• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison of ship-based CTD measurement of Circumpolar Deep Water in the Amundsen Sea based on World Ocean Database

    2022-06-23 06:53:10HEHailunWUShouchang
    Advances in Polar Science 2022年2期

    HE Hailun & WU Shouchang

    Comparison of ship-based CTD measurement of Circumpolar Deep Water in the Amundsen Sea based on World Ocean Database

    HE Hailun*& WU Shouchang

    State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

    We compare the characteristics of Circumpolar Deep Water (CDW) in the Amundsen Sea based on Conductivity-Temperature-Depth (CTD) records in the World Ocean Database. There are considerable numbers of ship-based CTD casts in the year 1994, 2000, 2007 and 2009. After confining temporal- and spatial- windows, several stations are emerged as having at-least two casts in different years. The comparisons show that the CDWs turn warmer and salter on shelf and near ice shelf. The results therefore describe the geographic differences of CDW changes, and exhibit rareness of ship-based CTD survey in the Amundsen Sea.

    Circumpolar Deep Water, Amundsen Sea, Conductivity-Temperature-Depth

    1 Introduction

    Amundsen Sea (AS) is a marginal sea in the Southern Ocean, where the ice shelf suffers rapidly basal melting (Rignot et al., 2019). Satellite images support the ice coverage trend is obviously negative in the satellite era (Parkinson, 2019). Ice melting in the AS exerts global impact on the sea level change (Mercer, 1978). Compared with atmospheric forcing, the ice melting is most likely to be forced by underlying warm water (Shepherd et al., 2004; Jacobs et al., 2011).

    Considering the Amundsen Sea Shelf (ASS) as a soly unit, the boundary thermal forcing is mainly provided by the warm Circumpolar Deep water (CDW). The input and output of CDW into the ASS and the related net heat exchange supply energy to ice melting. The intrusion of the CDW to the ASS is partly caused by surface wind forcing near the shelf break (Kim et al., 2021). The thermohaline definition of CDW is>1°C (is thetemperature), and>34.6 psu (is practical salinity; Klinck et al., 2004). Similarly, the thermohaline definition can be also presented by potential temperature () and absolute salinity (SA; Assmann et al., 2019), as>1°C and>34.85 g?kg?1. The upper CDW (UCDW) is characterized by a temperature maximum where the potential density is nearly 27.72 kg?m?3. Lower CDW (LCDW) is related to a salinity maximum (roughly 34.74 psu) at the potential density layer of 27.8 kg?m?3.

    On the seasonal scale, the seal-borne tag CTD reveals that the seasonal variation of CDW in Eastern Trough (ET) is significant (Mallett et al., 2018). Winter CDW in ET is thicker than summer CDW. Heat content of CDW layer in winter is higher than that in summer. The season variation shows geographic difference. For instance, the seasonal variation of CDW in Pine Island Bay (PIB) is not significant.

    On the lower frequency, the comparison of ship-based CTD between the year 1994 and 2009 indicates the temperature of CDW turns warmer in the PIB, and the heat content also increases (Jacobs et al., 2011). Using the machine learning technique (Boehme and Rosso, 2021), the variability of CDW is relatively high in the off-shelf, ET and Central Trough (CT).

    Obtaining the CTD profiles in ASS mainly depends on two platforms, i.e. seal-tag CTD and ship-based CTD. The precision and vertical resolution of seal-tag CTD are considerably lower than ship-based CTD (Mallett et al., 2018). The reported precision of seal-tag CTD is roughly 0.03°C for temperature and 0.05 psu for practical salinity. Besides, due to date compression of seal-tag CTD, the vertical resolution is 18 depth levels per cast, which implies the vertical resolution is coarser than 20 m if the column thickness of cast measurement exceeds 360 m. In contrast, the ship-based CTD typically has 10 Hz higher frequency (typically less than 0.1 m in vertical resolution), and the precision is roughly 0.0001°C for temperature and 0.002 psu for practical salinity, respectively. Therefore, data quality of ship-based CTD is more reliable than seal-tag CTD on describing CDW.

    Due to the limited ship-based CTD observation, the variance of CDW leaves a large room to be understood. The problems of previous studies are exposed as the definitions of CDW are not same. The variables can depend on isothermal line, vertical temperature maximum, isopycnal layer or neutral density layer. For instance, the isotherm is defined as upper boundary of CDW (Mallett et al., 2018). Neutral density also defines the column of CDW (Whitworth et al., 1998; Assmann et al., 2019). Meanwhile, systematic study of updated public datasets on AS CDW has not yet reported. Therefore, we investigate the spatial and temporal distributions of ship-based CTD casts in the AS, and compare the profiles of CDW at possible stations.

    2 Material

    World Ocean Database (WOD) is a global ocean dataset, which is provided by National Oceanic and Atmospheric Administration (https://www.ncei.noaa.gov/products/world- ocean-database). Figure 1 shows the spatial distribution of ship-based CTD in the WOD, where the RTOPO-2 topography (Schaffer et al., 2016) is used. In general, the ship-based CTD mainly locates at the front of ice shelf, on the shelf and slope.

    The temperature-salinity diagram shows that there are at-least three water masses as CDW, Winter Water (WW) and Antarctic Surface Water (AASW; Figure 2). The maximum temperature approaches 2.0°C, which suggests CDW contains considerable heat content. The curve around CDW also shows the maximum temperature point in the temperature-salinity diagram, which indicates the core of CDW.

    Figure 1 Topography of Amundsen Sea (RTOPO2;) and locations of ship-based CTD casts from World Ocean Database (2018). PIIS=Pine Island Ice Shelf, PIB=Pine Island Bay, PIT= Pine Island Trough, TIS=Thwaites Ice Shelf, AIS=Abbot Ice Shelf, CIS=Cosgrove Ice Shelf, CrIS=Crosson Ice Shelf, DIS=Dotson Ice Shelf, GIS=Getz Ice Shelf, ET=Eastern Trough, CT=Central Trough, WT=Western Trough, BP=Bear Peninsula, MP=Martin Peninsula, and BI=Burke Island.

    Figure 2 Temperature-salinity diagram for all CTD stations in the Amundsen Sea.nis the neutral density.

    In present study, we use two surfaces of CDW asn=28.0 and 28.27. The upper surface roughly overlay with isopycnal layers in the range of0= 27.7 to 27.75 (0is the potential density), while the lower surface is close to the isopycnal layer0=27.85. The temperature of upper surface is mainly larger than 0.5°C, which shows the upper surface captures the warm characteristic of CDW. Overall, the upper surface is above the core of CDW (temperature maximum), although the upper surface approaches the core of CDW in some stations. It is worthy to mention that some casts, which show significantly biased salinity for CDW, are not used. Meanwhile, for the lower surface of CDW, because the neutral density at the maximum depth of cast is always lower than the definition (n=28.27), we use the maximum depth of cast as lower surface of CDW in computing the CDW column averaged variables (temperature and salinity, Table 1).

    We further plot the spatial distributions of yearly samples in Figure 3. The intensified CTD measurements were implemented in 1994, 2000, 2007 and 2009. The yearly ship-based CTD samples are reported as followings:

    (1) In 1994, samples located sparsely in Getz Ice Shelf (GIS), Pine Island Ice Shelf (PIIS), ET, CT and Western Trough (WT). According to the information of CTD records, most of these casts (40 out 43) were conducted by Lamont-Doherty Geological Observatory, United States, and the cruise was. The other three casts were carried out by Germany, and the ship name was.

    (2) In 2000, the survey was mainly conducted in PIIS, Bear Peninsula (BP), Dotson Ice Shelf (DIS), GIS, ET, CT and slope. All 82 casts were observed by Lamont-Doherty Geological Observatory, United States, and cruise was.

    (3) In 2007, the distribution of stations is similar to year 2000, although the activity is intensified. The samples were conducted by United States, and the institute is Lamont-Doherty Geological Observatory. These records were based on.

    (4) In 2009, the stations looked like those in 2000 and 2007, however the number of samples was relatively larger in the PIIS, but decreased in the BP. All 156 casts were implemented by Lamont-Doherty Geological Observatory, United States, and cruise was.

    When compared the locations of all stations, several valuable stations are selected as shown in Figure 1 and Table 1. We will later discuss the records respectively (Section 3).

    Table 1 Characteristics of CDW for different years. h is the water depth. zu is the depth of upper surface of CDW, and θ and S are the corresponding potential temperature and practical salinity. dz is the thickness of CDW,andare the mean potential temperature and practical salinity of CDW respectively. The water depth h is adopted from RTOPO2. D in the ID column indicates the difference between two casts.

    Figure 3 Spatial distribution of yearly CTD casts in the Amundsen Sea. Color shading shows the topography ().

    3 Results

    3.1 Water mass near ice shelf

    3.1.1 PIIS

    In PIIS, one station as 74.93°S, 101.95°W is selected (Figure 4 and Table 1). The water depths are in the range of 600 to 1000 m. The first survey time was March 1994, while the later time was 15 years later (January 2009). For the spatial distribution, the cast in 1994 was on the front of PIIS. A sample in January 2009 located closely with initial cast in 1994. Comparing these two closely-distributed casts, pair profiles show the upper neutral density surface deepens from 605 to 635 m. Correspondingly, the temperature has increased by 0.162°C. For the vertical mean of CDW layer, the temperature has increased by 0.14°C. The corresponding salinity changes are relatively weak (less than 0.02 psu). Meanwhile, the samples in January 2009 show consistent temperature-salinity diagram.

    3.1.2 BP

    For the station at northeast of BP (74.25oS, 109.45oW; Figure 5), there are five historic casts. The earlier three casts were in March 2000, the latter two casts were in February 2007. The water depths of these casts are in the range of 600 to 1000 m. The casts in February 2007 show warmer and salter CDW than earlier casts in March 2000. The increment of temperature (salinity) at upper layer of CDW attains 0.345°C (0.039 psu; Table 1).

    3.1.3 DIS

    For the station close to the DIS (74.20oS, 112.55oW), eight casts are recorded in the WOD (Figure 6). The earlier one cast was in March 2000, the later four casts were in February 2007, the following one cast was in December 2007, and the last two casts were in February 2009. The casts in March 2000 locate on front of DIS. On the TS diagram (Figure 6b), the casts in year 2007 show warmer and salter CDW than initial cast in year 2000. On the profiles, the significant changes of temperature and salinity of CDW are observed as compared with initial March 2000 cast. The temperature of upper layer of CDW increases 0.476°C. The salinity of upper layer turns salter from 34.489 (March 2000) to 34.546 psu (February 2007), and the increment attains 0.057 psu. It is also worth noting that between the February 2007 and 2009, the temperature difference is not negligible as well (Figure 6), which implies the inter-annual variation is probably not negligible.

    3.1.4 GIS

    For the station close to the GIS (74.00oS, 115.80oW), there are six historic casts (Figure 7). The earlier one cast was obtained in March 1994, the following cast was in March 2000, the later four cast were in February 2007. The primary characteristics of initial cast (March 1994) is cooler and fresher. The depth of upper layer is 825 m in March 1994. The temperature of upper layer of CDW is ?0.146°C in March 1994, and the salinity is 34.485 psu. Later in March 2000, the depth of upper layer move downward to 870 m. Compared with initial cast, the temperature of upper layer of CDW increases from ?0.146 to 0.193°C (Figure 7c), and the salinity slightly increases from 34.485 to 34.525 psu (Figure 7d). The CDW in February 2007 turns warmer and salter than that in March 2000. The differences of temperature and salinity of upper layer of CDW are 0.594°C and 0.057 psu between February 2007 and March 1994.

    Figure 4 CTD records at PIIS station (74.93oS, 101.95oW) in the Amundsen Sea. a, Topography. Black fill represents land, grey fill shows ice shelf; b, Temperature-salinity diagram; c–d, Profiles of temperature and salinity.

    Figure 5 CTD records at BP station (74.25oS, 109.45oW) in the Amundsen Sea. a, Topography; b, Temperature-salinity diagram; c–d, Profiles of temperature and salinity.

    Figure 6 CTD records at DIS station (74.20oS, 112.55oW) in the Amundsen Sea. a, Topography. Grey fill shows ice shelf; b, Temperature-salinity diagram; c–d, Profiles of temperature and salinity.

    Figure 7 CTD records at GIS station (74.00oS, 115.80oW) in the Amundsen Sea. a, Topography. Grey fill shows ice shelf; b, Temperature-salinity diagram; c–d, Profiles of temperature and salinity.

    3.2 Water mass on shelf

    3.2.1 PIT

    For the station 74.60oS, 104.40oW (Figure 8), which is located in southeast of PIT, two casts on March 2003 and January 2009 were recorded. The later cast shows warmer CDW than earlier cast. On the profiles, on the upper layer of CDW, the salinity of later cast is salter than that of earlier cast.

    Similarly, the station 74.20oS, 105.55oW exists four historic records (Figure 9). The earlier cast was in March 2000, the latter two cast were in February 2007, and the last cast was in January 2009. The casts in years 2007 and 2009 show warmer and salter CDWs than the former cast in year 2000.

    3.2.2 ET

    For the station around the outer shelf of ET (71.75oS, 105.12oW), two historic records exist. The earlier cast was in February 1994, and the later cast was in February 2009. The casts were in the same month, but exhibited long time gap as 15 years. The year 2009 cast shows slightly warmer CDW (increasing 0.031°C), and the water turns a little salter follows the time evolution (increasing 0.018 psu; Table 1 and Figure 10).

    For the station close to the ET (72.31oS, 107.05oW), there are two historic casts (Figure 11). The earlier cast was in March 2000, and the later cast was in February 2009. The cast in year 2009 shows warmer and salter CDW than earlier cast in year 2000. The depth of upper layer of CDW is lifted shallower in 2009 (480 m) than 2000 (560 m). The water temperature and salinity of upper layer increase 0.458°C and 0.051 psu from 2000 to 2009, respectively. However, the temperature and salinity changes of mean CDW column are relatively weak (0.243°C for temperature and 0.029 psu for salinity; Table 1).

    4 Discussion

    The results near the ice shelf are physical sounding, as the near-bottom water at the front of ice shelf changes warmer and salter continuously. However, the thermal forcing of CDW on ice melting depends on the difference between inflow and outflow of CDW, which is not involved in present study. The fresh water due to ice melting does not decrease the salinity of underlying CDW, and the results suggest the ice-melting water is confined in upper layer, and the ocean circulation related to CDW probably impose steady forcing on the basal ice shelf.

    Figure 8 CTD records at PIT station (74.60oS, 104.40oW) in the Amundsen Sea. a, Topography; b, Temperature-salinity diagram; c–d, Profiles of temperature and salinity.

    Figure 9 CTD records at PIT station (74.20oS, 105.55oW) in the Amundsen Sea. a, Topography; b, Temperature-salinity diagram; c–d, Profiles of temperature and salinity.

    Figure 10 CTD records at ET station (71.75oS, 105.12oW) in the Amundsen Sea. a, Topography. The topography is as flat as ?500 m; b, Temperature-salinity diagram; c–d, Profiles of temperature and salinity.

    Figure 11 CTD records at ET station (72.31oS, 107.05oW) in the Amundsen Sea. a, Topography; b, Temperature-salinity diagram; c–d, Profiles of temperature and salinity.

    5 Conclusions

    CDW is a water mass which directly supplies thermal energy to ice shelf basal. This paper focuses on the change of CDW based on reliable CTD profiles. The data are provided by WOD, and the prominent number of records were operated in year 1994, 2000, 2007 and 2009. After imposing a suitable spatial window, CTD profiles are comparable in some nearly-same locations.

    In the Ice Shelf region, there are considerable number of records in the GIS. The initial cast (March 1994) exhibited cooler and fresher water. Later in March 2000, the temperature of upper layer of CDW increased from initial ?0.146°C to 0.193°C. The CDW in February 2007 further turns warmer and salter than those in March 2000. As a result, the temperature (salinity) increases 0.594°C (0.057 psu) from 1994 to 2007. The waters also turn warmer and salter in the PIIS, BP and DIS around Ice Shelf region.

    On the shelf, the CDW is also found warmer and salter on PIT and ET. The most significant change is found on ET (72.31oS, 107.05oW), where the temperature of upper layer of CDW increased 0.46°C from 2000 to 2009, the corresponding salinity increased 0.05 psu. Furthermore, the depth of upper layer of CDW is also lifted up from 560 to 480 m, and the thickness of CDW also varies.

    Although the stations look sparse, the results highlight the impact of climate change, as the waters both near Ice Shelf and on shelf are most likely turn warmer and salter. Considering the data quality of ship-based CTD casts are more reliable than that of seal-tag CTD, these results provide essential information for the regional ocean study.

    Acknowledgments This study was financially supported by National Polar Special Program “Impact and Response of Antarctic Seas to Climate Change” (Grant nos. IRASCC 01-01-01B, 02-01-02). We would like to thank two anonymous reviewers, and Guest Editor Prof. Jiuxin Shi for their valuable suggestions and comments that improved this article.

    Note: This paper is a solicited manuscript of Special Issue “Marine Ecosystem and Climate Change in the Southern Ocean” published on Vol.33, No.1 in March of 2022.

    Assmann K M, Darelius E, W?hlin A K, et al. 2019. Warm Circumpolar Deep Water at the western Getz Ice Shelf front, Antarctica. Geophys Res Lett, 46(2): 870-878, doi:10.1029/2018GL081354.

    Boehme L, Rosso I. 2021. Classifying oceanographic structures in the Amundsen Sea, Antarctica. Geophys Res Lett, 48(5): e2020GL089412, doi:10.1029/2020GL089412.

    Jacobs S S, Jenkins A, Giulivi C F, et al. 2011. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat Geosci, 4(8): 519-523, doi:10.1038/ngeo1188.

    Kim T W, Yang H W, Dutrieux P, et al. 2021. Interannual variation of modified circumpolar deep water in the Dotson-Getz Trough, West Antarctica. J Geophys Res: Oceans, 126: e2021JC017491, doi:10. 1029/2021JC017491.

    Klinck J M, Hofmann E E, Beardsley R C, et al. 2004. Water-mass properties and circulation on the west Antarctic Peninsula Continental Shelf in Austral Fall and Winter 2001. Deep Sea Res Part II Top Stud Oceanogr, 51(17-19): 1925-1946, doi:10.1016/j.dsr2.2004.08.001.

    Mallett H K, Boehme L, Fedak M, et al. 2018. Variation in the distribution and properties of circumpolar deep water in the eastern Amundsen Sea, on seasonal timescales, using seal-borne tags. Geophys Res Lett, 45(10): 4982-4990, doi:10.1029/2018GL077430.

    Mercer J. 1978. West Antarctic ice sheet and CO2greenhouse effect: a threat of disaster. Nature, 271(5643): 321-325, doi:10.1038/271321a0.

    Parkinson C. 2019. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. PNAS, 116(29): 14414-14423, doi:10.1073/pnas.190655 6116.

    Rignot E, Mouginot J, Scheuchl B, et al. 2019. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. PNAS, 116(4): 1095-1103, doi:10.1073/pnas.1812883116.

    Santini M F, Souza R B, Wainer I, et al. 2018. Temporal analysis of water masses and sea ice formation rate west of the Antarctic Peninsula in 2008 estimated from southern elephant seals’ SRDL-CTD data. Deep Sea Res Part II Top Stud Oceanogr, 149: 58-69, doi:10.1016/j.dsr2. 2018.02.013.

    Schaffer J, Timmermann R, Arndt J E, et al. 2016. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth Syst Sci Data, 8(2): 543-557, doi:10.5194/ essd-8-543-2016.

    Shepherd A, Wingham D, Rignot E. 2004. Warm ocean is eroding West Antarctic Ice Sheet. Geophys Res Lett, 31(23): L23402, doi:10.1029/ 2004GL021106.

    Whitworth T, Orsi A H, Kim S J, et al. 1998. Water masses and mixing near the Antarctic Slope Front//Jacobs S S, Weiss R F. Ocean, ice, and atmosphere: interactions at the Antarctic Continental Margin. Antarc Res Series, 75:1-27, doi:10.1029/AR075p0001.

    World Ocean Database. 2018. World Ocean Database 2018. https://www. ncei.noaa.gov/products/world-ocean-database.

    10.13679/j.advps.2021.0036

    : He H L, Wu S C. Comparison of ship-based CTD measurement of Circumpolar Deep Water in the Amundsen Sea based on World Ocean Database. Adv Polar Sci, 2022, 33(2): 145-155,doi: 10.13679/j.advps.2021.0036

    12 July 2021;

    21 April 2022;

    30 June 2022

    Corresponding author, ORCID: 0000-0003-0690-6252, E-mail: hehailun@sio.org.cn

    99热全是精品| 国产欧美日韩精品亚洲av| 国产av精品麻豆| tocl精华| 色视频在线一区二区三区| 曰老女人黄片| 日韩欧美一区二区三区在线观看 | 成人av一区二区三区在线看 | 人妻久久中文字幕网| 美女福利国产在线| 黑人巨大精品欧美一区二区mp4| 女人高潮潮喷娇喘18禁视频| 亚洲精品国产精品久久久不卡| 伊人亚洲综合成人网| 爱豆传媒免费全集在线观看| 国产1区2区3区精品| 黄色视频在线播放观看不卡| 天天躁狠狠躁夜夜躁狠狠躁| 久久国产精品大桥未久av| 久久久国产成人免费| 国产精品 欧美亚洲| 咕卡用的链子| 丝袜在线中文字幕| 老汉色av国产亚洲站长工具| 69精品国产乱码久久久| 日日摸夜夜添夜夜添小说| 国产精品99久久99久久久不卡| 亚洲成人免费av在线播放| 五月开心婷婷网| 久久性视频一级片| 淫妇啪啪啪对白视频 | 久久国产精品大桥未久av| 欧美日韩福利视频一区二区| 国产一区二区 视频在线| 在线 av 中文字幕| 国产日韩欧美在线精品| 欧美xxⅹ黑人| 大片电影免费在线观看免费| 欧美日韩精品网址| 欧美变态另类bdsm刘玥| 亚洲一区二区三区欧美精品| 91大片在线观看| 黄色视频在线播放观看不卡| 精品人妻一区二区三区麻豆| 欧美亚洲日本最大视频资源| 三级毛片av免费| 午夜老司机福利片| 国产av又大| 亚洲熟女精品中文字幕| 视频区欧美日本亚洲| av天堂久久9| 99热国产这里只有精品6| 一区二区三区精品91| 国产精品偷伦视频观看了| 99久久人妻综合| 色视频在线一区二区三区| 久久ye,这里只有精品| 成人国语在线视频| 亚洲精品日韩在线中文字幕| 国产三级黄色录像| 欧美精品一区二区大全| 欧美变态另类bdsm刘玥| a级片在线免费高清观看视频| 日本91视频免费播放| 久久久精品区二区三区| 亚洲国产精品一区三区| 中文精品一卡2卡3卡4更新| 国产黄色免费在线视频| 久久亚洲国产成人精品v| 亚洲国产精品一区三区| 国产精品偷伦视频观看了| 久久九九热精品免费| 极品人妻少妇av视频| 国产精品 欧美亚洲| 黑人操中国人逼视频| 国产精品久久久久久精品电影小说| 下体分泌物呈黄色| 不卡av一区二区三区| 老司机亚洲免费影院| 99国产精品一区二区三区| 欧美激情极品国产一区二区三区| av天堂在线播放| 亚洲欧美一区二区三区久久| 人人澡人人妻人| 极品人妻少妇av视频| 大码成人一级视频| 精品国产一区二区久久| 美女扒开内裤让男人捅视频| 淫妇啪啪啪对白视频 | 精品一区在线观看国产| 一级毛片电影观看| 亚洲国产中文字幕在线视频| 热99re8久久精品国产| 成人影院久久| 午夜91福利影院| 欧美精品亚洲一区二区| 国产高清视频在线播放一区 | 十分钟在线观看高清视频www| 亚洲av欧美aⅴ国产| 久久久久国内视频| 日韩有码中文字幕| 最新在线观看一区二区三区| 国产国语露脸激情在线看| 久久人妻福利社区极品人妻图片| 国产一区二区激情短视频 | 国产成人免费观看mmmm| 国产男人的电影天堂91| 亚洲精品国产一区二区精华液| 日本av免费视频播放| 91成年电影在线观看| 精品少妇黑人巨大在线播放| 国产视频一区二区在线看| 精品国产乱子伦一区二区三区 | 国产精品99久久99久久久不卡| 久久99热这里只频精品6学生| 青青草视频在线视频观看| 久久久久国产一级毛片高清牌| 如日韩欧美国产精品一区二区三区| 久久国产精品男人的天堂亚洲| 丰满少妇做爰视频| 这个男人来自地球电影免费观看| 亚洲av国产av综合av卡| 亚洲熟女精品中文字幕| 99热网站在线观看| 国产精品欧美亚洲77777| 精品一区二区三区四区五区乱码| 免费观看av网站的网址| 丝袜美腿诱惑在线| 国产免费现黄频在线看| 两个人免费观看高清视频| 少妇精品久久久久久久| 国产一级毛片在线| 国产成人免费无遮挡视频| 精品福利观看| 精品国产乱码久久久久久小说| 两性夫妻黄色片| 久久人妻熟女aⅴ| 欧美黄色片欧美黄色片| 丝袜喷水一区| 国产一级毛片在线| 国产精品国产三级国产专区5o| 啦啦啦在线免费观看视频4| 色播在线永久视频| 一级黄色大片毛片| 精品久久久久久电影网| 一二三四社区在线视频社区8| 国产97色在线日韩免费| 亚洲欧美精品自产自拍| 亚洲av美国av| 亚洲少妇的诱惑av| 丝袜脚勾引网站| 国产精品熟女久久久久浪| 亚洲欧美清纯卡通| 在线观看舔阴道视频| 91精品国产国语对白视频| 午夜91福利影院| 亚洲国产精品成人久久小说| 午夜福利影视在线免费观看| 黄色片一级片一级黄色片| 嫁个100分男人电影在线观看| 性高湖久久久久久久久免费观看| 欧美黑人欧美精品刺激| 十八禁网站免费在线| 成年动漫av网址| 精品亚洲成a人片在线观看| 国产一区有黄有色的免费视频| 一二三四在线观看免费中文在| 一区二区av电影网| 男女床上黄色一级片免费看| 色精品久久人妻99蜜桃| 老司机靠b影院| 超碰97精品在线观看| 亚洲色图综合在线观看| 男女下面插进去视频免费观看| 一区二区三区激情视频| 欧美精品啪啪一区二区三区 | xxxhd国产人妻xxx| 亚洲av成人一区二区三| 老司机亚洲免费影院| 另类精品久久| 9热在线视频观看99| 一本久久精品| 91大片在线观看| 91精品三级在线观看| 国产亚洲欧美精品永久| 香蕉国产在线看| 永久免费av网站大全| 99国产精品免费福利视频| 久久亚洲精品不卡| 侵犯人妻中文字幕一二三四区| 国产熟女午夜一区二区三区| 青春草视频在线免费观看| 麻豆国产av国片精品| 人妻久久中文字幕网| 国产一级毛片在线| 一二三四在线观看免费中文在| 无限看片的www在线观看| 日日爽夜夜爽网站| 亚洲国产欧美在线一区| 99精品欧美一区二区三区四区| 亚洲av国产av综合av卡| 91成人精品电影| 色94色欧美一区二区| 日韩制服丝袜自拍偷拍| 一级a爱视频在线免费观看| 99久久精品国产亚洲精品| 亚洲精品美女久久久久99蜜臀| 美女高潮到喷水免费观看| 波多野结衣一区麻豆| 亚洲精品国产一区二区精华液| 91精品伊人久久大香线蕉| 秋霞在线观看毛片| 99国产极品粉嫩在线观看| 两人在一起打扑克的视频| 免费不卡黄色视频| 亚洲精品av麻豆狂野| 亚洲精品国产av蜜桃| 亚洲视频免费观看视频| 十八禁高潮呻吟视频| 在线观看一区二区三区激情| 男女床上黄色一级片免费看| 国产黄频视频在线观看| 成人国产av品久久久| 亚洲熟女精品中文字幕| 欧美日韩成人在线一区二区| 在线观看免费日韩欧美大片| 免费观看av网站的网址| 免费人妻精品一区二区三区视频| 首页视频小说图片口味搜索| 欧美中文综合在线视频| 免费av中文字幕在线| 日本撒尿小便嘘嘘汇集6| 各种免费的搞黄视频| 又大又爽又粗| 午夜福利在线免费观看网站| 啦啦啦免费观看视频1| 悠悠久久av| 少妇粗大呻吟视频| 午夜日韩欧美国产| 黄色毛片三级朝国网站| 欧美少妇被猛烈插入视频| 9191精品国产免费久久| 亚洲av电影在线观看一区二区三区| 丝袜人妻中文字幕| 亚洲精品在线美女| www.精华液| 大香蕉久久成人网| 免费观看人在逋| 精品亚洲成国产av| 99九九在线精品视频| 国产免费视频播放在线视频| 中文精品一卡2卡3卡4更新| 日本a在线网址| 久久久水蜜桃国产精品网| 国产不卡av网站在线观看| 国产精品国产av在线观看| 99re6热这里在线精品视频| 亚洲七黄色美女视频| 精品一区二区三区四区五区乱码| 精品第一国产精品| 王馨瑶露胸无遮挡在线观看| av电影中文网址| 在线十欧美十亚洲十日本专区| 91精品国产国语对白视频| 免费av中文字幕在线| 欧美日韩视频精品一区| 亚洲av电影在线进入| 99国产极品粉嫩在线观看| 一区二区三区激情视频| 日韩免费高清中文字幕av| 老司机影院成人| 午夜福利影视在线免费观看| www.999成人在线观看| 国产欧美亚洲国产| 日韩中文字幕欧美一区二区| 丝袜在线中文字幕| 精品国产一区二区三区四区第35| 欧美在线黄色| 人妻 亚洲 视频| 欧美日韩中文字幕国产精品一区二区三区 | 丰满少妇做爰视频| 欧美日韩亚洲高清精品| 欧美在线一区亚洲| 日韩中文字幕视频在线看片| 一级毛片电影观看| 日韩免费高清中文字幕av| a 毛片基地| 欧美在线黄色| 狠狠狠狠99中文字幕| 日本vs欧美在线观看视频| 啦啦啦视频在线资源免费观看| 在线观看人妻少妇| 国产一区二区激情短视频 | 首页视频小说图片口味搜索| 热re99久久国产66热| 丝瓜视频免费看黄片| 国产一区二区三区综合在线观看| 日韩人妻精品一区2区三区| 国产欧美日韩一区二区精品| 69精品国产乱码久久久| 伦理电影免费视频| 亚洲va日本ⅴa欧美va伊人久久 | 久久亚洲精品不卡| 美女高潮到喷水免费观看| 最黄视频免费看| 黄色a级毛片大全视频| 国产精品久久久久久精品电影小说| 亚洲成人免费av在线播放| 精品免费久久久久久久清纯 | 日日摸夜夜添夜夜添小说| 久久狼人影院| 热99re8久久精品国产| 美女国产高潮福利片在线看| 亚洲性夜色夜夜综合| 十分钟在线观看高清视频www| 欧美成人午夜精品| 中文字幕人妻丝袜制服| 黑人欧美特级aaaaaa片| 欧美精品亚洲一区二区| 丝袜喷水一区| 黄色视频,在线免费观看| 亚洲免费av在线视频| 青青草视频在线视频观看| av不卡在线播放| 免费少妇av软件| 亚洲精品久久久久久婷婷小说| 亚洲中文日韩欧美视频| 美女高潮喷水抽搐中文字幕| 精品久久蜜臀av无| 男人添女人高潮全过程视频| 国产国语露脸激情在线看| 欧美 亚洲 国产 日韩一| 在线观看一区二区三区激情| 国产成人精品久久二区二区91| 色播在线永久视频| 美女高潮喷水抽搐中文字幕| 国产精品一区二区在线不卡| 国产91精品成人一区二区三区 | 9色porny在线观看| 国产成人系列免费观看| 免费观看a级毛片全部| 中文字幕精品免费在线观看视频| 性高湖久久久久久久久免费观看| 高潮久久久久久久久久久不卡| 丝袜喷水一区| 三级毛片av免费| 一本久久精品| 久久女婷五月综合色啪小说| 一级毛片电影观看| 国产野战对白在线观看| 国产成人影院久久av| 老熟妇乱子伦视频在线观看 | 久久久久久久精品精品| 国产精品1区2区在线观看. | 男女高潮啪啪啪动态图| 亚洲国产欧美日韩在线播放| 国产精品av久久久久免费| 正在播放国产对白刺激| 精品国产一区二区三区四区第35| 18禁裸乳无遮挡动漫免费视频| 在线亚洲精品国产二区图片欧美| tocl精华| 国产精品1区2区在线观看. | 国产在线一区二区三区精| 国产黄色免费在线视频| 老司机亚洲免费影院| 中文字幕另类日韩欧美亚洲嫩草| 国产av国产精品国产| 国产日韩欧美在线精品| 性少妇av在线| 搡老岳熟女国产| 老司机午夜十八禁免费视频| 999精品在线视频| 免费女性裸体啪啪无遮挡网站| 成人影院久久| 男人添女人高潮全过程视频| 亚洲国产av新网站| 亚洲精品国产av成人精品| 国产精品麻豆人妻色哟哟久久| 久久久久视频综合| 好男人电影高清在线观看| 在线观看免费日韩欧美大片| 每晚都被弄得嗷嗷叫到高潮| 精品免费久久久久久久清纯 | 夫妻午夜视频| 啦啦啦在线免费观看视频4| 妹子高潮喷水视频| 日韩视频在线欧美| 日韩欧美免费精品| 十分钟在线观看高清视频www| 午夜91福利影院| 亚洲成人免费av在线播放| 亚洲国产精品一区二区三区在线| 人妻久久中文字幕网| 亚洲一区中文字幕在线| 一个人免费在线观看的高清视频 | 日韩免费高清中文字幕av| 国产有黄有色有爽视频| 中文字幕高清在线视频| 亚洲成av片中文字幕在线观看| 黑人猛操日本美女一级片| 亚洲专区中文字幕在线| 免费观看a级毛片全部| 性色av一级| 男女下面插进去视频免费观看| 搡老熟女国产l中国老女人| 亚洲av日韩精品久久久久久密| 精品卡一卡二卡四卡免费| 亚洲中文av在线| 黄色a级毛片大全视频| 国产免费av片在线观看野外av| 欧美大码av| 两个人免费观看高清视频| 免费观看a级毛片全部| 老司机靠b影院| 亚洲国产欧美一区二区综合| 午夜两性在线视频| 黑丝袜美女国产一区| av网站在线播放免费| 国产在线视频一区二区| 狠狠狠狠99中文字幕| 久久精品国产综合久久久| 国产伦人伦偷精品视频| 美国免费a级毛片| 肉色欧美久久久久久久蜜桃| 一本综合久久免费| 电影成人av| 亚洲精品一卡2卡三卡4卡5卡 | 久久精品成人免费网站| 国产精品一区二区在线不卡| 美女扒开内裤让男人捅视频| 成人影院久久| 亚洲国产欧美日韩在线播放| 黄色视频不卡| 国产精品 欧美亚洲| 高清欧美精品videossex| 亚洲精品一二三| 汤姆久久久久久久影院中文字幕| 午夜日韩欧美国产| 考比视频在线观看| 久久免费观看电影| 久久久久久久精品精品| 国产精品二区激情视频| 日日爽夜夜爽网站| 国产在线视频一区二区| 亚洲av片天天在线观看| 精品少妇黑人巨大在线播放| 制服人妻中文乱码| 高清视频免费观看一区二区| 18禁裸乳无遮挡动漫免费视频| 精品国内亚洲2022精品成人 | 麻豆乱淫一区二区| 秋霞在线观看毛片| 五月开心婷婷网| 精品第一国产精品| 91成人精品电影| 亚洲性夜色夜夜综合| 国产成人一区二区三区免费视频网站| 亚洲 欧美一区二区三区| 黄色 视频免费看| 亚洲视频免费观看视频| 国产福利在线免费观看视频| 国产区一区二久久| 一本综合久久免费| 精品国产一区二区三区四区第35| 亚洲欧美清纯卡通| 在线亚洲精品国产二区图片欧美| av视频免费观看在线观看| 99久久人妻综合| 丝袜人妻中文字幕| 国产精品久久久久成人av| 99精品欧美一区二区三区四区| 91国产中文字幕| 首页视频小说图片口味搜索| 日本a在线网址| 别揉我奶头~嗯~啊~动态视频 | 久久99热这里只频精品6学生| 水蜜桃什么品种好| 亚洲 国产 在线| 欧美日韩中文字幕国产精品一区二区三区 | 午夜激情av网站| 日本精品一区二区三区蜜桃| 亚洲黑人精品在线| 一级片'在线观看视频| 无遮挡黄片免费观看| 欧美在线一区亚洲| 欧美另类一区| 午夜福利视频精品| 亚洲精品国产av蜜桃| 欧美变态另类bdsm刘玥| 中文字幕另类日韩欧美亚洲嫩草| tocl精华| 精品少妇内射三级| 涩涩av久久男人的天堂| 精品国产乱码久久久久久男人| a在线观看视频网站| 久久青草综合色| 一区二区三区乱码不卡18| 精品视频人人做人人爽| 国产色视频综合| 国产男女内射视频| 美女国产高潮福利片在线看| 色94色欧美一区二区| 久久青草综合色| 欧美av亚洲av综合av国产av| 国产精品成人在线| 欧美日韩av久久| 丝袜美腿诱惑在线| 黄色毛片三级朝国网站| 考比视频在线观看| 一区二区av电影网| 国产精品一区二区精品视频观看| 国产亚洲一区二区精品| 欧美老熟妇乱子伦牲交| 亚洲国产av新网站| 男人爽女人下面视频在线观看| avwww免费| 精品久久久久久久毛片微露脸 | 中亚洲国语对白在线视频| 亚洲av电影在线观看一区二区三区| 国产成人系列免费观看| 青草久久国产| 一区二区三区乱码不卡18| 亚洲久久久国产精品| 高清在线国产一区| 国产日韩欧美在线精品| 别揉我奶头~嗯~啊~动态视频 | 人人妻,人人澡人人爽秒播| 99国产综合亚洲精品| 国产麻豆69| 夜夜骑夜夜射夜夜干| 亚洲精品国产区一区二| 久久久水蜜桃国产精品网| 久9热在线精品视频| 青春草亚洲视频在线观看| 国产精品国产三级国产专区5o| 国产一区二区三区综合在线观看| 久久久久国产一级毛片高清牌| 亚洲国产欧美在线一区| 脱女人内裤的视频| 亚洲欧美色中文字幕在线| 汤姆久久久久久久影院中文字幕| 日本av手机在线免费观看| 国产精品久久久久成人av| 国产精品.久久久| 99久久精品国产亚洲精品| 国产高清视频在线播放一区 | 成人三级做爰电影| 国产日韩一区二区三区精品不卡| 日韩精品免费视频一区二区三区| 十八禁人妻一区二区| 97人妻天天添夜夜摸| 男女床上黄色一级片免费看| 精品一区在线观看国产| 97在线人人人人妻| 成人手机av| a 毛片基地| 老司机影院毛片| 日本av手机在线免费观看| 伊人久久大香线蕉亚洲五| 69精品国产乱码久久久| 午夜激情av网站| 精品国产一区二区三区久久久樱花| 首页视频小说图片口味搜索| 啦啦啦啦在线视频资源| 69av精品久久久久久 | 国产av精品麻豆| xxxhd国产人妻xxx| 亚洲第一青青草原| 精品欧美一区二区三区在线| 久久久久久久国产电影| 91国产中文字幕| 美女国产高潮福利片在线看| www.av在线官网国产| 正在播放国产对白刺激| 精品国产一区二区三区四区第35| 日本vs欧美在线观看视频| 另类精品久久| 香蕉丝袜av| 一本久久精品| 亚洲中文av在线| 久9热在线精品视频| 国产日韩欧美视频二区| 国产亚洲精品久久久久5区| 国产精品二区激情视频| 中国国产av一级| 精品一品国产午夜福利视频| 免费人妻精品一区二区三区视频| 亚洲中文日韩欧美视频| 欧美午夜高清在线| av网站在线播放免费| 十八禁高潮呻吟视频| 波多野结衣一区麻豆| 97人妻天天添夜夜摸| 久久亚洲国产成人精品v| 最新的欧美精品一区二区| av不卡在线播放| 永久免费av网站大全| 色播在线永久视频| 国产欧美亚洲国产| 91老司机精品| 欧美+亚洲+日韩+国产| 操美女的视频在线观看| 纯流量卡能插随身wifi吗| 国产精品偷伦视频观看了| 国产老妇伦熟女老妇高清| 亚洲黑人精品在线| 九色亚洲精品在线播放| 满18在线观看网站| 美国免费a级毛片| 亚洲av欧美aⅴ国产| 超碰成人久久| 深夜精品福利| 亚洲国产精品一区三区| 欧美变态另类bdsm刘玥|