• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The evaluation of biological productivity by triple isotope composition of oxygen trapped in ice-core bubbles and dissolved in ocean:a review

    2022-06-23 07:08:52ZHOUYaqianPANGHongxiHUHuantingYANGGuangHOUShugui
    Advances in Polar Science 2022年2期

    ZHOU Yaqian, PANG Hongxi*, HU Huanting, YANG Guang & HOU Shugui

    The evaluation of biological productivity by triple isotope composition of oxygen trapped in ice-core bubbles and dissolved in ocean:a review

    ZHOU Yaqian1, PANG Hongxi1*, HU Huanting2, YANG Guang1& HOU Shugui2

    1Key Laboratory of Coast and Island Development of Ministry of Education, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China;2Institute of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China

    The17O anomaly of oxygen (Δ17O, calculated from δ17O and δ18O) trapped in ice-core bubbles and dissolved in ocean has been respectively used to evaluate the past biosphere productivity at a global scale and gross oxygen production (GOP) in the mixed layer (ML) of ocean. Compared to traditional methods in GOP estimation, triple oxygen isotope (TOI) method provides estimates that ignore incubation bottle effects and calculates GOP on larger spatial and temporal scales. Calculated from TOI of O2trapped in ice-core bubbles, the averaged global biological productivities in past glacial periods were about 0.83–0.94 of the present, and the longest time record reached 400 ka BP (thousand years before the present). TOI-derived GOP estimation has also been widely applied in open oceans and coastal oceans, with emphasis on the ML. Although the TOI method has been widely used in aquatic ecosystems, TOI-based GOP is assumed to be constant at a steady state, and the influence of physical transports below the ML is neglected. The TOI method applied to evaluate past total biospheric productivity is limited by rare samples as well as uncertainties related to O2consumption mechanisms and terrestrial biosphere’s hydrological processes. Future studies should take into account the physical transports below the ML and apply the TOI method in deep ocean. In addition, study on the complex land biosphere mechanisms by triple isotope composition of O2trapped in ice-core bubbles needs to be strengthened.

    triple oxygen isotope, ice-core bubbles, dissolved oxygen in ocean, biological productivity

    1 Introduction

    Biospheric productivity plays a vital role in controlling the concentration of carbon dioxide in the atmosphere, which influences the global carbon cycle, and subsequently causes global climate change. Both terrestrial and oceanic biological production are primary mechanisms for global oxygen production and carbon uptake. Because the oceans sink around 30% of anthropogenic carbon dioxide emission (IPCC, 2014), evaluating marine photosynthetic productivity is key to understand the global carbon cycle at present and predict the response of carbon cycle to climate forcing in the future.

    There are several traditional methods used to assess the biosphere productivity. For instance, H218O spike incubation (Grande et al., 1989) used labeled H218O to estimate GOP based on the evolution of18O2. Because of the large enrichments in18O, this method is easier than triple oxygen isotope (TOI) method in tracing natural variations and is less affected by photosynthetic fractionation (Bender et al., 1987; Stanley and Howard, 2013). However, it is susceptible to sampling, manipulation and containment effects, and it alone cannot characterize respiratory mechanisms in aquatic O2uptake (Luz et al., 2002; Manning et al., 2007a; Tobias et al., 2007; Staehr et al., 2012; Hotchkiss and Hall, 2014). Light or dark incubation (Harris et al., 1989) experiment is an O2-based in vitro approach that is convenient for sampling and is widely applied to assess oceanic production, but its assumption of equal dark and light O2uptake rates will bring about large errors (Manning et al., 2007a). The14C in vitro incubation (Nielsen, 1952) is one of the oldest and most widely used method to quantify primary productivity (Bender et al., 1987; Manning et al., 2017b). However, uncertainties of the14C method remain regarding to whether it reflects the natural environment (“bottle effect”) (Peterson, 1980; Harrison and Harris, 1986) and to its near-instantaneous measurements (6–24 h) (Marra, 2007), as well as to the ambiguity between net community production and gross primary production (Bender et al., 1999). Remote sensing data and satellite algorithms (Behrenfeld and Falkowski, 1997) can estimate marine photosynthetic O2production globally with high spatial and temporal resolution (Juranek and Quay, 2013), but it is lacking in field data for validation, and is confined to measurement of primary production in the surface layer. Fast Repetition Rate Fluorometry (FRRF) (Suggett et al., 2001; Moore et al., 2003) enables high-frequency real-time calculation of primary production, but the assumptions of the FRRF still contain large uncertainties (Fujiki et al., 2008). Having understood the strengths and shortcomings of traditional methods, here we review the newly-developed TOI approach.

    Over the past two decades, the triple isotope composition of oxygen (16O,17O and18O) trapped in ice-core bubbles and dissolved oxygen in ocean have been respectively used to evaluate the past global biosphere productivity (including both terrestrial and oceanic biosphere) (Luz et al., 1999; Blunier et al., 2002, 2012) and gross oxygen production (GOP) in the mixed layer (ML) of ocean (Luz and Barkan, 2000; Sarma et al., 2005; Juranek and Quay, 2010; Prokopenko et al., 2011; Bender et al., 2016). Paleo-atmospheric O2and dissolved O2bear the isotopic fractionation from both stratosphere and biosphere, in which oxygen isotopes are fractionated in a mass-independent way and a mass-dependent way, respectively. By measuring Δ17O (defined in section 2.1, equation (2)) in marine dissolved oxygen and paleo O2occluded in ice-core bubbles, accompanied with air-sea gas transfer rates and atmospheric CO2concentration, one can determine the marine photosynthetically produced oxygen and the global biological productivity in the past. TOI method has several advantages in assessing biospheric productivity. First, at a steady state, it reflects community productivity over the residence time (1–3 weeks) of dissolved O2(Reuer et al., 2007; Li et al., 2019), improving the temporal scale of primary productivity assessment. Second, the TOI method can be used in oceanic zones over a wide range of longitudes and latitudes, improving the spatial scale of marine productivity observations (Juranek and Quay, 2013). Also, TOI method can be applied in fresh water ecosystems (Jurikova et al. 2016; Howard et al. 2020). Finally, the calculation of Δ17O is independent on respiration (Quay et al., 1993; Hendricks et al., 2005), which diminishes errors resulted from complex respiratory mechanisms. Although TOI method also has shortcomings, such as uncertainties from analytical errors, gas exchange coefficients (), and gas separation procedures, it is still prospective and worthy of further study in terms of its wide application in assessing marine and global biological productivity. With this in mind, we hope to provide a review of how this approach is applied to evaluation of biological productivity and issues that can be paid attention to in the future.

    2 Principles

    2.1 Fractionation mechanisms and calculation of Δ17O

    Oxygen isotopes of16O,17O,18O have abundances of 99.758%, 0.038% and 0.204%, respectively (Blunier et al., 2002). δ17O and δ18O are used to denote the deviation of measured oxygen isotopes from the standard. Atmospheric O2is usually chosen as the standard for TOI method (Barkan and Luz, 2003). The δ is defined as:

    Whererefers to the ratio of heavy isotope (17O or18O) to the light isotope (16O).Subscripts sam and stdrefer to sample and standard, respectively. δ17O and δ18O are expressed in per mil (‰).

    Δ17O is denoted as the degree of oxygen isotopic anomaly off mass-dependent fractionation. It is a very small value, usually multiplied by 106, and represented in per meg (1 per meg = 0.001‰). Δ17O of standard air O2is nil. Although represented in several ways (Kaiser, 2011), Δ17O can be defined most commonly as equation 2 (Miller, 2002; Luz and Barkan, 2005).

    λ is the mass-dependent fractionation slope, which varies slightly from 0.506 to 0.521 in different biological and isotopic fractionation processes (Luz and Barkan, 2005) (as is shown in Table 1). Most processes in nature discriminates against17O by about 0.52 times as much as it discriminates against18O in a mass-dependent way (Thiemens and Meagher, 1984; Miller, 2002). However, photochemical processes (as follows) occurring in the stratosphere among O2, CO2and O3result in low δ17O and δ18O of O2in a mass-independent way (Thiemens and Heidenreich, 1983; Thiemens et al., 1991; Yung et al., 1991), and the λanomalously turns to 1.7 (L?mmerzahl et al., 2002; Boering et al., 2004).

    Table 1 λ for different mass-dependent processes associated with biological productivity

    Notes:aAngert et al. (2003);bHelman et al. (2005);cSarma et al. (2005);dLandais et al. (2006).

    O2+UV??→ 2O,

    O + O2→ O3,

    O3+ UV → O2+ O (1D),

    CO2+ O (1D) → CO3,

    CO3→ CO2+ O (3P),

    O + O → O2.

    Where the UV is ultraviolet, O (1D) is an excited oxygen atom, and O (3P) is a transient oxygen atom.

    High-precision determination of λ can help tracing small Δ17O variations (Assonov and Brenninkmeijer, 2005). Studies that analyzed isotopic composition of atmospheric oxygen in ice-core bubbles preferred to use λ = 0.516, while in marine dissolved oxygen preferentially used λ = 0.518 (Luz and Barkan, 2005; Barkan and Luz, 2011).

    2.2 Assessing past global biospheric production through TOIs in ice-core bubbles

    Gas phase photochemical reactions in stratosphere imparts mass-independently fractionated O2to the atmosphere, while respiration removes O2and photosynthesis replaces the ambient anomalous atmospheric O2with mass dependent fractionated O2. Relative rates of biological O2and stratospheric O2can determine the relationship between δ17O and δ18O of atmospheric O2(Luz et al., 1999; Blunier et al., 2002). Δ17O calculated from paleo atmospheric O2accompanied with data on the atmospheric CO2concentration can be used to infer variations in past biosphere productivity at the global scale. At a steady state, the oxygen isotopic mass balance is represented as equation 3 (Landais et al. 2007a, 2007b):

    Where Δ17Obioand Δ17Ostratare Δ17O of biological O2flux (Fbio) and stratospheric O2flux (strat), respectively. Δ17Oatmis measured from air samples. The ratio of biospheric O2production in the past to the present is calculated from equation 4 (Landais et al., 2007a, 2007b):

    Here, subscripts bio, strat, atm, past, prst represent biosphere, stratosphere, atmosphere, the past and the present, respectively. Δ17Oatm,prstis defined as 0, and Δ17Oatm,pastis measurable. The former part in the right side of equation 4 can be represented as known CO2concentrations ratio of the past to the present (Luz et al., 1999). Equation 4 is now simplified as an equation relevant to Δ17Obio,prstand Δ17Obio,past, which are determined from both terrestrial (Δ17Oterr)and oceanic (Δ17Oocean)biosphere (equation 5; Landais et al., 2007a).

    , (5)

    Whereoceanandterrrepresent the fluxes of oceanic and terrestrial oxygen production, respectively.ocean/terrratio in ocean and terrestrial biosphere varied from 0.45 to 0.59 (Bender et al., 1994; Blunier et al., 2002; Hoffmann et al., 2004). The modern Δ17Ooceanis around 249 meg?1(Luz and Barkan, 2000). More details on calculating Δ17Oterrand Δ17Ooceanin the past and Δ17Oterrat present can be found in Landais et al. (2007a).

    2.3 Calculating gross oxygen production through the TOIs of dissolved oxygen in ocean

    TOI in the oceanic ML is affected by photosynthesis, respiration, air-sea gas exchange and physical transports among water masses. Respiration effect is eliminated because of bearing the same λ (0.518) as Δ17O calculation. Physical transports in the ML are assumed to be neglected. Therefore, the magnitude of the Δ17O in dissolved oxygen is determined by the relative rates of photosynthetic O2to air-sea exchange O2. Dissolved O2produced only from photosynthetic splitting of water bears the same isotopic composition as the seawater (Guy et al., 1989; Yakir et al., 1994), and results in a high Δ17O(Δ17Op)to 249±15 meg?1(Luz and Barkan, 2000). Dissolved O2in equilibrium with atmospheric O2bears a low Δ17O (Δ17Oeq) due to air-sea gas exchange. Luz and Barkan (2009) concluded that Δ17Oeqis positively relative to water temperature (Δ17Oeq=0.6×+ 1.8). Measured Δ17O of dissolved oxygen in ML (Δ17Odiss) falls between the two end-members (van der Meer, 2015; Nicholson et al., 2014). One can thus calculate GOP from Δ17Odiss, along with the parameterizedestimated from wind speed (Watson et al., 1991; Behrenfeld and Falkowski, 1997; Nightingale et al., 2000; Sweeney et al., 2007; Ho et al., 2011).

    Here, [O2]eqis the equilibrium concentration of O2(Garcia and Gordon, 1992; Hamme and Emerson, 2004). First proposed by Luz and Barkan (2000), equation (6) is sensitive to errors in Δ17Odiss, Δ17Oeq, and especially in. Thus, Prokopenko et al. (2011) proposed the equation (7), which decreases errors for GOP calculation.

    Where the subscripts p, diss and eq refer to O2produced by photosynthesis, dissolved in mixed layer and equilibrated with air, respectively. GOP values calculated by equation (7) are marked with * in Table 3.

    3 Methods

    Air samples from ice-core bubbles and sea water are collected in pre-evacuated 125 cm3and 500 mL glass flasks sealed with the same Louwers Hapert? O-ring stopcocks. Seawater samples are pre-poisoned with 100 μL of HgCl2saturated solution to avoid biological activity. After 24 hours’ equilibration at room temperature, the water is sucked out leaving only headspace gases inside (Emerson et al., 1995; Sarma et al., 2003; Ash et al., 2020). O2and Ar are separated from air samples through the separation line in Figure 1.

    More details of automatic gas separation can be found in Barkan and Luz (2003). Briefly, H2O, N2O and CO2are cryogenically removed by T1 and T2 (Dewar flasks with liquid nitrogen) in 5 min, leaving N2, O2and Ar trapped by molecular sieves at ?196°C in T3. Carried by pure helium gas, N2is separated through the chromatographic column (GC) in T4, leaving O2and Ar mixture trapped in T5. By heating the molecular sieves in T5, the gas mixture is then eluted and transferred to the collection finger immersed in T6.

    The mixed O2and Ar are analyzed in the dual-inlet mass spectrometry by simultaneously measuring/32, 33, and 34 (Abe and Yoshida, 2003). The average standard analytical errors ofd17O,d18O and Δ17O are about 0.006‰, 0.003‰ and 7 meg?1(standard deviation), respectively (Luz et al., 1999; Sarma et al., 2005; Juranek and Quay, 2010; Munro et al., 2013; Keedakkadan and Abe, 2015).

    4 Progress on research of triple isotopes of O2 trapped in ice-core bubbles and dissolved in ocean

    4.1 Assessing past global biological productivity through triple isotopes of O2 trapped in ice-core bubbles

    The triple isotopic composition of O2from paleo air occluded in ice-core bubbles can be used to estimate the rates of total biological productivity in the past to the present, although uncertainties still remain for terrestrial productivity measurement (Luz et al., 1999; Blunier et al., 2002; Angert et al., 2003; Landais et al., 2007a, 2007b). Here we select records from the Vostok and Greenland Ice Sheet Project 2 (GISP2) as representatives of ice cores in Antarctic and Arctic. The ratios of GOP in the past to the present and Δ17O values of paleo-atmospheric O2are shown in Table 2, and temporal variations of Δ17O values in past glacial and interglacial times are shown in Figure 2.

    Figure 1 Plot of the separation line.

    Table 2 Ratios of GOP in the past to the present and Δ17O values of O2 from ice-core bubbles

    Note: * Data referenced from Luz et al. (1999) and Blunier et al. (2002).

    Figure 2 Variations of Δ17O in O2trapped in ice-core bubbles from GISP2 (crosses) (a) and Vostok (diamonds) (b) at glacial-interglacial timescale (Luz et al., 1999; Blunier et al., 2012). In addition, the ice δ18O of GISP2 (grey curve; Grootes et al., 1993) and ice δD of Vostok (dark blue curve; Petit et al., 1999) are also shown to indicate the glacial-interglacial cycles.

    Luz et al. (1999) first applied the TOI method to estimate the past global biological production through ice cores from GISP2. They concluded that the average estimate of the global GOP ratio in the past 82 ka is 87%–97% of the modern productivity, and proposed that the marine biosphere was almost the same as or just a little higher than the present, while the terrestrial biosphere was slightly lower. Blunier et al. (2002) also calculated the Δ17O of paleo-atmospheric O2trapped in ice-core bubbles from GISP2 over the last 60 ka, and concluded that the GOP rates are only~76%–83% of the modern for the LGM and are slightly lower than today for the glacial-interglacial transition and the early Holocene. Landais et al. (2007a) calculated the biological productivity ratio for the LGM as 60%–75%, and proposed that estimates of the LGM oxygen biosphere productivity obtained by Blunier et al. (2002) may not be adequate (Hoffmann et al., 2004) compared with that in Luz et al. (1999), because of various climatic conditions and plant coverage (Hoffmann et al., 2004). Landais et al. (2007b) emphasized on the relationship between δ17O and δ18O during leaf transpiration, and concluded that the GOP rate during the LGM is 69%±6% of the present, and yielded that the Δ17O is constant around 40 meg?1in glacial times, while changed a lot in the LGM.

    Blunier et al. (2012) calculated biospheric productivity from 400 ka BP Δ17O records in Vostok, and concluded that the mean GOP ratios during the past 400 ka are 94%–83% of the modern rates. They also found that oceanic oxygen productivity was elevated by ~20% relative to the present during glacial maximum and the transition of glacial-interglacial, but the increase did not compensate for land productivity decrease.

    The variations of biogenic productivity over paleo times in the ocean biosphere are different from that in the land biosphere, especially in glacial times. Blunier et al. (2012) concluded that there were still uncertainties remained to assess both land and ocean productivities from Δ17O data of O2. Distinguished from the global mean value, the marine biological production in glacial times were 88%–140% of the present (Luz et al., 1999; Blunier et al., 2002), while terrestrial biosphere remained uncertain because of complex plant physiology. Angert et al. (2003) showed that at least 15% of the changes in the triple oxygen isotopic composition in paleo-air should be related to the variations among different respiration mechanisms.

    4.2 Assessing marine photosynthetically produced oxygen through triple isotopes of O2 dissolved in ocean

    The TOI method has been widely applied to measure marine primary productivity in the ML of global open ocean or coastal ocean. Specifically, spatial distribution of TOI-GOP study sites in global ocean is illustrated in Figure 3, and the mean TOI-GOP values are presented in Table 3. According to Juranek and Quay (2010), gross primary productivity (GPP) data were all converted to GOP data based on the photosynthetic quotient (PQ = 1.2) (Burris, 1981; Laws, 1991) and a 15% correction (Bender et al., 1999; Laws et al., 2000) (GPP = GOP × (0.85/PQ)). TOI-GOP data were acquired in the Southern Ocean, the Pacific, the Atlantic and the Arctic oceans, of which the Pacific Ocean and coastal ocean gained wide attention, while the Indian Ocean was blank in TOI-GOP values. So far, TOI-based GOP assessment in the subtropical Atlantic and the subtropical Pacific has mainly collected data from the Bermuda Atlantic Time-series Station (BATS) and the Hawaii Ocean Time-series Station ALOHA, respectively. In the Southern Ocean, TOI-based GOP values focused on theAntarctic Peninsula and the sector close to Australia.

    Figure 3 Distribution of TOI-derived GOP values in different oceanic zones.

    Table 3 TOI-GOP calculations in different ocean zones

    Continued

    Notes: * GOP calculated from equation (7);+GOP allowing for production below the ML.

    Although widely applied in global ocean regions, TOI method’s assumptions of a steady state (no change of Δ17O with time) in the ML and no physical transports resulted in potential biases in different regions and seasons. It is apparent from Table 3 that the Southern Ocean bears the largest biases for mean GOP values, followed by the coastal ocean. Luz and Barkan (2009) demonstrated that ocean dynamics will affect the Δ17Odissin the ML of subtropical ocean on a seasonal scale. Vertical entrainment or mixing of seawater was the largest sources of the bias, and seasonal variability of Δ17Odisswas another significant source. Nicholson et al. (2014) further demonstrated that biases resulted from physical dynamics tended to incur larger overestimation in midlatitudes and in summer and fall, and biases due to seasonal variability were highest in the fall.

    Considering the main contribution of physical transports and seasonal variability to GOP biases in the ML, non-steady state GOP terms were proposed to better estimate primary productivity in the euphotic layer or even the deep ocean (Nicholson et al., 2012; Wurgaft et al., 2013). Luz and Barkan (2000) first calculated the TOI-GOP values covering the euphotic zone with the steady state assumption. Kaiser (2011) and Prokopenko et al. (2011) accounted for disequilibrium terms that affected GOP in the ML, and concluded that exact expressions including both non-steady and steady states performed well in high-productivity aquatic ecosystems. Haskell et al. (2016) then applied the exact expression proposed by Prokopenko et al. (2011) in oligotrophic ocean, and found that the disequilibrium terms would slightly affect GOP values in the ML.

    Given to the wide range of time and spatial scales that various productivity methods covered, comparisons were needed to explore their applicability in oceans of different space and timescales (Hamme et al., 2012). TOI-based GOP values more or less exceeded values estimated from traditional methods, which uncovered the underestimation of incubation methods on primary productivity. Quay et al. (2010) concluded that the Δ17O-derived GOP exceeded the labeled18O-GOP by 25%–60%. Reuer et al. (2007) found the TOI-based GOP higher than the prediction in Behrenfeld and Falkowski (1997), and about 2.7 times higher than14C-based gross production. Globally, the underestimation of primary productivity using incubation methods became the greatest in the tropics (Juranek and Quay, 2010). Sarma et al. (2005) attributed the underestimation to unavailability of O2uptake rates and the assumption of equal light and dark respiration mechanisms.

    Apart from the application of TOI for GOP calculation, O2/Ar ratios can be concomitantly measured to calculate net oxygen productivity (NOP) (Reuer et al., 2007; Castro-Morales et al., 2013; Munro et al., 2013). More studies have also used recently the NOP/GOP ratios to suggest the potential export efficiency of community ecosystems (Juranek and Quay, 2005; Reuer et al., 2007; Luz and Barkan, 2009), especially in high productivity ecosystems (Prokopenko et al., 2011). Detailed calculations for the weighted gas transfer velocity is key to high-precision NOP calculation (Reuer et al., 2007), while NOP/GOP ratios calculation were free fromerrors, and they were in the range of15N incubation ratios (Sambrotto and Mace, 2000).

    5 Problems and prospects

    TOI method has been applied widely in assessing past global primary production and modern marine productivity, but problems still remain on possible biases and inadequate understandings, which awaits improvements in future studies.

    (1) The assumption of a steady state and neglected physical transports may cause large biases in productivity calculation, thus future studies await further exploration of complex advective mixing or vertical entrainment of seawater, and combined the steady and non-steady state equation to calculate biospheric production in euphotic layer or even deep ocean.

    (2) CalculatingD17O-based GOP requires accurate gas separation processes and high-precision measurements of δ18O and δ17O. However, there are only a few technologies in the world that can control the uncertainties and precision in analytically available range. Another big error comes from parameterization of air-sea oxygen exchange rate (Reuer et al., 2007). Thus, more studies need improvements on accurate gas separation and high-precision mass spectrometry analyzing technologies in future works, and a uniform and widely acceptedparameterization standard awaits further exploration.

    (3) Inadequate understandings still remain in conversion between GOP and GPP. Therefore, relationships between GOP and GPP need to be better understood by tracking O2and carbon flows in natural communities over long ranges of timescales (Juranek and Quay, 2013).

    (4) Complex physiological mechanisms of terrestrial plants hindered the wide application of TOI method in estimating past global biological production, like the inadequate knowledge of leaf water transpiration (Landais et al. 2007b). Studies in the future can move forward on assessment of past global productivity through Δ17O signals in ice-core bubbles earlier than 400 ka BP.

    Acknowledgements We appreciate the Institute of Oceanography, Shanghai Jiao Tong University, which provides experiment platforms for us to learn about disciplines of gas separation line and high-precision measurements of TOIs. We are grateful to Zhaojun Zhan, Yanyan Cai and Jiajia Wang, for their help on plots. Gratitude also goes to the technicians who gave suggestions on our pre-processed system. This work was supported by the National Natural Science Foundation of China (Grant nos. 41771031 and 41673125) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). We would like to thank two anonymous reviewers, and Associate Editor Dr. Cinzia Verde, for their valuable suggestions and comments that improved this article.

    Abe O, Yoshida N. 2003. Partial pressure dependency of17O/16O and18O/16O of molecular oxygen in the mass spectrometer. Rapid Commun Mass Spectrom, 17(5): 395-400, doi:10.1002/rcm.923.

    Angert A, Rachmilevitch S, Barkan E, et al. 2003. Effects of photorespiration, the cytochrome pathway, and the alternative pathway on the triple isotopic composition of atmospheric O2. Glob Biogeochem Cycles, 17(1): 1030, doi:10.1029/2002GB001933.

    Ash J L, Hu H T, Yeung L Y. 2020. What fractionates oxygen isotopes during respiration? Insights from multiple isotopologue measurements and theory. ACS Earth Space Chem, 4(1): 50-66, doi:10.1021/ acsearthspacechem.9b00230.

    Assonov S S, Brenninkmeijer C A M. 2005. Reporting small Δ17O values: existing definitions and concepts. Rapid Commun Mass Spectrom, 19(5): 627-636, doi:10.1002/rcm.1833.

    Barkan E, Luz B. 2003. High-precision measurements of17O/16O and18O/16O of O2and O2/Ar ratio in air. Rapid Commun Mass Spectrom, 17(24): 2809-2814, doi:10.1002/rcm.1267.

    Barkan E, Luz B. 2011. The relationships among the three stable isotopes of oxygen in air, seawater and marine photosynthesis. Rapid Commun Mass Spectrom, 25(16): 2367-2369, doi:10.1002/rcm.5125.

    Behrenfeld M J, Falkowski P G. 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr, 42(1): 1-20, doi:10.4319/lo.1997.42.1.0001.

    Bender M, Grande K, Johnson K, et al. 1987. A comparison of four methods for determining planktonic community production. Limnol Oceanogr, 32(5): 1085-1098, doi:10.4319/lo.1987.32.5.1085.

    Bender M, Orchardo J, Dickson M L, et al. 1999.O2fluxes compared with14C production and other rate terms during the JGOFS Equatorial Pacific experiment. Deep Sea Res Part I: Oceanogr Res Pap, 46(4): 637-654, doi:10.1016/s0967-0637(98)00080-6.

    Bender M, Sowers T, Labeyrie L. 1994. The Dole Effect and its variations during the last 130, 000 years as measured in the Vostok Ice Core. Glob Biogeochem Cycles, 8(3): 363-376, doi:10.1029/94GB00724.

    Bender M L, Tilbrook B, Cassar N, et al. 2016. Ocean productivity south of Australia during spring and summer. Deep Sea Res Part I: Oceanogr Res Pap, 112: 68-78, doi:10.1016/j.dsr.2016.02.018.

    Blunier T, Barnett B, Bender M L, et al. 2002. Biological oxygen productivity during the last 60, 000 years from triple oxygen isotope measurements. Glob Biogeochem Cycles, 16(3): 3-1-3-13, doi:10.1029/ 2001GB001460.

    Blunier T, Bender M L, Barnett B, et al. 2012. Planetary fertility during the past 400 ka based on the triple isotope composition of O2in trapped gases from the Vostok ice core. Clim Past, 8(5): 1509-1526, doi:10.5194/cp-8-1509-2012.

    Boering K A, Jackson T, Hoag K J, et al. 2004. Observations of the anomalous oxygen isotopic composition of carbon dioxide in the lower stratosphere and the flux of the anomaly to the troposphere. Geophys Res Lett, 31(3): L03109, doi:10.1029/2003GL018451.

    Burris J E. 1981. Effects of oxygen and inorganic carbon concentrations on the photosynthetic quotients of marine algae. Mar Biol, 65(3): 215-219, doi:10.1007/BF00397114.

    Castro-Morales K, Cassar N, Shoosmith D R, et al. 2013. Biological production in the Bellingshausen Sea from oxygen-to-argon ratios and oxygen triple isotopes. Biogeosciences, 10(4): 2273-2291, doi:10. 5194/bg-10-2273-2013.

    Emerson S, Quay P D, Stump C, et al. 1995. Chemical tracers of productivity and respiration in the subtropical Pacific Ocean. J Geophys Res: Oceans, 100(C8): 15873-15887, doi:10.1029/95JC 01333.

    Fujiki T, Hosaka T, Kimoto H, et al. 2008.observation of phytoplankton productivity by an underwater profiling buoy system: use of fast repetition rate fluorometry. Mar Ecol Prog Ser, 353: 81-88, doi:10.3354/meps07151.

    Garcia H E, Gordon L I. 1992. Oxygen solubility in seawater: better fitting equations. Limnol Oceanogr, 37(6): 1307-1312, doi:10.4319/lo.1992. 37.6.1307.

    Grande K D, Williams P J L, Marra J, et al. 1989. Primary production in the North Pacific Gyre: a comparison of rates determined by the14C, O2concentration and18O methods. Deep Sea Res A Oceanogr Res Pap, 36(11): 1621-1634, doi:10.1016/0198-0149(89)90063-0.

    Grootes P M, Stuiver M, White J W C, et al. 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366(6455): 552-554, doi:10.1038/366552a0.

    Guy R D, Berry J A, Fogel M L, et al. 1989. Differential fractionation of oxygen isotopes by cyanide-resistant and cyanide-sensitive respiration in plants. Planta, 177(4): 483-491, doi:10.1007/BF00392616.

    Hamme R C, Cassar N, Lance V P, et al. 2012. Dissolved O2/Ar and other methods reveal rapid changes in productivity during a Lagrangian experiment in the Southern Ocean. J Geophys Res: Oceans, 117(C4): C00F12, doi:10.1029/2011JC007046.

    Hamme R C, Emerson S R. 2004. The solubility of neon, nitrogen and argon in distilled water and seawater. Deep Sea Res Part I: Oceanogr Res Pap, 51(11): 1517-1528, doi:10.1016/j.dsr.2004.06.009.

    Harris G P, Griffiths F B, Thomas D P. 1989. Light and dark uptake and loss of14C: methodological problems with productivity measurements in oceanic waters. Hydrobiologia, 173(2): 95-105, doi:10.1007/BF000 15519.

    Harrison W G, Harris L R. 1986. Isotope-dilution and its effects on measurements of nitrogen and phosphorus uptake by oceanic microplankton. Mar Ecol Prog Ser, 27: 253-261, doi:10.3354/meps 027253.

    Haskell II W Z, Prokopenko M G, Stanley R H R, et al. 2016. Estimates of vertical turbulent mixing used to determine a vertical gradient in net and gross oxygen production in the oligotrophic South Pacific Gyre. Geophys Res Lett, 43(14): 7590-7599, doi:10.1002/2016GL069523.

    Helman Y, Barkan E, Eisenstadt D, et al. 2005. Fractionation of the three stable oxygen isotopes by oxygen-producing and oxygen-consuming reactions in photosynthetic organisms. Plant Physiol, 138(4): 2292-2298, doi:10.1104/pp.105.063768.

    Hendricks M B, Bender M L, Barnett B A. 2004. Net and gross O2production in the southern ocean from measurements of biological O2saturation and its triple isotope composition. Deep Sea Res Part I: Oceanogr Res Pap, 51(11): 1541-1561, doi:10.1016/j.dsr.2004.06.006.

    Hendricks M B, Bender M L, Barnett B A, et al. 2005. Triple oxygen isotope composition of dissolved O2in the equatorial Pacific: a tracer of mixing, production, and respiration. J Geophys Res: Oceans, 110(C12): C12021, doi:10.1029/2004JC002735.

    Ho D T, Wanninkhof R, Schlosser P, et al. 2011. Toward a universal relationship between wind speed and gas exchange: Gas transfer velocities measured with3He/SF6during the Southern Ocean Gas Exchange Experiment. J Geophys Res: Oceans, 116(C4): C00F04, doi:10.1029/2010JC006854.

    Hoffmann G, Cuntz M, Weber C, et al. 2004. A model of the Earth’s Dole effect. Global Biogeochem Cycles, 18(1): GB1008, doi:10.1029/ 2003gb002059.

    Hotchkiss E R, Hall R O. 2014. High rates of daytime respiration in three streams: Use of δ18OO2and O2to model diel ecosystem metabolism. Limnol Oceanogr, 59(3): 798-810, doi:10.4319/lo.2014.59.3.0798.

    Howard E M, Spivak A C, Karolewski J S, et al. 2020. Oxygen and triple oxygen isotope measurements provide different insights into gross oxygen production in a shallow salt marsh pond. Estuaries Coasts, 43(8): 1908-1922, doi:10.1007/s12237-020-00757-6.

    Huang K, Ducklow H, Vernet M, et al. 2012. Export production and its regulating factors in the West Antarctica Peninsula region of the Southern Ocean. Glob Biogeochem Cycles, 26(2): GB2005, doi:10.1029/2010GB004028.

    IPCC. 2014. Climate Change 2014: Synthesis report. IPCC, Geneva, Switzerland.

    Ji B Y, Sandwith Z O, Williams W J, et al. 2019. Variations in rates of biological production in the Beaufort Gyre as the Arctic changes: rates from 2011 to 2016. J Geophys Res: Oceans, 124(6): 3628-3644, doi:10.1029/2018JC014805.

    Juranek L W, Quay P D. 2005.andgross primary and net community production in the North Pacific Subtropical Gyre using labeled and natural abundance isotopes of dissolved O2. Glob Biogeochem Cycles, 19(3): GB3009, doi:10.1029/2004GB002384.

    Juranek L W, Quay P D. 2010. Basin-wide photosynthetic production rates in the subtropical and tropical Pacific Ocean determined from dissolved oxygen isotope ratio measurements. Glob Biogeochem Cycles, 24(2): GB2006, doi:10.1029/2009GB003492.

    Juranek L W, Quay P D. 2013. Using triple isotopes of dissolved oxygen to evaluate global marine productivity. Ann Rev Mar Sci, 5: 503-524, doi:10.1146/annurev-marine-121211-172430.

    Juranek L W, Quay P D, Feely R A, et al. 2012. Biological production in the NE Pacific and its influence on air-sea CO2flux: Evidence from dissolved oxygen isotopes and O2/Ar. J Geophys Res: Oceans, 117(C5): C05022, doi:10.1029/2011JC007450.

    Jurikova H, Guha T, Abe O, et al. 2016. Variations in triple isotope composition of dissolved oxygen and primary production in a subtropical reservoir. Biogeosciences, 13(24): 6683-6698, doi:10. 5194/bg-13-6683-2016.

    Kaiser J. 2011. Technical note: Consistent calculation of aquatic gross production from oxygen triple isotope measurements. Biogeosciences, 8(7): 1793-1811, doi:10.5194/bg-8-1793-2011.

    Keedakkadan H R, Abe O. 2015. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios. Rapid Commun Mass Spectrom, 29(8): 775-781, doi:10.1002/rcm.7161.

    L?mmerzahl P, R?ckmann T, Brenninkmeijer C A M, et al. 2002. Oxygen isotope composition of stratospheric carbon dioxide. Geophys Res Lett, 29(12): 1582, doi:10.1029/2001GL014343.

    Landais A, Barkan E, Yakir D, et al. 2006. The triple isotopic composition of oxygen in leaf water. Geochimica et Cosmochimica Acta, 70(16): 4105-4115, doi:10.1016/j.gca.2006.06.1545.

    Landais A, Lathiere J, Barkan E, et al. 2007a. Reconsidering the change in global biosphere productivity between the Last Glacial Maximum and present day from the triple oxygen isotopic composition of air trapped in ice cores. Glob Biogeochem Cycles, 21(1): GB1025, doi:10.1029/ 2006GB002739.

    Landais A, Yakir D, Barkan E, et al. 2007b. The triple isotopic composition of oxygen in leaf water and its implications for quantifying biosphere productivity. Terr Ecol, 1: 111-125, doi:10. 1016/s1936-7961(07)01008-1.

    Laws E A. 1991. Photosynthetic quotients, new production and net community production in the open ocean. Deep Sea Res A: Oceanogr Res Pap, 38(1): 143-167, doi:10.1016/0198-0149(91)90059-O.

    Laws E A, Landry M R, Barber R T, et al. 2000. Carbon cycling in primary production bottle incubations: inferences from grazing experiments and photosynthetic studies using14C and18O in the Arabian Sea. Deep Sea Res Part II: Top Stud Oceanogr, 47(7-8): 1339-1352, doi:10.1016/S0967-0645(99)00146-0.

    Li B D, Yeung L Y, Hu H T, et al. 2019. Kinetic and equilibrium fractionation of O2isotopologues during air-water gas transfer and implications for tracing oxygen cycling in the ocean. Mar Chem, 210: 61-71, doi:10.1016/j.marchem.2019.02.006.

    Luz B, Barkan E. 2000. Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen. Science, 288(5473): 2028-2031, doi:10.1126/science.288.5473.2028.

    Luz B, Barkan E. 2005. The isotopic ratios17O/16O and18O/16O in molecular oxygen and their significance in biogeochemistry. Geochimica et Cosmochimica Acta, 69(5): 1099-1110, doi:10.1016/j. gca.2004.09.001.

    Luz B, Barkan E. 2009. Net and gross oxygen production from O2/Ar,17O/16O and18O/16O ratios. Aquat Microb Ecol, 56: 133-145, doi:10.3354/ame01296.

    Luz B, Barkan E, Bender M L, et al. 1999. Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity. Nature, 400(6744): 547-550, doi:10.1038/22987.

    Luz B, Barkan E, Sagi Y, et al. 2002. Evaluation of community respiratory mechanisms with oxygen isotopes: a case study in Lake Kinneret. Limnol Oceanogr, 47(1): 33-42, doi:10.4319/lo.2002.47.1.0033.

    Manning C C, Howard E M, Nicholson D P, et al. 2017a. Revising estimates of aquatic gross oxygen production by the triple oxygen isotope method to incorporate the local isotopic composition of water. Geophys Res Lett, 44(20): 10511-10519, doi:10.1002/2017GL074375.

    Manning C C, Stanley R H R, Nicholson D P, et al. 2017b. Impact of recently upwelled water on productivity investigated usingand incubation-based methods in Monterey Bay. J Geophys Res: Oceans, 122(3): 1901-1926, doi:10.1002/2016JC012306.

    Manning C C, Stanley R H R, Nicholson D P, et al. 2019. Changes in gross oxygen production, net oxygen production, and air-water gas exchange during seasonal ice melt in Whycocomagh Bay, a Canadian estuary in the Bras d’Or Lake system. Biogeosciences, 16(17): 3351-3376, doi:10.5194/bg-16-3351-2019.

    Marra J. 2007. Approaches to the measurement of plankton production// Williams P J l B, Thomas D N, Reynolds C S. Phytoplankton productivity. Oxford, UK: Blackwell Science Ltd, 78-108, doi:10. 1002/9780470995204.ch4.

    Miller M F. 2002. Isotopic fractionation and the quantification of17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochimica et Cosmochimica Acta, 66(11): 1881-1889, doi:10.1016/S0016-7037(02)00832-3.

    Reuer M K, Barnett B A, Bender M L, et al. 2007. New estimates of Southern Ocean biological production rates from O2/Ar ratios and the triple isotope composition of O2. Deep Sea Res Part I: Oceanogr Res Pap, 54(6): 951-974, doi:10.1016/j.dsr.2007.02.007.

    Munro D R, Quay P D, Juranek L W, et al. 2013. Biological production rates off the Southern California Coast estimated from triple O2isotopes and O2: Ar gas ratios. Limnol Oceanogr, 58(4): 1312-1328, doi:10.4319/lo.2013.58.4.1312.

    Moore C M, Suggett D, Holligan P M, et al. 2003. Physical controls on phytoplankton physiology and production at a shelf sea front: a fast repetition-rate fluorometer based field study. Mar Ecol Prog Ser, 259: 29-45, doi:10.3354/meps259029.

    Nicholson D P, Stanley R H R, Barkan E, et al. 2012. Evaluating triple oxygen isotope estimates of gross primary production at the Hawaii Ocean Time-series and Bermuda Atlantic Time-series Study sites. J Geophys Res: Oceans, 117(C5): C05012, doi:10.1029/2010JC006856.

    Nicholson D, Stanley R H R, Doney S C. 2014. The triple oxygen isotope tracer of primary productivity in a dynamic ocean model. Glob Biogeochem Cycles, 28(5): 538-552, doi:10.1002/2013GB004704.

    Nielsen E S. 1952. The use of radio-active carbon (14C) for measuring organic production in the sea. ICES Journal of Marine Science, 18(2): 117-140, doi:10.1093/icesjms/18.2.117.

    Nightingale P D, Malin G, Law C S, et al. 2000.evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Glob Biogeochem Cycles, 14(1): 373-387, doi:10. 1029/1999GB900091.

    Palevsky H I, Quay P D, Lockwood D E, et al. 2016. The annual cycle of gross primary production, net community production, and export efficiency across the North Pacific Ocean. Glob Biogeochem Cycles, 30(2): 361-380, doi:10.1002/2015GB005318.

    Peterson B J. 1980. Aquatic primary productivity and the14C-CO2method: a history of the productivity problem. Annu Rev Ecol Syst, 11(1): 359-385, doi:10.1146/annurev.es.11.110180.002043.

    Petit J R, Jouzel J, Raynaud D, et al. 1999. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica. Nature, 399(6735): 429-436, doi:10.1038/20859.

    Prokopenko M G, Pauluis O M, Granger J, et al. 2011. Exact evaluation of gross photosynthetic production from the oxygen triple-isotope composition of O2: Implications for the net-to-gross primary production ratios. Geophys Res Lett, 38(14): L14603, doi:10.1029/ 2011GL047652.

    Quay P D, Emerson S, Wilbur D O, et al. 1993. The δ18O of dissolved O2in the surface waters of the subarctic Pacific: a tracer of biological productivity. J Geophys Res, 98(C5): 8447-8458, doi:10.1029/92jc 03017.

    Quay P D, Peacock C, Bj?rkman K, et al. 2010. Measuring primary production rates in the ocean: Enigmatic results between incubation and non-incubation methods at Station ALOHA. Glob Biogeochem Cycles, 24(3): GB3014, doi:10.1029/2009GB003665.

    Quay P, Stutsman J, Steinhoff T. 2012. Primary production and carbon export rates across the subpolar N. Atlantic Ocean basin based on triple oxygen isotope and dissolved O2and Ar gas measurements. Glob Biogeochem Cycles, 26(2): GB2003, doi:10.1029/2010GB 004003.

    Sambrotto R N, Mace B J. 2000. Coupling of biological and physical regimes across the Antarctic Polar Front as reflected by nitrogen production and recycling. Deep Sea Res Part II: Top Stud Oceanogr, 47(15-16): 3339-3367, doi:10.1016/S0967-0645(00)00071-0.

    Sarma V V S S, Abe O, Hashimoto S, et al. 2005. Seasonal variations in triple oxygen isotopes and gross oxygen production in the Sagami Bay, central Japan. Limnol Oceanogr, 50(2): 544-552, doi:10.4319/lo.2005. 50.2.0544.

    Sarma V V S S, Abe O, Hinuma A, et al. 2006. Short-term variation of triple oxygen isotopes and gross oxygen production in the Sagami Bay, central Japan. Limnol Oceanogr, 51(3): 1432-1442, doi:10.4319/lo. 2006.51.3.1432.

    Sarma V V S S, Abe O, Saino T. 2003. Chromatographic separation of nitrogen, argon, and oxygen in dissolved air for determination of triple oxygen isotopes by dual-inlet mass spectrometry. Anal Chem, 75(18): 4913-4917, doi:10.1021/ac034314r.

    Sarma V V S S, Abe O, Saino T. 2008. Spatial variations in time-integrated plankton metabolic rates in Sagami Bay using triple oxygen isotopes and O2: Ar ratios. Limnol Oceanogr, 53(5): 1776-1783, doi:10.4319/lo.2008.53.5.1776.

    Seguro I, Marca A D, Painting S J, et al. 2019. High-resolution net and gross biological production during a Celtic Sea spring bloom. Prog Oceanogr, 177: 101885, doi:10.1016/j.pocean.2017.12.003.

    Staehr P A, Testa J M, Kemp W M, et al. 2012. The metabolism of aquatic ecosystems: history, applications, and future challenges. Aquat Sci, 74(1): 15-29, doi:10.1007/s00027-011-0199-2.

    Stanley R H R, Howard E M. 2013. Quantifying photosynthetic rates of microphytobenthos using the triple isotope composition of dissolved oxygen. Limnol Oceanogr: Methods, 11(7): 360-373, doi:10.4319/lom. 2013.11.360.

    Stanley R H R, Kirkpatrick J B, Cassar N, et al. 2010. Net community production and gross primary production rates in the western equatorial Pacific. Glob Biogeochem Cycles, 24(4): GB4001, doi:10.1029/2009GB003651.

    Stanley R H R, Sandwith Z O, Williams W J. 2015. Rates of summertime biological productivity in the Beaufort Gyre: a comparison between the low and record-low ice conditions of August 2011 and 2012. J Mar Syst, 147: 29-44, doi:10.1016/j.jmarsys.2014.04.006.

    Suggett D, Kraay G, Holligan P, et al. 2001. Assessment of photosynthesis in a spring cyanobacterial bloom by use of a fast repetition rate fluorometer. Limnol Oceanogr, 46(4): 802-810, doi:10.4319/lo.2001. 46.4.0802.

    Sweeney C, Gloor E, Jacobson A R, et al. 2007. Constraining global air-sea gas exchange for CO2with recent bomb14C measurements. Glob Biogeochem Cycles, 21(2): GB2015, doi:10.1029/2006GB 002784.

    Thiemens M H, Heidenreich J E. 1983. The mass-independent fractionation of oxygen: a novel isotope effect and its possible cosmochemical implications. Science, 219(4588): 1073-1075, doi:10.1126/science.219.4588.1073.

    Thiemens M H, Jackson T L, Brenninkmeijer C A M. 1995. Observation of a mass independent oxygen isotopic composition in terrestrial stratospheric CO2, the link to ozone chemistry, and the possible occurrence in the Martian atmosphere. Geophys Res Lett, 22(3): 255-257, doi:10.1029/94GL02996.

    Thiemens M H, Jackson T, Mauersberger K, et al. 1991. Oxygen isotope fractionation in stratospheric CO2. Geophys Res Lett, 18(4): 669-672, doi:10.1029/91GL00121.

    Thiemens M H, Jackson T, Zipf E C, et al. 1995. Carbon dioxide and oxygen isotope anomalies in the mesosphere and stratosphere. Science, 270(5238): 969-972, doi:10.1126/science.270.5238.969.

    Thiemens M H, Meagher D. 1984. Cryogenic separation of nitrogen and oxygen in air for determination of isotopic ratios by mass spectrometry. Anal Chem, 56(2): 201-203, doi:10.1021/ac00266a 018.

    Tobias C R, B?hlke J K, Harvey J W. 2007. The oxygen-18 isotope approach for measuring aquatic metabolism in high productivity waters. Limnol Oceanogr, 52(4): 1439-1453, doi:10.4319/lo.2007.52.4. 1439.

    van der Meer A. 2015. Constraining air-sea equilibrium and biological end-members for marine gross productivity estimates using oxygen triple isotopes. Masters thesis, University of East Anglia.

    Watson A J, Upstill-Goddard R C, Liss P S. 1991. Air-sea gas exchange in rough and stormy seas measured by a dual-tracer technique. Nature, 349(6305): 145-147, doi:10.1038/349145a0.

    Wurgaft E, Shamir O, Barkan E, et al. 2013. Mixing processes in the deep water of the Gulf of Elat (Aqaba): evidence from measurements and modeling of the triple isotopic composition of dissolved oxygen. Limnol Oceanogr, 58(4): 1373-1386, doi:10. 4319/lo.2013.58.4.1373.

    Yakir D, Berry J A, Giles L, et al. 1994. Isotopic heterogeneity of water in transpiring leaves: identification of the component that controls the δ18O of atmospheric O2and CO2. Plant Cell Environ, 17(1): 73-80, doi:10.1111/j.1365-3040.1994.tb00267.x.

    Yung Y L, DeMore W B, Pinto J P. 1991. Isotopic exchange between carbon dioxide and ozone via O(1D) in the stratosphere. Geophys Res Lett, 18(1): 13-16, doi:10.1029/90GL02478.

    10.13679/j.advps.2021.0038

    Zhou Y Q, Pang H X, Hu H T, et al. The evaluation of biological productivity by triple isotope composition of oxygen trapped in ice-core bubbles and dissolved in ocean: a review. Adv Polar Sci, 2022, 33(2): 123-134,doi:10.13679/j.advps.2021.0038

    21 July 2021;

    21 October 2021;

    21 November 2021

    Corresponding author, ORCID: 0000-0003-3990-6566, E-mail: hxpang@nju.edu.cn

    av在线亚洲专区| 久久久久国产精品人妻一区二区| 色吧在线观看| 国产成人精品久久久久久| 免费人成在线观看视频色| 色婷婷久久久亚洲欧美| 国产国拍精品亚洲av在线观看| 日韩av在线免费看完整版不卡| 午夜免费男女啪啪视频观看| 最近的中文字幕免费完整| 久久人人爽av亚洲精品天堂 | kizo精华| 如何舔出高潮| 97热精品久久久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 男人和女人高潮做爰伦理| 久久久久久久午夜电影| 只有这里有精品99| 成人高潮视频无遮挡免费网站| 亚洲av在线观看美女高潮| 毛片女人毛片| 亚洲精品国产成人久久av| 91aial.com中文字幕在线观看| 欧美老熟妇乱子伦牲交| 蜜桃久久精品国产亚洲av| 美女cb高潮喷水在线观看| 男女边吃奶边做爰视频| 久久久国产一区二区| 日产精品乱码卡一卡2卡三| 人妻制服诱惑在线中文字幕| 最近最新中文字幕大全电影3| 国产精品久久久久久精品电影小说 | 精品亚洲乱码少妇综合久久| 国产老妇伦熟女老妇高清| 女人被狂操c到高潮| 国产亚洲最大av| 精华霜和精华液先用哪个| 国产有黄有色有爽视频| 国产成人午夜福利电影在线观看| 男人狂女人下面高潮的视频| 欧美成人一区二区免费高清观看| 日本猛色少妇xxxxx猛交久久| 国产真实伦视频高清在线观看| 夫妻性生交免费视频一级片| 成年女人在线观看亚洲视频 | 男的添女的下面高潮视频| av在线亚洲专区| 国产乱人偷精品视频| 国产精品99久久99久久久不卡 | 99精国产麻豆久久婷婷| 秋霞伦理黄片| 亚洲国产成人一精品久久久| 一本久久精品| 噜噜噜噜噜久久久久久91| 日韩不卡一区二区三区视频在线| 久久久久久九九精品二区国产| 一个人看视频在线观看www免费| 真实男女啪啪啪动态图| 最近的中文字幕免费完整| 卡戴珊不雅视频在线播放| 少妇的逼好多水| 欧美bdsm另类| 男的添女的下面高潮视频| 大香蕉久久网| 99久久精品一区二区三区| 成年av动漫网址| 在线免费十八禁| 一区二区三区四区激情视频| 2018国产大陆天天弄谢| 亚洲精品成人久久久久久| 三级国产精品欧美在线观看| 亚洲欧美日韩东京热| 久久这里有精品视频免费| 亚洲久久久久久中文字幕| 久久久久精品性色| 亚洲国产精品成人综合色| 国产精品三级大全| 一区二区av电影网| 国产黄色免费在线视频| 九九在线视频观看精品| 麻豆成人av视频| 午夜精品一区二区三区免费看| 国产精品久久久久久久久免| 丝袜脚勾引网站| 亚洲高清免费不卡视频| 成人漫画全彩无遮挡| 视频区图区小说| 国产极品天堂在线| 久久国产精品大桥未久av| 午夜福利,免费看| 天天影视国产精品| 国产精品蜜桃在线观看| 水蜜桃什么品种好| av国产久精品久网站免费入址| 久久午夜综合久久蜜桃| 爱豆传媒免费全集在线观看| 成人黄色视频免费在线看| 午夜福利网站1000一区二区三区| 五月开心婷婷网| 久久天堂一区二区三区四区| 日本91视频免费播放| 女的被弄到高潮叫床怎么办| 最近的中文字幕免费完整| 最近手机中文字幕大全| 午夜免费鲁丝| 激情五月婷婷亚洲| 女人精品久久久久毛片| 欧美人与性动交α欧美精品济南到| 亚洲国产欧美一区二区综合| 99国产综合亚洲精品| 成年人免费黄色播放视频| 国产不卡av网站在线观看| 搡老岳熟女国产| 丝瓜视频免费看黄片| 欧美亚洲日本最大视频资源| 久久久久国产精品人妻一区二区| 国产精品久久久久成人av| 91精品国产国语对白视频| 久久综合国产亚洲精品| www.精华液| 国产一区亚洲一区在线观看| 亚洲人成网站在线观看播放| 一级爰片在线观看| 亚洲国产成人一精品久久久| 天堂俺去俺来也www色官网| 9热在线视频观看99| 又黄又粗又硬又大视频| 嫩草影院入口| 亚洲,一卡二卡三卡| 欧美日韩视频高清一区二区三区二| √禁漫天堂资源中文www| 777米奇影视久久| 日日撸夜夜添| 少妇人妻 视频| 欧美日韩福利视频一区二区| 亚洲精品,欧美精品| 最近最新中文字幕大全免费视频 | 性高湖久久久久久久久免费观看| 亚洲久久久国产精品| 久久精品熟女亚洲av麻豆精品| 精品亚洲成国产av| av线在线观看网站| 999久久久国产精品视频| 飞空精品影院首页| 免费看av在线观看网站| 亚洲三区欧美一区| 国产亚洲av高清不卡| 最近的中文字幕免费完整| 国产 精品1| 中文乱码字字幕精品一区二区三区| 一本久久精品| 一区二区三区乱码不卡18| 王馨瑶露胸无遮挡在线观看| 国产成人免费无遮挡视频| 久久青草综合色| 校园人妻丝袜中文字幕| 亚洲情色 制服丝袜| 亚洲国产精品一区三区| 亚洲精品国产色婷婷电影| 男女边吃奶边做爰视频| 日本猛色少妇xxxxx猛交久久| 2018国产大陆天天弄谢| 2018国产大陆天天弄谢| 国产亚洲欧美精品永久| 国产一区亚洲一区在线观看| 各种免费的搞黄视频| 亚洲一级一片aⅴ在线观看| av片东京热男人的天堂| 日本wwww免费看| 精品一区二区三区四区五区乱码 | 日韩,欧美,国产一区二区三区| 人人妻人人爽人人添夜夜欢视频| 亚洲国产精品999| 免费在线观看完整版高清| 亚洲第一青青草原| 中文字幕人妻丝袜一区二区 | 免费av中文字幕在线| www.熟女人妻精品国产| 男女国产视频网站| 国产高清国产精品国产三级| 在线观看国产h片| 黄片播放在线免费| 看免费av毛片| 一二三四中文在线观看免费高清| 国产1区2区3区精品| 精品少妇内射三级| 精品久久久精品久久久| 欧美人与性动交α欧美软件| 99久国产av精品国产电影| 不卡av一区二区三区| 欧美国产精品va在线观看不卡| www日本在线高清视频| 久久久久精品性色| 亚洲欧美精品综合一区二区三区| 狂野欧美激情性bbbbbb| 一边摸一边做爽爽视频免费| 久久久精品区二区三区| 欧美成人精品欧美一级黄| 男人舔女人的私密视频| 男女午夜视频在线观看| 美女午夜性视频免费| 精品人妻在线不人妻| 国产成人午夜福利电影在线观看| 欧美黄色片欧美黄色片| 在线天堂中文资源库| 亚洲av电影在线进入| 精品国产乱码久久久久久男人| 亚洲av日韩在线播放| 一级,二级,三级黄色视频| 国产精品成人在线| 日韩伦理黄色片| 色婷婷av一区二区三区视频| 亚洲一级一片aⅴ在线观看| 啦啦啦在线观看免费高清www| √禁漫天堂资源中文www| 两个人看的免费小视频| 亚洲精品av麻豆狂野| 久久精品国产综合久久久| 老司机亚洲免费影院| 涩涩av久久男人的天堂| 在线观看人妻少妇| 在线观看免费视频网站a站| 国产伦理片在线播放av一区| 欧美激情极品国产一区二区三区| 亚洲成人av在线免费| 亚洲第一区二区三区不卡| 伊人亚洲综合成人网| 亚洲av国产av综合av卡| 国产精品无大码| 亚洲av成人精品一二三区| 最近最新中文字幕免费大全7| 欧美中文综合在线视频| 我的亚洲天堂| av电影中文网址| 97人妻天天添夜夜摸| 亚洲av综合色区一区| 国产日韩欧美亚洲二区| 精品一品国产午夜福利视频| 国产成人一区二区在线| 女性生殖器流出的白浆| 久久精品国产亚洲av高清一级| 丝袜人妻中文字幕| 日本一区二区免费在线视频| 国产精品亚洲av一区麻豆 | 男女午夜视频在线观看| 久久精品aⅴ一区二区三区四区| 十八禁网站网址无遮挡| 肉色欧美久久久久久久蜜桃| 又大又爽又粗| 亚洲欧美成人综合另类久久久| 亚洲国产欧美在线一区| 精品第一国产精品| 99久久99久久久精品蜜桃| 97人妻天天添夜夜摸| 亚洲国产成人一精品久久久| 国产精品久久久av美女十八| 亚洲成人国产一区在线观看 | 深夜精品福利| 在线天堂最新版资源| 日韩av不卡免费在线播放| 看非洲黑人一级黄片| 亚洲国产欧美在线一区| 国产精品女同一区二区软件| 99九九在线精品视频| 少妇人妻精品综合一区二区| 国产爽快片一区二区三区| 巨乳人妻的诱惑在线观看| 国产精品二区激情视频| 国产av码专区亚洲av| 国产精品偷伦视频观看了| av片东京热男人的天堂| 成人影院久久| 亚洲国产最新在线播放| 亚洲熟女毛片儿| 精品人妻在线不人妻| 亚洲国产欧美一区二区综合| 国产精品人妻久久久影院| 国产亚洲av高清不卡| 午夜精品国产一区二区电影| 美女中出高潮动态图| 欧美日本中文国产一区发布| 一级毛片黄色毛片免费观看视频| 亚洲精品久久久久久婷婷小说| 99久久精品国产亚洲精品| 国产片内射在线| 亚洲综合精品二区| 免费看av在线观看网站| 日本欧美视频一区| www.av在线官网国产| 男的添女的下面高潮视频| av福利片在线| 久久久精品94久久精品| 午夜91福利影院| 国产无遮挡羞羞视频在线观看| 亚洲第一av免费看| 久久鲁丝午夜福利片| 国产精品 国内视频| 亚洲伊人久久精品综合| 成人漫画全彩无遮挡| 亚洲四区av| 18禁动态无遮挡网站| av视频免费观看在线观看| 欧美日韩综合久久久久久| 只有这里有精品99| xxx大片免费视频| 久久韩国三级中文字幕| 亚洲熟女毛片儿| 青春草视频在线免费观看| 色94色欧美一区二区| 国产极品天堂在线| 亚洲综合色网址| 亚洲国产欧美网| 亚洲成人一二三区av| 一区二区日韩欧美中文字幕| 老司机影院毛片| 国产一区二区三区av在线| 国产精品免费大片| 欧美乱码精品一区二区三区| 婷婷成人精品国产| 国产av一区二区精品久久| 欧美日韩一区二区视频在线观看视频在线| 波多野结衣一区麻豆| 伦理电影免费视频| 国产精品嫩草影院av在线观看| 伊人久久大香线蕉亚洲五| 国产伦理片在线播放av一区| 亚洲精品aⅴ在线观看| 桃花免费在线播放| 日日摸夜夜添夜夜爱| 丰满饥渴人妻一区二区三| 日韩精品免费视频一区二区三区| 黑丝袜美女国产一区| 99香蕉大伊视频| 宅男免费午夜| 亚洲精品aⅴ在线观看| 女人精品久久久久毛片| 久久国产亚洲av麻豆专区| 啦啦啦啦在线视频资源| 欧美变态另类bdsm刘玥| 亚洲av日韩在线播放| 嫩草影院入口| 欧美成人精品欧美一级黄| 欧美激情 高清一区二区三区| 天天操日日干夜夜撸| 国产成人欧美在线观看 | 亚洲成人av在线免费| 精品国产乱码久久久久久小说| 久久人人爽av亚洲精品天堂| 777久久人妻少妇嫩草av网站| 一级爰片在线观看| 99国产综合亚洲精品| 亚洲欧洲国产日韩| 国产av国产精品国产| 免费看av在线观看网站| kizo精华| 午夜日本视频在线| 夫妻午夜视频| 下体分泌物呈黄色| 欧美97在线视频| 亚洲七黄色美女视频| 一本色道久久久久久精品综合| 好男人视频免费观看在线| 国产爽快片一区二区三区| 久久鲁丝午夜福利片| 男人操女人黄网站| 国产精品女同一区二区软件| 麻豆乱淫一区二区| 两个人免费观看高清视频| 精品福利永久在线观看| 午夜激情久久久久久久| 不卡av一区二区三区| 波多野结衣av一区二区av| 亚洲av电影在线进入| 精品国产一区二区久久| 少妇猛男粗大的猛烈进出视频| 国产一级毛片在线| 国产在线视频一区二区| 男人操女人黄网站| xxxhd国产人妻xxx| 日韩一区二区三区影片| 18禁国产床啪视频网站| av在线观看视频网站免费| 青春草亚洲视频在线观看| 国产乱来视频区| 国产午夜精品一二区理论片| 日韩一本色道免费dvd| 日韩av免费高清视频| 男人爽女人下面视频在线观看| 亚洲国产看品久久| 精品福利永久在线观看| 国产亚洲午夜精品一区二区久久| 9热在线视频观看99| 午夜福利一区二区在线看| 亚洲精品自拍成人| 亚洲国产精品一区三区| 精品国产超薄肉色丝袜足j| 国产精品二区激情视频| av免费观看日本| 91精品国产国语对白视频| av线在线观看网站| 叶爱在线成人免费视频播放| 成年女人毛片免费观看观看9 | 成人午夜精彩视频在线观看| 久久免费观看电影| 久久ye,这里只有精品| 日韩中文字幕欧美一区二区 | 久久天堂一区二区三区四区| 免费人妻精品一区二区三区视频| 91老司机精品| 中文字幕制服av| 国产男女超爽视频在线观看| 亚洲成国产人片在线观看| 曰老女人黄片| 国产不卡av网站在线观看| 香蕉国产在线看| 国产成人免费无遮挡视频| 伊人久久国产一区二区| 国产有黄有色有爽视频| 又粗又硬又长又爽又黄的视频| 国产精品免费视频内射| 人妻一区二区av| 欧美日韩一级在线毛片| 丝袜美足系列| 搡老岳熟女国产| 亚洲精品日韩在线中文字幕| 久久久久久久精品精品| 亚洲av在线观看美女高潮| 欧美日韩一区二区视频在线观看视频在线| 色综合欧美亚洲国产小说| 亚洲精品第二区| 日韩,欧美,国产一区二区三区| 久久久精品国产亚洲av高清涩受| 欧美人与性动交α欧美软件| 精品人妻在线不人妻| 黄片无遮挡物在线观看| 91精品伊人久久大香线蕉| 波多野结衣av一区二区av| 天天躁夜夜躁狠狠久久av| 国产成人av激情在线播放| 国产深夜福利视频在线观看| 亚洲欧美精品自产自拍| 国产视频首页在线观看| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦中文免费视频观看日本| 欧美 日韩 精品 国产| 精品国产露脸久久av麻豆| 一边亲一边摸免费视频| 久久久精品区二区三区| 久久久国产精品麻豆| 亚洲国产欧美在线一区| 一边摸一边做爽爽视频免费| 大香蕉久久网| 777米奇影视久久| 国产亚洲一区二区精品| 午夜福利免费观看在线| 又粗又硬又长又爽又黄的视频| 麻豆乱淫一区二区| 成人免费观看视频高清| 又粗又硬又长又爽又黄的视频| 激情视频va一区二区三区| 亚洲人成77777在线视频| www.精华液| 亚洲国产成人一精品久久久| 国产伦人伦偷精品视频| 亚洲av电影在线观看一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 肉色欧美久久久久久久蜜桃| 中文字幕最新亚洲高清| 丝瓜视频免费看黄片| 欧美精品人与动牲交sv欧美| 亚洲 欧美一区二区三区| 国产精品久久久av美女十八| 国产精品偷伦视频观看了| 午夜91福利影院| 久久天堂一区二区三区四区| 一区二区av电影网| a 毛片基地| 国产精品.久久久| √禁漫天堂资源中文www| 国产欧美日韩一区二区三区在线| 久久精品国产亚洲av高清一级| 91老司机精品| 一级爰片在线观看| 亚洲美女黄色视频免费看| 一本大道久久a久久精品| 一本一本久久a久久精品综合妖精| 日本vs欧美在线观看视频| 欧美成人午夜精品| 叶爱在线成人免费视频播放| 久久热在线av| 国产一区有黄有色的免费视频| 欧美精品一区二区免费开放| 欧美 亚洲 国产 日韩一| 91精品三级在线观看| xxx大片免费视频| 国产精品蜜桃在线观看| 精品福利永久在线观看| 国产成人a∨麻豆精品| 国产精品久久久人人做人人爽| 精品一区二区三区四区五区乱码 | 国产精品免费大片| 九九爱精品视频在线观看| 亚洲av中文av极速乱| 9191精品国产免费久久| 1024香蕉在线观看| 少妇的丰满在线观看| 晚上一个人看的免费电影| 欧美精品一区二区大全| 亚洲成人手机| 久久av网站| av网站在线播放免费| 伊人久久大香线蕉亚洲五| 国产精品国产三级专区第一集| 国产精品久久久久成人av| 国产欧美亚洲国产| www.熟女人妻精品国产| 亚洲成人免费av在线播放| 免费观看a级毛片全部| 老司机在亚洲福利影院| 99精国产麻豆久久婷婷| 午夜免费鲁丝| 精品人妻在线不人妻| 女人精品久久久久毛片| 亚洲国产欧美日韩在线播放| 亚洲精品日韩在线中文字幕| 中文字幕精品免费在线观看视频| 久久鲁丝午夜福利片| av一本久久久久| 午夜福利视频在线观看免费| 最黄视频免费看| 亚洲三区欧美一区| 成人毛片60女人毛片免费| 99九九在线精品视频| 欧美日本中文国产一区发布| 男女国产视频网站| 免费少妇av软件| 极品人妻少妇av视频| 亚洲国产欧美日韩在线播放| 亚洲精品视频女| 老司机影院成人| 欧美日韩综合久久久久久| 最近中文字幕高清免费大全6| 久久久欧美国产精品| 亚洲av福利一区| 精品亚洲成a人片在线观看| 精品国产乱码久久久久久小说| 青春草国产在线视频| 美女大奶头黄色视频| 99久国产av精品国产电影| 波野结衣二区三区在线| 看免费av毛片| 国产伦理片在线播放av一区| 国产成人啪精品午夜网站| 国产成人系列免费观看| 日本vs欧美在线观看视频| 亚洲精品国产av蜜桃| 两性夫妻黄色片| 一边摸一边做爽爽视频免费| av网站免费在线观看视频| 国产精品久久久久成人av| 久久国产精品大桥未久av| 一二三四中文在线观看免费高清| 欧美黄色片欧美黄色片| 亚洲精品国产色婷婷电影| 亚洲精品久久成人aⅴ小说| 精品久久蜜臀av无| 国产亚洲精品第一综合不卡| 一区二区av电影网| 国产欧美日韩一区二区三区在线| 如日韩欧美国产精品一区二区三区| 亚洲欧美日韩另类电影网站| 中文天堂在线官网| www日本在线高清视频| 亚洲第一区二区三区不卡| 一级毛片我不卡| 国产高清不卡午夜福利| 国产成人a∨麻豆精品| av有码第一页| 日日摸夜夜添夜夜爱| 九草在线视频观看| 午夜免费鲁丝| 人人妻人人爽人人添夜夜欢视频| 久久久久人妻精品一区果冻| 赤兔流量卡办理| 久久久精品94久久精品| 80岁老熟妇乱子伦牲交| 欧美国产精品一级二级三级| 秋霞伦理黄片| 国产精品欧美亚洲77777| 秋霞伦理黄片| 男女边吃奶边做爰视频| 日韩欧美一区视频在线观看| 日本猛色少妇xxxxx猛交久久| 精品视频人人做人人爽| 国产男女内射视频| 秋霞伦理黄片| www.熟女人妻精品国产| 免费看不卡的av| 亚洲精品国产一区二区精华液| 久久久久久久国产电影| 91国产中文字幕| 建设人人有责人人尽责人人享有的| 叶爱在线成人免费视频播放| 热re99久久国产66热| 国产精品久久久久久人妻精品电影 | 精品久久久精品久久久| 在线看a的网站| 亚洲四区av| 叶爱在线成人免费视频播放| 国产1区2区3区精品| 成人亚洲欧美一区二区av| 国产成人av激情在线播放| www.av在线官网国产| www日本在线高清视频| av网站免费在线观看视频|