellular localization information.

    2016 ; 17 Suppl 4 : 433 [PMID:27535125 DOI: 10 .1186 /s12864 -016 -2795 -y]

    4 Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet 2012 ; 13 : 135 -145 [PMID: 22251874 DOI:10 .1038 /nrg3118 ]

    5 Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet 2012 ; 90 : 7 -24[PMID: 22243964 DOI: 10 .1016 /j.ajhg.2011 .11 .029 ]

    6 Hirschhorn JN, Gajdos ZK. Genome-wide association studies: results from the first few years and potential implications for clinical medicine.

    2011 ; 62 : 11 -24 [PMID: 21226609 DOI: 10 .1146 /annurev.med.091708 .162036 ]

    7 Jain P, Vig S, Datta M, Jindel D, Mathur AK, Mathur SK, Sharma A. Systems biology approach reveals genome to phenome correlation in type 2 diabetes. PLoS One 2013 ; 8 : e53522 [PMID: 23308243 DOI: 10 .1371 /journal.pone.0053522 ]

    8 Prokopenko I, McCarthy MI, Lindgren CM. Type 2 diabetes: new genes, new understanding. Trends Genet 2008 ; 24 : 613 -621 [PMID: 18952314 DOI: 10 .1016 /j.tig.2008 .09 .004 ]

    9 Florez JC. Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes?

    2008 ; 51 : 1100 -1110 [PMID: 18504548 DOI: 10 .1007 /s00125 -008 -1025 -9 ]

    10 Wu X, Liu Q, Jiang R. Align human interactome with phenome to identify causative genes and networks underlying disease families.

    2009 ; 25 : 98 -104 [PMID: 19010805 DOI: 10 .1093 /bioinformatics/btn593 ]

    11 Oti M, Snel B, Huynen MA, Brunner HG. Predicting disease genes using protein-protein interactions. J Med Genet 2006 ;43 : 691 -698 [PMID: 16611749 DOI: 10 .1136 /jmg.2006 .041376 ]

    12 Alanis-Lobato G. Mining protein interactomes to improve their reliability and support the advancement of network medicine.

    2015 ; 6 : 296 [PMID: 26442112 DOI: 10 .3389 /fgene.2015 .00296 ]

    13 Hebbring SJ. The challenges, advantages and future of phenome-wide association studies. Immunology 2014 ; 141 : 157 -165 [PMID: 24147732 DOI: 10 .1111 /imm.12195 ]

    14 Lage K, Karlberg EO, St?rling ZM, Olason PI, Pedersen AG, Rigina O, Hinsby AM, Tümer Z, Pociot F, Tommerup N,Moreau Y, Brunak S. A human phenome-interactome network of protein complexes implicated in genetic disorders.

    2007 ; 25 : 309 -316 [PMID: 17344885 DOI: 10 .1038 /nbt1295 ]

    15 Cronin RM, Field JR, Bradford Y, Shaffer CM, Carroll RJ, Mosley JD, Bastarache L, Edwards TL, Hebbring SJ, Lin S,Hindorff LA, Crane PK, Pendergrass SA, Ritchie MD, Crawford DC, Pathak J, Bielinski SJ, Carrell DS, Crosslin DR,Ledbetter DH, Carey DJ, Tromp G, Williams MS, Larson EB, Jarvik GP, Peissig PL, Brilliant MH, McCarty CA, Chute CG, Kullo IJ, Bottinger E, Chisholm R, Smith ME, Roden DM, Denny JC. Phenome-wide association studies demonstrating pleiotropy of genetic variants within FTO with and without adjustment for body mass index.

    2014 ; 5 : 250 [PMID: 25177340 DOI: 10 .3389 /fgene.2014 .00250 ]

    16 Agapito G, Guzzi PH, Cannataro M. Visualization of protein interaction networks: problems and solutions.

    2013 ; 14 Suppl 1 : S1 [PMID: 23368786 DOI: 10 .1186 /1471 -2105 -14 -S1 -S1 ]

    17 Li Y, Patra JC. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network.

    2010 ; 26 : 1219 -1224 [PMID: 20215462 DOI: 10 .1093 /bioinformatics/btq108 ]

    18 Sun J, Zhao Z. A comparative study of cancer proteins in the human protein-protein interaction network.

    2010 ; 11 Suppl 3 : S5 [PMID: 21143787 DOI: 10 .1186 /1471 -2164 -11 -S3 -S5 ]

    19 Morampudi S, Balasubramanian G, Gowda A, Zomorodi B, Patil AS. The Challenges and Recommendations for Gestational Diabetes Mellitus Care in India: A Review.

    2017 ; 8 : 56 [PMID: 28392778 DOI:10 .3389 /fendo.2017 .00056 ]

    20 McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational diabetes mellitus.

    2019 ; 5 : 1 -9 [PMID: 31296866 DOI: 10 .1038 /s41572 -019 -0098 -8 ]

    21 Mpondo BC, Ernest A, Dee HE. Gestational diabetes mellitus: challenges in diagnosis and management.

    2015 ; 14 : 42 [PMID: 25977899 DOI: 10 .1186 /s40200 -015 -0169 -7 ]

    22 Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS; Australian Carbohydrate Intolerance Study in Pregnant Women (ACHOIS) Trial Group. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes.

    2005 ; 352 : 2477 -2486 [PMID: 15951574 DOI: 10 .1056 /NEJMoa042973 ]

    23 Langer O. A spectrum of glucose thresholds may effectively prevent complications in the pregnant diabetic patient.

    2002 ; 26 : 196 -205 [PMID: 12099309 DOI: 10 .1053 /sper.2002 .33962 ]

    24 Huerta-Chagoya A, Vázquez-Cárdenas P, Moreno-Macías H, Tapia-Maruri L, Rodríguez-Guillén R, López-Vite E,García-Escalante G, Escobedo-Aguirre F, Parra-Covarrubias A, Cordero-Brie?o R, Manzo-Carrillo L, Zacarías-Castillo R,Vargas-García C, Aguilar-Salinas C, Tusié-Luna T. Genetic determinants for gestational diabetes mellitus and related metabolic traits in Mexican women.

    2015 ; 10 : e0126408 [PMID: 25973943 DOI:10 .1371 /journal.pone.0126408 ]

    25 Watanabe RM. Inherited destiny? Genome Med 2011 ; 3 : 18 [PMID: 21457499 DOI: 10 .1186 /gm232 ]

    26 Unnikrishnan R, Shanthi Rani CS, Anjana RM, Uthra SC, Vidya J, Sankari GU, Venkatesan U, Rani SJ, Mohan V.Postpartum development of type 1 diabetes in Asian Indian women with gestational diabetes.

    2016 ; 20 : 702 -706 [PMID: 27730084 DOI: 10 .4103 /2230 -8210 .190562 ]

    27 Weng J, Ekelund M, Lehto M, Li H, Ekberg G, Frid A, Aberg A, Groop LC, Berntorp K. Screening for MODY mutations,GAD antibodies, and type 1 diabetes--associated HLA genotypes in women with gestational diabetes mellitus.

    2002 ; 25 : 68 -71 [PMID: 11772903 DOI: 10 .2337 /diacare.25 .1 .68 ]

    28 Tiwari P, Saxena A, Gupta N, Medicherla KM, Suravajhala P, Mathur SK. Systems Genomics of Thigh Adipose Tissue From Asian Indian Type-2 Diabetics Revealed Distinct Protein Interaction Hubs. Front Genet 2018 ; 9 : 679 [PMID:30671081 DOI: 10 .3389 /fgene.2018 .00679 ]

    29 Cao M, Zhang L, Lin Y, Li Z, Xu J, Shi Z, Chen Z, Ma J, Wen J. Circular RNA expression profiles in umbilical cord blood exosomes from normal and gestational diabetes mellitus patients.

    2020 ; 40 [PMID: 33146699 DOI:10 .1042 /BSR20201946 ]

    30 Magee TR, Ross MG, Wedekind L, Desai M, Kjos S, Belkacemi L. Gestational diabetes mellitus alters apoptotic and inflammatory gene expression of trophobasts from human term placenta.

    2014 [PMID: 2476820 DOI: 10 .1016 /j.jdiacomp.2014 .03 .010 ]

    31 Pinney SE, Joshi A, Yin V, Min SW, Rashid C, Condon DE, Wang PZ. Exposure to Gestational Diabetes Enriches Immune-Related Pathways in the Transcriptome and Methylome of Human Amniocytes.

    2020 ;105 [PMID: 32687192 DOI: 10 .1210 /clinem/dgaa466 ]

    32 Wang H, She G, Zhou W, Liu K, Miao J, Yu B. Expression profile of circular RNAs in placentas of women with gestational diabetes mellitus.

    2019 ; 66 : 431 -441 [PMID: 30814439 DOI: 10 .1507 /endocrj.EJ18 -0291 ]

    33 Zhu Y, Tian F, Li H, Zhou Y, Lu J, Ge Q. Profiling maternal plasma microRNA expression in early pregnancy to predict gestational diabetes mellitus.

    2015 ; 130 : 49 -53 [PMID: 25887942 DOI: 10 .1016 /j.ijgo.2015 .01 .010 ]

    34 Fu X, Cong H, Zhao S, Li Y, Liu T, Sun Y, Lv N. Construction of Glycometabolism- and Hormone-Related lncRNAMediated Feedforward Loop Networks Reveals Global Patterns of lncRNAs and Drug Repurposing in Gestational Diabetes.

    2020 ; 11 : 93 [PMID: 32210913 DOI: 10 .3389 /fendo.2020 .00093 ]

    35 Rout M, Lulu S S. Molecular and disease association of gestational diabetes mellitus affected mother and placental datasets reveal a strong link between insulin growth factor (IGF) genes in amino acid transport pathway: A network biology approach.

    2018 [PMID: 30335885 DOI: 10 .1002 /jcb.27418 ]

    36 Godsland IF. Insulin resistance and hyperinsulinaemia in the development and progression of cancer.

    2009 ; 118 : 315 -332 [PMID: 19922415 DOI: 10 .1042 /CS20090399 ]

    37 Poloz Y, Stambolic V. Obesity and cancer, a case for insulin signaling. Cell Death Dis 2015 ; 6 : e2037 [PMID: 26720346 DOI: 10 .1038 /cddis.2015 .381 ]

    38 Adekola K, Rosen ST, Shanmugam M. Glucose transporters in cancer metabolism. Curr Opin Oncol 2012 ; 24 : 650 -654[PMID: 22913968 DOI: 10 .1097 /CCO.0 b013 e328356 da72 ]

    39 Kingshott G, Biernacka K, Sewell A, Gwiti P, Barker R, Zielinska H, Gilkes A, McCarthy K, Martin RM, Lane JA,McGeagh L, Koupparis A, Rowe E, Oxley J, Holly JMP, Perks CM. Alteration of Metabolic Conditions Impacts the Regulation of IGF-II/H19 Imprinting Status in Prostate Cancer. Cancers (Basel) 2021 ; 13 [PMID: 33669311 DOI:10 .3390 /cancers13040825 ]

    40 Xue F, Song X, Zhang S, Niu M, Cui Y, Wang Y, Zhao T. Long non-coding RNA TMPO-AS1 serves as a tumor promoter in pancreatic carcinoma by regulating miR-383 -5 p/SOX11 . Oncol Lett 2021 ; 21 : 255 [PMID: 33664819 DOI:10 .3892 /ol.2021 .12517 ]

    41 Xu J, Fan L, Qi F, Xiu X. Screening of Biomarkers for Hypertension Susceptibility in Pregnancy Proc Anticancer Res.2020 ; 4

    42 Taussky D, Delouya G. Impact of diabetes and metformin use on prostate cancer. Scand J Urol 2020 ; 54 : 508 -509 [PMID:32787660 DOI: 10 .1080 /21681805 .2020 .1806355 ]

    43 Shigeoka T, Nomiyama T, Kawanami T, Hamaguchi Y, Horikawa T, Tanaka T, Irie S, Motonaga R, Hamanoue N, Tanabe M, Nabeshima K, Tanaka M, Yanase T, Kawanami D. Activation of overexpressed glucagon-like peptide-1 receptor attenuates prostate cancer growth by inhibiting cell cycle progression.

    2020 ; 11 : 1137 -1149 [PMID:32146725 DOI: 10 .1111 /jdi.13247 ]

    44 Lin E, Garmo H, Van Hemelrijck M, Adolfsson J, Stattin P, Zethelius B, Crawley D. Association of type 2 diabetes mellitus and antidiabetic medication with risk of prostate cancer: a population-based case-control study.

    2020 ;20 : 551 [PMID: 32539807 DOI: 10 .1186 /s12885 -020 -07036 -4 ]

    45 Ohwaki K, Endo F, Shimbo M, Fujisaki A, Hattori K. Comorbidities as predictors of incidental prostate cancer after Holmium laser enucleation of the prostate: diabetes and high-risk cancer.

    2017 ; 20 : 257 -260 [PMID: 28332895 DOI: 10 .1080 /13685538 .2017 .1301417 ]

    46 Kobayashi M, Mizuno T, Yuki H, Kambara T, Betsunoh H, Nukui A, Abe H, Fukabori Y, Yashi M, Kamai T. Association between serum prostate-specific antigen level and diabetes, obesity, hypertension, and the laboratory parameters related to glucose tolerance, hepatic function, and lipid profile: implications for modification of prostate-specific antigen threshold.

    2020 ; 25 : 472 -478 [PMID: 31440861 DOI: 10 .1007 /s10147 -019 -01527 -6 ]

    47 Knura M, Garczorz W, Borek A, Drzyma?a F, Rachwa? K, George K, Francuz T. The Influence of Anti-Diabetic Drugs on Prostate Cancer.

    2021 ; 13 [PMID: 33921222 DOI: 10 .3390 /cancers13081827 ]

    48 Kelkar S, Oyekunle T, Eisenberg A, Howard L, Aronson WJ, Kane CJ, Amling CL, Cooperberg MR, Klaassen Z, Terris MK, Freedland SJ, Csizmadi I. Diabetes and Prostate Cancer Outcomes in Obese and Nonobese Men After Radical Prostatectomy.

    2021 ; 5 [PMID: 34169227 DOI: 10 .1093 /jncics/pkab023 ]

    49 Yao Q, Chen T. LINC01128 regulates the development of osteosarcoma by sponging miR-299 -3 p to mediate MMP2 expression and activating Wnt/β-catenin signalling pathway.

    2020 ; 24 : 14293 -14305 [PMID: 33108067 DOI: 10 .1111 /jcmm.16046 ]

    50 He J, Ling L, Liu Z, Ren X, Wan L, Tu C, Li Z. Functional interplay between long non-coding RNAs and the Wnt signaling cascade in osteosarcoma.

    2021 ; 21 : 1 -7 [PMID: 34130697 DOI:10 .1186 /s12935 -021 -02013 -8 ]

    51 Hu Y, Ma Y, Liu J, Cai Y, Zhang M, Fang X. LINC01128 expedites cervical cancer progression by regulating miR-383 -5 p/SFN axis. BMC Cancer 2019 ; 19 : 1157 [PMID: 31779593 DOI: 10 .1186 /s12885 -019 -6326 -5 ]

    52 Li X, Yuan J, Cao Q, Xie A, Chen J. MicroRNA-383 -5 p inhibits the proliferation and promotes the apoptosis of gastric cancer cells by targeting cancerous inhibitor of PP2 A. Int J Mol Med 2020 ; 46 : 397 -405 [PMID: 32626915 DOI:10 .3892 /ijmm.2020 .4603 ]

    53 Cheng X, Huang Y, Yang P, Bu L. miR-383 ameliorates high glucose-induced β-cells apoptosis and hyperglycemia in high-fat induced diabetic mice.

    2020 ; 263 : 118571 [PMID: 33058915 DOI: 10 .1016 /j.lfs.2020 .118571 ]

    54 Zhao Z, Yang YB, Li XY, Li XG, Chu XD, Lin ZB, Zhang YR, Guo YG, Ding H, Pan YL, Wang L, Pan JH.Comprehensive Analysis of N6-Methyladenosine-Related lncRNA Signature for Predicting Prognosis and Immune Cell Infiltration in Patients with Colorectal Cancer.

    2021 ; 2021 : 8686307 [PMID: 34745388 DOI:10 .1155 /2021 /8686307 ]

    55 Deng Y, Hu H, Xiao L, Cai T, Gao W, Zhu H, Wang S, Liu J. Identification of EMT-Related lncRNAs as a Potential Prognostic Biomarker and Therapeutic Targets for Pancreatic Adenocarcinoma. 2021

    精品人妻1区二区| 亚洲色图av天堂| 国产在线精品亚洲第一网站| 18禁黄网站禁片午夜丰满| 国产单亲对白刺激| 国产午夜精品论理片| 999久久久精品免费观看国产| 国产精品久久久av美女十八| 久久久国产精品麻豆| 少妇裸体淫交视频免费看高清 | 欧美色欧美亚洲另类二区| 精品电影一区二区在线| 久久精品亚洲精品国产色婷小说| 老司机在亚洲福利影院| 欧美日韩黄片免| www.自偷自拍.com| 亚洲一区二区三区不卡视频| 国产麻豆成人av免费视频| 久久精品91无色码中文字幕| 巨乳人妻的诱惑在线观看| 一区二区三区高清视频在线| 亚洲精品在线美女| 亚洲电影在线观看av| 亚洲电影在线观看av| 国产高清视频在线播放一区| 又粗又爽又猛毛片免费看| 国产三级在线视频| 亚洲全国av大片| 2021天堂中文幕一二区在线观| 亚洲成人精品中文字幕电影| 美女免费视频网站| 精品国产美女av久久久久小说| 欧美性猛交╳xxx乱大交人| 这个男人来自地球电影免费观看| 久久国产精品人妻蜜桃| 我的老师免费观看完整版| 国产精品,欧美在线| 母亲3免费完整高清在线观看| 欧美中文日本在线观看视频| 超碰成人久久| 日韩成人在线观看一区二区三区| 欧美激情久久久久久爽电影| 日韩精品免费视频一区二区三区| 人人妻,人人澡人人爽秒播| 99国产精品一区二区三区| 少妇的丰满在线观看| 1024手机看黄色片| 久久久久国内视频| 亚洲aⅴ乱码一区二区在线播放 | 亚洲第一电影网av| www.精华液| 两个人看的免费小视频| 看免费av毛片| 在线观看舔阴道视频| 99国产精品一区二区三区| 亚洲中文字幕日韩| 国产一区二区三区视频了| 午夜免费成人在线视频| 美女黄网站色视频| 青草久久国产| 老司机午夜福利在线观看视频| 欧美zozozo另类| 婷婷精品国产亚洲av| 亚洲国产精品合色在线| 三级男女做爰猛烈吃奶摸视频| 国产成人精品久久二区二区免费| 精品一区二区三区av网在线观看| 黄色a级毛片大全视频| 女人爽到高潮嗷嗷叫在线视频| 精品福利观看| 亚洲熟女毛片儿| 搡老岳熟女国产| or卡值多少钱| 最近最新中文字幕大全免费视频| 一个人观看的视频www高清免费观看 | 制服人妻中文乱码| 高潮久久久久久久久久久不卡| 国产激情偷乱视频一区二区| 亚洲午夜精品一区,二区,三区| 亚洲欧美精品综合一区二区三区| 欧美黄色片欧美黄色片| 三级毛片av免费| netflix在线观看网站| 亚洲精品在线观看二区| 久久久久久久精品吃奶| 精品第一国产精品| 男人舔奶头视频| 亚洲av电影在线进入| 免费在线观看亚洲国产| 欧美精品啪啪一区二区三区| 99久久精品热视频| 欧美色视频一区免费| 午夜精品一区二区三区免费看| 熟女电影av网| 久久精品影院6| 无人区码免费观看不卡| 国产精品国产高清国产av| 亚洲精品久久成人aⅴ小说| a级毛片在线看网站| 久久午夜综合久久蜜桃| 国产一级毛片七仙女欲春2| 亚洲熟妇中文字幕五十中出| 午夜老司机福利片| 国产精品一区二区三区四区免费观看 | 国产激情偷乱视频一区二区| 午夜影院日韩av| 日日干狠狠操夜夜爽| 校园春色视频在线观看| 欧美三级亚洲精品| 俄罗斯特黄特色一大片| 国产人伦9x9x在线观看| 人人妻,人人澡人人爽秒播| 国产伦人伦偷精品视频| 91大片在线观看| 妹子高潮喷水视频| 免费看美女性在线毛片视频| 精品久久久久久久久久久久久| 亚洲 欧美 日韩 在线 免费| 天天躁夜夜躁狠狠躁躁| 在线观看免费视频日本深夜| 一卡2卡三卡四卡精品乱码亚洲| 麻豆一二三区av精品| 国产视频一区二区在线看| 久久婷婷人人爽人人干人人爱| 极品教师在线免费播放| 成人av在线播放网站| 九色国产91popny在线| 757午夜福利合集在线观看| 久久精品亚洲精品国产色婷小说| 搞女人的毛片| 999久久久精品免费观看国产| 国产在线观看jvid| 床上黄色一级片| 久久久久久久精品吃奶| 狂野欧美白嫩少妇大欣赏| 欧美国产日韩亚洲一区| 人人妻人人看人人澡| 欧美三级亚洲精品| 色噜噜av男人的天堂激情| 国产一区二区激情短视频| 又大又爽又粗| 精品午夜福利视频在线观看一区| 日本一本二区三区精品| 日本五十路高清| 丁香六月欧美| 欧美一区二区精品小视频在线| 亚洲狠狠婷婷综合久久图片| 正在播放国产对白刺激| 人人妻人人澡欧美一区二区| 男人的好看免费观看在线视频 | 国产主播在线观看一区二区| av福利片在线| av免费在线观看网站| 亚洲精品色激情综合| 国产精品美女特级片免费视频播放器 | 欧美高清成人免费视频www| 一级a爱片免费观看的视频| 这个男人来自地球电影免费观看| 韩国av一区二区三区四区| 亚洲片人在线观看| 午夜激情福利司机影院| 熟女电影av网| 性色av乱码一区二区三区2| 日本三级黄在线观看| 国产成+人综合+亚洲专区| 国产精品电影一区二区三区| 视频区欧美日本亚洲| 女生性感内裤真人,穿戴方法视频| 我要搜黄色片| 啪啪无遮挡十八禁网站| 亚洲欧美精品综合久久99| 国产伦一二天堂av在线观看| 国产熟女xx| 天天一区二区日本电影三级| 国产三级中文精品| 美女高潮喷水抽搐中文字幕| 国产精品 国内视频| www国产在线视频色| 亚洲精品av麻豆狂野| 国产精品久久久久久久电影 | 成年女人毛片免费观看观看9| 日日夜夜操网爽| 亚洲精品一卡2卡三卡4卡5卡| 少妇被粗大的猛进出69影院| 一级片免费观看大全| xxxwww97欧美| 在线观看www视频免费| 女生性感内裤真人,穿戴方法视频| 首页视频小说图片口味搜索| 12—13女人毛片做爰片一| 国产伦人伦偷精品视频| 天堂av国产一区二区熟女人妻 | 国产精品美女特级片免费视频播放器 | 成年版毛片免费区| 俄罗斯特黄特色一大片| 99精品在免费线老司机午夜| 两个人免费观看高清视频| 久久香蕉激情| 亚洲人成网站在线播放欧美日韩| 嫩草影院精品99| 丰满人妻熟妇乱又伦精品不卡| 男人舔女人的私密视频| 91国产中文字幕| 国产精品亚洲美女久久久| 午夜免费观看网址| 成熟少妇高潮喷水视频| 婷婷精品国产亚洲av在线| 亚洲国产欧美一区二区综合| 国产亚洲精品一区二区www| 国产精品,欧美在线| 亚洲欧美激情综合另类| 悠悠久久av| 最近最新中文字幕大全免费视频| 国产亚洲精品综合一区在线观看 | 一级毛片精品| 宅男免费午夜| 色综合欧美亚洲国产小说| 国产一区二区三区视频了| 搡老妇女老女人老熟妇| 91老司机精品| 男女午夜视频在线观看| 亚洲成人久久爱视频| 欧美激情久久久久久爽电影| 俄罗斯特黄特色一大片| 国产激情偷乱视频一区二区| 88av欧美| 正在播放国产对白刺激| 日韩 欧美 亚洲 中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 婷婷精品国产亚洲av| or卡值多少钱| 日日爽夜夜爽网站| 亚洲18禁久久av| 特大巨黑吊av在线直播| 99国产极品粉嫩在线观看| 中国美女看黄片| 欧美日韩国产亚洲二区| 88av欧美| 亚洲天堂国产精品一区在线| 午夜a级毛片| 美女 人体艺术 gogo| 国产精品免费视频内射| 亚洲一码二码三码区别大吗| 无限看片的www在线观看| 天堂动漫精品| 欧美成人免费av一区二区三区| 黄色 视频免费看| 精品免费久久久久久久清纯| 男男h啪啪无遮挡| 两个人免费观看高清视频| 免费在线观看亚洲国产| 欧美一区二区精品小视频在线| 免费搜索国产男女视频| 国产伦在线观看视频一区| 国产精品一区二区三区四区久久| 伦理电影免费视频| av国产免费在线观看| 欧美乱妇无乱码| 欧美绝顶高潮抽搐喷水| 久久久久久大精品| 国产精品一区二区免费欧美| 国产男靠女视频免费网站| 毛片女人毛片| 国产精品免费视频内射| 大型av网站在线播放| 中文字幕av在线有码专区| 午夜福利欧美成人| 国产麻豆成人av免费视频| 国产视频一区二区在线看| 免费观看人在逋| 日日夜夜操网爽| 香蕉av资源在线| 欧美一级毛片孕妇| 亚洲真实伦在线观看| 亚洲欧美日韩高清专用| 亚洲成人免费电影在线观看| av超薄肉色丝袜交足视频| 国产午夜精品论理片| 国产黄a三级三级三级人| 在线播放国产精品三级| 在线观看一区二区三区| 人妻久久中文字幕网| 国产精品久久久久久亚洲av鲁大| 一进一出抽搐动态| 日本免费一区二区三区高清不卡| 后天国语完整版免费观看| 老熟妇乱子伦视频在线观看| 免费观看人在逋| 一区二区三区国产精品乱码| 麻豆国产97在线/欧美 | 免费av毛片视频| 欧美一级毛片孕妇| 美女免费视频网站| 国产v大片淫在线免费观看| 丰满人妻一区二区三区视频av | 欧美性猛交╳xxx乱大交人| 国产精品一区二区免费欧美| 免费av毛片视频| 国产97色在线日韩免费| 久久久久久人人人人人| 国产欧美日韩一区二区精品| 精品一区二区三区视频在线观看免费| 最近最新免费中文字幕在线| 亚洲av五月六月丁香网| av视频在线观看入口| 91在线观看av| 黄色视频,在线免费观看| 国产成人av激情在线播放| 国产精品久久久人人做人人爽| 狂野欧美激情性xxxx| 日韩欧美国产一区二区入口| 久99久视频精品免费| 国产精品久久久久久久电影 | 亚洲性夜色夜夜综合| 啦啦啦观看免费观看视频高清| 欧美午夜高清在线| 伦理电影免费视频| 国产免费av片在线观看野外av| 亚洲第一欧美日韩一区二区三区| 精华霜和精华液先用哪个| 99久久国产精品久久久| 一进一出抽搐gif免费好疼| 母亲3免费完整高清在线观看| 中文字幕高清在线视频| 国产亚洲欧美在线一区二区| 国产精品电影一区二区三区| 国产一区二区激情短视频| 人妻丰满熟妇av一区二区三区| 午夜免费观看网址| 在线看三级毛片| 在线观看免费视频日本深夜| 欧美性猛交黑人性爽| 亚洲色图 男人天堂 中文字幕| 亚洲国产中文字幕在线视频| 成人高潮视频无遮挡免费网站| 精品国产美女av久久久久小说| 成年人黄色毛片网站| 亚洲av中文字字幕乱码综合| 亚洲精品一区av在线观看| 最近最新中文字幕大全免费视频| √禁漫天堂资源中文www| 亚洲精品中文字幕在线视频| 色综合站精品国产| 色av中文字幕| 夜夜看夜夜爽夜夜摸| a级毛片a级免费在线| 欧美成人一区二区免费高清观看 | 国产精品亚洲av一区麻豆| 变态另类成人亚洲欧美熟女| 狠狠狠狠99中文字幕| 一级毛片精品| 午夜免费观看网址| 亚洲免费av在线视频| 白带黄色成豆腐渣| 国产精品一及| 亚洲人成电影免费在线| 岛国在线观看网站| 亚洲av美国av| 好男人在线观看高清免费视频| 男女那种视频在线观看| 成人国产综合亚洲| 波多野结衣高清作品| 18禁裸乳无遮挡免费网站照片| 精品久久久久久久久久久久久| 国产一区二区三区视频了| 亚洲av日韩精品久久久久久密| 国产精品亚洲av一区麻豆| 三级男女做爰猛烈吃奶摸视频| 国产精品九九99| 首页视频小说图片口味搜索| 熟女电影av网| 一个人免费在线观看的高清视频| 久久久久精品国产欧美久久久| 又粗又爽又猛毛片免费看| 啪啪无遮挡十八禁网站| 国产探花在线观看一区二区| 少妇人妻一区二区三区视频| 午夜福利视频1000在线观看| 日韩欧美在线乱码| 18禁国产床啪视频网站| 久久久久久亚洲精品国产蜜桃av| 欧美日韩黄片免| 人成视频在线观看免费观看| 国产亚洲精品av在线| 色综合站精品国产| 国产精品亚洲美女久久久| 少妇裸体淫交视频免费看高清 | 美女黄网站色视频| 脱女人内裤的视频| 亚洲av电影在线进入| 欧美日本视频| 成人午夜高清在线视频| 国产精品1区2区在线观看.| 在线观看午夜福利视频| 老汉色∧v一级毛片| 一本久久中文字幕| 午夜视频精品福利| e午夜精品久久久久久久| 在线视频色国产色| √禁漫天堂资源中文www| 国产欧美日韩一区二区三| 久久午夜综合久久蜜桃| 日韩三级视频一区二区三区| 人人妻人人看人人澡| 极品教师在线免费播放| 欧美激情久久久久久爽电影| 丝袜人妻中文字幕| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看成人毛片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品国产一区二区精华液| 男女做爰动态图高潮gif福利片| svipshipincom国产片| 1024香蕉在线观看| 国产探花在线观看一区二区| 舔av片在线| 日韩国内少妇激情av| 国产高清有码在线观看视频 | 国内毛片毛片毛片毛片毛片| 成人高潮视频无遮挡免费网站| 免费人成视频x8x8入口观看| 国产视频一区二区在线看| 制服诱惑二区| 好男人电影高清在线观看| 一区二区三区国产精品乱码| 日韩欧美免费精品| 一二三四在线观看免费中文在| www.www免费av| 亚洲电影在线观看av| 成人av在线播放网站| 99国产极品粉嫩在线观看| 国产成人欧美在线观看| 久久亚洲精品不卡| 淫妇啪啪啪对白视频| 国产三级黄色录像| 欧美日韩国产亚洲二区| av超薄肉色丝袜交足视频| √禁漫天堂资源中文www| 在线观看一区二区三区| 国产在线精品亚洲第一网站| videosex国产| 亚洲国产精品合色在线| 久久久久国内视频| 欧美一区二区精品小视频在线| 亚洲欧美激情综合另类| 日本 av在线| 男女那种视频在线观看| 国产精品爽爽va在线观看网站| 搞女人的毛片| 国产成人影院久久av| av中文乱码字幕在线| 久久草成人影院| 久久这里只有精品中国| 啦啦啦观看免费观看视频高清| or卡值多少钱| 手机成人av网站| 又大又爽又粗| 91字幕亚洲| www国产在线视频色| 99久久精品热视频| 可以在线观看毛片的网站| 叶爱在线成人免费视频播放| 亚洲欧美精品综合一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久国产乱子伦精品免费另类| 国产激情久久老熟女| 岛国视频午夜一区免费看| 成人精品一区二区免费| 岛国在线免费视频观看| 妹子高潮喷水视频| 国产区一区二久久| 欧美黑人精品巨大| 成人欧美大片| 亚洲七黄色美女视频| 变态另类成人亚洲欧美熟女| 免费在线观看黄色视频的| 欧美日本亚洲视频在线播放| 久久久久精品国产欧美久久久| 天堂√8在线中文| 韩国av一区二区三区四区| 99久久无色码亚洲精品果冻| 麻豆久久精品国产亚洲av| 成年免费大片在线观看| 国产欧美日韩一区二区三| 久久 成人 亚洲| 黄频高清免费视频| 欧美三级亚洲精品| 夜夜夜夜夜久久久久| 亚洲片人在线观看| 成人欧美大片| 久久久久久久精品吃奶| 免费在线观看影片大全网站| 国产成人欧美在线观看| 亚洲av美国av| 成人永久免费在线观看视频| 午夜免费激情av| 日韩欧美国产一区二区入口| 国产久久久一区二区三区| 亚洲18禁久久av| 在线国产一区二区在线| 中亚洲国语对白在线视频| 老汉色∧v一级毛片| 首页视频小说图片口味搜索| 美女黄网站色视频| 搡老熟女国产l中国老女人| 18美女黄网站色大片免费观看| 免费在线观看影片大全网站| 中出人妻视频一区二区| 天堂动漫精品| 国产精品乱码一区二三区的特点| 91国产中文字幕| 国产三级在线视频| 九色国产91popny在线| 国产一区二区激情短视频| 9191精品国产免费久久| 欧美日韩亚洲综合一区二区三区_| 又黄又粗又硬又大视频| 国产亚洲精品久久久久5区| 国产精品乱码一区二三区的特点| 大型av网站在线播放| 国产精品一区二区精品视频观看| 麻豆国产av国片精品| 美女大奶头视频| 淫妇啪啪啪对白视频| 一个人免费在线观看的高清视频| 欧美日本视频| 国产黄色小视频在线观看| 天天一区二区日本电影三级| 久久精品国产亚洲av高清一级| 人人妻人人看人人澡| 亚洲国产欧美人成| 亚洲欧美日韩高清在线视频| 男女床上黄色一级片免费看| 黄色毛片三级朝国网站| 哪里可以看免费的av片| 天堂av国产一区二区熟女人妻 | 制服诱惑二区| 日韩欧美 国产精品| 操出白浆在线播放| 伊人久久大香线蕉亚洲五| 很黄的视频免费| 久久欧美精品欧美久久欧美| 99热6这里只有精品| 欧美+亚洲+日韩+国产| 久久这里只有精品19| 嫩草影视91久久| 97超级碰碰碰精品色视频在线观看| 国产男靠女视频免费网站| 亚洲一区高清亚洲精品| www日本黄色视频网| 精品日产1卡2卡| 两个人免费观看高清视频| 一本精品99久久精品77| 国产成年人精品一区二区| 精品国产乱子伦一区二区三区| 十八禁网站免费在线| 精品国产乱子伦一区二区三区| 国产亚洲欧美在线一区二区| 看片在线看免费视频| 亚洲性夜色夜夜综合| 欧美成人午夜精品| 欧美中文日本在线观看视频| 久久精品影院6| 成年版毛片免费区| 很黄的视频免费| 丰满人妻一区二区三区视频av | 色av中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 国产精品免费视频内射| 夜夜夜夜夜久久久久| 男女床上黄色一级片免费看| 欧美激情久久久久久爽电影| 黄色片一级片一级黄色片| 丰满的人妻完整版| 91九色精品人成在线观看| 两性夫妻黄色片| 亚洲国产看品久久| 精品久久久久久久人妻蜜臀av| 18美女黄网站色大片免费观看| 人人妻人人澡欧美一区二区| 夜夜躁狠狠躁天天躁| 色播亚洲综合网| 欧美又色又爽又黄视频| 精品久久久久久久久久免费视频| 国产成人精品无人区| 嫩草影视91久久| xxx96com| 国产成人精品久久二区二区91| 久久精品人妻少妇| 中文字幕最新亚洲高清| 日本a在线网址| 18禁观看日本| 国产高清videossex| 午夜亚洲福利在线播放| 麻豆久久精品国产亚洲av| 国产成人啪精品午夜网站| 国产一区二区三区在线臀色熟女| 一区二区三区激情视频| 亚洲av电影不卡..在线观看| 19禁男女啪啪无遮挡网站| 搞女人的毛片| 亚洲精品久久国产高清桃花| 精品少妇一区二区三区视频日本电影| 国产精品av视频在线免费观看| 久久久久国内视频| 此物有八面人人有两片| 日本三级黄在线观看| 国产成人系列免费观看| 级片在线观看| 淫秽高清视频在线观看| 超碰成人久久| 国产精华一区二区三区| av天堂在线播放| 美女扒开内裤让男人捅视频| 老汉色av国产亚洲站长工具|