• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Automated synthesis of gadopentetate dimeglumine through solid-liquid reaction in femtosecond laser fabricated microfluidic chips

    2022-06-18 03:01:02DifengYinYuenLiLinglingXiaWenboLiWeiChuJianpingYuMiaoWuYaChengaMingHu
    Chinese Chemical Letters 2022年2期

    Difeng Yin, Yuen Li, Lingling Xia, Wenbo Li,d, Wei Chu, Jianping Yu,Miao Wu, Ya Chenga,d,, Ming Hu,*

    a State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China

    b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

    c State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

    d School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China

    e XXL – The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

    ABSTRACT Despite the continuously increased requirement on automated synthesis of medicines for distributed manufacturing and personal care, it remains a challenge to realize automated synthesis which requires solid-liquid phase reactions.In this work, we demonstrated an automated solid-liquid synthesis for gadopentetate dimeglumine, the most widely used magnetic resonance imaging (MRI) contrast agent.The high-efficiency reaction was performed in a 3D microfluidic chip which was fabricated by femtosecond laser micromachining.The structure of the chip realized 3D shear flow which was essential for highly efficient mixing and movement of the solid-liquid mixtures.Ultraviolet visible (UV–vis) spectrometer was employed for in-line analysis to help automation of this system.Comparing with the round-bottom flask system, this synthetic system showed significantly higher reaction rate, indicating the advantage of the 3D microfluidic technology in micro chemical engineering.

    Keywords:Automated synthesis Femtosecond laser micromachining Microfluidics MRI imaging UV–vis absorption spectrum

    Automated synthesis realized by microfluidic chips has been recognized to be an important part of next–generation chemical engineering [1].This technology saves people from timeconsuming lab work, therefore, has drawn much attention both in academic and industry fields [1–17].Multiphase reactions have been demonstrated to be possible and are usually enhanced inside the microfluidic chips [18–24].However, the solid-liquid reactions remain rare [18–24].One reason is that the channels may be easily blocked by the solid-state reactants.Compared with the gas phase and liquid phase reactants, solid phase reactants have their own advantages such as low cost and easy for storage.Particularly,in some cases, solid phase is the only available form of the reactants.Therefore, despite the difficulty in performing solid-liquid reactions, it is necessary to find a way to realize high-efficiency and scalable solid-liquid synthesis in the microfluidic chips which is an essential step towards automated solid-liquid synthesis.

    So far, a main challenge is that the intrinsic narrow channels of the microfluidic chips are not suitable for solid-liquid reaction, because the solid phase reactants with large volumetric fraction can increase viscosity of the fluid which hinders fast passage and uniform mixing in the microreactor.One might expect that scaling-up of the microfluidic channels can solve this problem.However, simply extending the scale of the microfluidic channels is insufficient.It would be necessary to alternate the flow from two-dimensional(2D) to three-dimensional (3D) type which can enhance the mixing effect and accelerate the flow rate [25–27].Such a 3D-type shear flow can be realized by well-designed 3D channel structure which,however, is very difficult to be fabricated by planar manufacturing technologies, such as injection molding, hot embossing and casting.Alternatively, femtosecond laser direct writing (FLDW) extends the microfluidic structures from 2D to 3D geometries, which allows for integration of different types of 3D functional components in a straightforward packaging-free manner [28,29].

    Fig.1.(a) Structure illustration of the microfluidic chip.(b) Structural details and simulation the first segment (S1).(c) Structural details and simulation the second segment(S2).(d) Digital photo of the microfluidic chip.

    In this work, we designed a multifunctional 3D microfluidic chip and fabricated it using femtosecond laser assisted chemical wet etching technique [30–32].The 3D structures are expected to produce 3D shear flows inside the chip, enabling the passage acceleration of the solid-state reactants and the increase in flow rates.The key to succeed in solid-liquid reactions is to enlarge the contact area of fluids while keeping a high throughput.We specifically designed a new structure in this work.As illustrated in Fig.1a, the designed chip consists of two parts.The reactants enter the chip and flow through the first segment (S1) and second segment (S2)of the chip.The S1 consists of periodic 3D structure units which can squeeze the incoming fluids in the vertical direction (Fig.1b).As a result, the reactant fluids flowing vertically are split and reorganized into multiple fluids in the horizontal direction.In this process, the contact area between the two reactant fluids would be dramatically increased, improving the mixing efficiency.Furthermore, the convection effect induced by the sheer force effect between two adjacent sub-fluids will further increase the mixing of the two reactants.The mixing performance of the designed structure composed of mixing units was numerically simulated by solving the microfluidic incompressible Navier-Stokes and convection diffusion equations.The simulations result in Fig.1b shows an excellent mixing effect thanks to the working mechanism described above.Likewise, S2 consists of 5 × 6 2D mixing units arranged periodically in the transverse direction.The detailed structure of the unit can be seen in Fig.1c.The outlet width of each unit is sharply narrowed to 300 μm, which will not create a blockage of solids, yet enables a variation in flow rate that enhances mixing.In addition, each unit has a baffle in the center to create convection and turbulence which will further improve the mixing effect of the reactants.It should be noted that the mixing unit structure of the the designed microfluidic chip is flat, which facilitates heat dissipation in chemical reactions.The chip was fabricated by a ultrafast laser micromachining system as schematically illustrated in Fig.S1a (Supporting information).After the femtosecond laser irradiation, the substrate was immersed in a solution of potassium hydroxide (KOH) for selectively removing the material exposed to the irradiation of the laser pulses.The procedures of the laser fabrication were schematically illustrated in Fig.S1b (Supporting information).The photographs of the fabricated microfluidic chip and the detailed mixing units in S1 and S2 are shown in Fig.1d.The enlarged image of the microstructure and 3D details of the two units are shown in Fig.S2 (Supporting information).

    The model reaction is synthesis of gadopentetate dimeglumine which is the most widely used magnetic resonance imaging (MRI) contrast agent [33–36].Developing an automated flow synthesis system for gadopentetate dimeglumine can offer options for medical requirements in remote areas.The cost of the gadolinium-containing chemical varies greatly from oxide to nitrate.The gadolinium oxide is of a cheaper price and easier to be stored than the gadolinium nitrate, therefore is suitable for distributed synthesis in remote areas.However, because of the insolubility of the gadolinium oxide in water, the reaction is a solidliquid reaction in the microfluidic chip.Such a solid-liquid phase reaction is suitable for evaluating practical performance of our designed microreactor.

    Suspension of the solid-state reactants was pumped through the microfluidic chips to check whether the solid-state reactants could pass through without causing clogging of the fluid.Before testing, the viscosity of the suspension was characterized (Fig.S3 in Supporting information).During the test, the solid (gadolinium oxide) to liquid (water) ratio (in mass) was controlled in a range from 1:100 to 100:100.The viscosity of the suspension was increased with the solid to liquid ratio.A shear thinning behavior was observed in all the cases, matching with the typical fluid property of the solid-liquid mixture.Then, the suspension was passed through the microfluidic chip at 25 °C.The set and the experimental flow rates were compared in Fig.2.The set flow rates and the experimental flow rates are almost the same in all the tests.Increasing the solid to liquid ratio did not change the relationship between the two rates.This confirms that the solid phase reactants can pass through our microfluidic chip efficiently during synthesis,demonstrating that the specific structural design of the microfluidic channel works well for the mixed solid-liquid fluid.

    We assembled a flow reaction system by using this microfluidic chip with UV–vis spectrometer.Peristaltic pumps were employed to drive the flow under control of computer (Fig.3a).The reaction among gadolinium oxide, diethylene triamine pentaacetic acid(DTPA), andN-methylglucamine is carried under heating at 85 °C as illustrated in Fig.3b.Gadopentetate dimeglumine is the product, and water is the only byproduct.Typically, equivalent amount of gadolinium oxide, diethylene triamine pentaacetic acid (DTPA),andN-methylglucamine were mixed in water to form solid-liquid suspension.The molar ratio of the three reactants was kept to be 1:2:4.Scanning electron microscopy and optical microscopy present that the gadolinium oxide is composed of particles with micron sizes (2~10 μm in size) (Figs.S4 and S5 in Supporting information).The suspension was characterized by digital camera and optical microscopy as well (Figs.S6 and S7 in Supporting information).No significant dissolution of the particles can be observed at room temperature.After pumping the suspension into the microfluidic chip which was under heating at 85 °C in water bath,the product was collected through filtering, then got dried under vacuum at 100 °C for 8 h.

    Fig.2.Comparison of the flow rate between the set value (red) and experimental data (blue).

    Fig.3.(a) Schematic illustration for automated flow synthetic system.(b)Schematic illustration for chemical reaction happens in the flow synthetic system.

    Fig.S8 (Supporting information) shows the UV-vis spectrum of the obtained sample in water solution.The absorption peak centered at 275 nm is assigned to be metal-to-ligand charge transfer, suggesting successful coordination between Gd3+and the ligand.Fig.S9 (Supporting information) illustrates infrared (IR) spectrum of the harvested product [37–39].The absorption peaks at 3350 cm–1and 2900 cm-1correspond to the stretching vibration of –OH and C–H bonds of methylene, respectively.The intense absorption peaks at 1600 cm-1and 1409 cm-1are attributed to the symmetrical and asymmetrical stretching vibrations of C=O bond of –COOH group.And these two absorption peaks move towards lower wave number which may be rationalized to the coordination of COO–with Gd3+.The absorption peaks at 1093 cm–1and 1040 cm-1correspond to the stretching vibration of C–OH and C–N bond ofN-methylglucamine.High performance liquid chromatography (HPLC) confirms the deduction of the UV–vis spectrum and FTIR data (Fig.S10 in Supporting information).The obtained gadopentetate dimeglumine was tested in magnetic resonance imaging (MRI) (Fig.S11 in Supporting information).The gadopentetate dimeglumine solution was injected from the tail into a rat.After 10 min, image taken from the bladder showed enhanced contrast, which suggested that the gadopentetate dimeglumine synthesized by this flow system successfully worked in the animal test.

    Fig.4.Comparison of the reaction rates between the flow synthetic system and the flask synthetic system.

    The reaction rate of the flow synthetic system was automatically evaluated by the in-line UV–vis spectrum.Linear relationship between the concentration of the gadopentetate dimeglumine and the absorption at 275 nm was established in Fig.S12 (Supporting information).This linear relationship is employed for in-line analysis of the reaction rate of the gadopentetate dimeglumine.When the solid to liquid mass ratio was 5:100, the reaction rate in the flow synthetic system was 4.02 mg mL–1min–1(Fig.4).In comparison, the reaction was also carried in the round-bottom flask system (1 L in volume) as well.The typical product obtained in the flask reactor was characterized by UV–vis spectrometer and IR spectrometer as shown in Figs.S13 and S14 (Supporting information).The data confirms that the product synthesized in the roundbottom flask is the same as the molecules synthesized in the microfluidic chips.In the round-bottom flask with similar concentration of the reactants, the reaction rate was generally smaller.For instance, when the solid to liquid ratio was 5:100, the reaction rate in flask was about 2.74 mg mL–1min–1which is less than the reaction rate in the microfluidic chip (4.02 mg mL–1min–1).This trend of the rate difference is confirmed in a wide range of the solid to liquid mass ratios (1:100~100:100).The reaction rates in the microfluidic chips are higher than in the flasks.

    The enhancement of the yielding rate relates to the enhanced mass diffusion and collision in the microfluidic chip.This agrees with the mixing characteristic shown in Fig.1.The split and reorganization of the solid-liquid fluid in the microfluidic chip can induce convection effect among the adjacent sub-fluids (Fig.1b).The baffle in each unit shown in Fig.1c can also create convection and turbulence.The convection and turbulence effects enhance collision among the solid reactant and the molecular reactant.The products can also be taken away from the solid reactant,making the unreacted surface to be exposed fast.Apparently, this microfluidic chip can solve the obstacle in solid-liquid phase reactions in the microreactors.To further confirm the significance of the microfluidic chip reported in this work, we employed another microfluidic chip with a different micro-structure as shown in Fig.S15 (Supporting information).Different from the microfluidic chip shown in Fig.1, mixing in this microfluidic channel based on splitting, routing, and reorganizing of the fluid in a mixing unit [17].The number of microstreams is basically increased to 4 times by a unit, enabling high-efficiency mixing.The reaction rate in this microfluidic chip was tested and compared in Fig.S16 (Supporting information).It turns out that the reaction rate of the microfluidic chip is smaller, confirming that the undulating structure and the convective shear force in the microfluidic chip shown in Fig.1 is highly important for solid-liquid reaction.

    In summary, we presented a designed 3D microfluidic chip and fabricated it using femtosecond laser micromachining technology.The 3D shear flow induces by the designed mixing units greatly enhanced the mixing efficiency and accelerate movement of the solid-liquid phase mixture inside the microreactor.As a result, a solid-liquid reaction was realized in this unique microfluidic chip to synthesize gadopentetate dimeglumine, which greatly expanded the availability of the solid-state reactants.The flow system built up in our work showed much higher reaction rates than the system using round–bottom flask reactors, indicating that the 3D microfluidic chip realized by femtosecond laser fabrication has benefits in terms of improving the mixing efficiency and allowing the track of high-throughput synthesis.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    The work is supported by National Natural Science Foundation of China (No.11674340); Key Project of the Shanghai Science and Technology Committee (No.18DZ1112700).

    成人高潮视频无遮挡免费网站| 97碰自拍视频| 亚洲av免费高清在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产精品乱码一区二三区的特点| x7x7x7水蜜桃| 好男人在线观看高清免费视频| 亚洲黑人精品在线| 超碰av人人做人人爽久久 | 国产成年人精品一区二区| 日韩精品青青久久久久久| 精品人妻一区二区三区麻豆 | 十八禁人妻一区二区| 免费大片18禁| 国产精品久久视频播放| 嫁个100分男人电影在线观看| 国产亚洲av嫩草精品影院| 欧美色视频一区免费| or卡值多少钱| 久久中文看片网| av天堂在线播放| 嫩草影视91久久| 老熟妇仑乱视频hdxx| 午夜a级毛片| 国产精品av视频在线免费观看| 精品国产美女av久久久久小说| www.999成人在线观看| 久久精品综合一区二区三区| 欧美一区二区亚洲| 69av精品久久久久久| 性色avwww在线观看| 欧美日韩福利视频一区二区| www国产在线视频色| 国产精品永久免费网站| 日韩欧美在线二视频| 亚洲色图av天堂| 国产亚洲精品一区二区www| 桃色一区二区三区在线观看| 成熟少妇高潮喷水视频| 黑人欧美特级aaaaaa片| 国产亚洲精品综合一区在线观看| 激情在线观看视频在线高清| 日本黄色视频三级网站网址| 精品人妻偷拍中文字幕| 成人三级黄色视频| 久久这里只有精品中国| 亚洲熟妇熟女久久| 少妇裸体淫交视频免费看高清| 亚洲最大成人手机在线| 男人的好看免费观看在线视频| 人妻久久中文字幕网| 无限看片的www在线观看| 男人舔奶头视频| 久久久久久久午夜电影| 很黄的视频免费| 成人精品一区二区免费| 午夜福利高清视频| 国产精品精品国产色婷婷| bbb黄色大片| 可以在线观看毛片的网站| 色哟哟哟哟哟哟| 中文字幕人妻丝袜一区二区| 精品一区二区三区视频在线 | 久久亚洲精品不卡| 久久久久九九精品影院| 可以在线观看毛片的网站| 久久久久久人人人人人| 亚洲无线在线观看| 国产精品久久久久久久久免 | av福利片在线观看| 欧美黑人欧美精品刺激| 欧美日韩福利视频一区二区| 欧美绝顶高潮抽搐喷水| 国产精品久久久久久精品电影| 亚洲五月天丁香| 日韩欧美在线二视频| 黄色成人免费大全| 国产高清视频在线观看网站| 在线观看日韩欧美| 国产伦在线观看视频一区| 亚洲成人精品中文字幕电影| 欧美zozozo另类| 成人亚洲精品av一区二区| 欧美不卡视频在线免费观看| 亚洲激情在线av| 午夜免费激情av| 天堂影院成人在线观看| 一区二区三区高清视频在线| 一个人免费在线观看的高清视频| 欧美一级毛片孕妇| 黄色成人免费大全| 天堂动漫精品| 狂野欧美白嫩少妇大欣赏| 中文字幕av在线有码专区| 嫩草影视91久久| 极品教师在线免费播放| 日本三级黄在线观看| 黄色日韩在线| 天堂√8在线中文| 熟女人妻精品中文字幕| 欧美绝顶高潮抽搐喷水| 黄片小视频在线播放| 青草久久国产| 免费av观看视频| 国产真实伦视频高清在线观看 | 90打野战视频偷拍视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲色图av天堂| 丰满的人妻完整版| 久久午夜亚洲精品久久| 国产伦在线观看视频一区| eeuss影院久久| 欧美黑人巨大hd| 国产 一区 欧美 日韩| 国产极品精品免费视频能看的| 老汉色av国产亚洲站长工具| 日本撒尿小便嘘嘘汇集6| 久久精品亚洲精品国产色婷小说| avwww免费| 久久久久国内视频| 真人做人爱边吃奶动态| 搡女人真爽免费视频火全软件 | 国产亚洲精品av在线| 精品久久久久久,| 欧美zozozo另类| 欧美大码av| 亚洲中文字幕一区二区三区有码在线看| 床上黄色一级片| 在线免费观看不下载黄p国产 | 99精品在免费线老司机午夜| 丁香欧美五月| 青草久久国产| 天天一区二区日本电影三级| 国产高清视频在线观看网站| 老司机午夜福利在线观看视频| 免费无遮挡裸体视频| 国产精品一及| 亚洲成a人片在线一区二区| 欧美日韩瑟瑟在线播放| 99热只有精品国产| 国产亚洲精品久久久com| 色综合欧美亚洲国产小说| 欧美最新免费一区二区三区 | 久久久久久大精品| 特大巨黑吊av在线直播| 欧美最新免费一区二区三区 | 少妇裸体淫交视频免费看高清| 精品99又大又爽又粗少妇毛片 | 亚洲成av人片免费观看| 亚洲最大成人手机在线| 午夜福利成人在线免费观看| 波野结衣二区三区在线 | 精品99又大又爽又粗少妇毛片 | 国产黄片美女视频| 国产成人福利小说| 首页视频小说图片口味搜索| 久久精品91蜜桃| 色综合站精品国产| 国内久久婷婷六月综合欲色啪| 999久久久精品免费观看国产| 九九热线精品视视频播放| 中出人妻视频一区二区| av在线蜜桃| 听说在线观看完整版免费高清| 午夜福利成人在线免费观看| 欧美+亚洲+日韩+国产| 69人妻影院| 制服人妻中文乱码| 91字幕亚洲| 一夜夜www| 欧美大码av| 久久欧美精品欧美久久欧美| 久久精品91无色码中文字幕| 中文资源天堂在线| 国产不卡一卡二| 青草久久国产| 手机成人av网站| 国产高清视频在线观看网站| 女人被狂操c到高潮| 麻豆成人av在线观看| 变态另类丝袜制服| 尤物成人国产欧美一区二区三区| 午夜免费成人在线视频| 真人一进一出gif抽搐免费| 亚洲成av人片在线播放无| 色噜噜av男人的天堂激情| 午夜福利视频1000在线观看| www日本在线高清视频| 精品乱码久久久久久99久播| 亚洲第一欧美日韩一区二区三区| 国产午夜福利久久久久久| 欧美性感艳星| 国产探花在线观看一区二区| 久久精品国产亚洲av香蕉五月| 久99久视频精品免费| 日韩国内少妇激情av| 88av欧美| 亚洲欧美日韩高清在线视频| 国产99白浆流出| 天堂√8在线中文| 欧美丝袜亚洲另类 | 久久久精品大字幕| 亚洲欧美日韩无卡精品| 日本一二三区视频观看| 成人高潮视频无遮挡免费网站| 亚洲熟妇中文字幕五十中出| 高清在线国产一区| 一级a爱片免费观看的视频| 亚洲成av人片免费观看| 一个人看视频在线观看www免费 | 欧美日韩瑟瑟在线播放| 中文字幕熟女人妻在线| 日本在线视频免费播放| 97人妻精品一区二区三区麻豆| 禁无遮挡网站| 一本综合久久免费| 亚洲国产欧美人成| 日本一本二区三区精品| 搡女人真爽免费视频火全软件 | 国产99白浆流出| 午夜亚洲福利在线播放| 看黄色毛片网站| 丰满的人妻完整版| 午夜福利成人在线免费观看| 国产三级在线视频| 1024手机看黄色片| 激情在线观看视频在线高清| 香蕉丝袜av| 日本一本二区三区精品| 久久这里只有精品中国| 99久国产av精品| 国产免费一级a男人的天堂| 亚洲av第一区精品v没综合| 啦啦啦韩国在线观看视频| 中文字幕人成人乱码亚洲影| 国内精品久久久久久久电影| 亚洲中文字幕日韩| 亚洲精华国产精华精| 欧美乱码精品一区二区三区| 床上黄色一级片| 国产精品 欧美亚洲| 日韩欧美国产一区二区入口| 麻豆国产av国片精品| 99久久九九国产精品国产免费| 久久久久久国产a免费观看| 在线播放国产精品三级| 日韩 欧美 亚洲 中文字幕| 操出白浆在线播放| 国产91精品成人一区二区三区| 成人av在线播放网站| 老司机在亚洲福利影院| 日本a在线网址| 国产激情欧美一区二区| 免费电影在线观看免费观看| 日韩大尺度精品在线看网址| 免费电影在线观看免费观看| 欧美极品一区二区三区四区| 亚洲国产精品sss在线观看| 男人和女人高潮做爰伦理| 久久久久久久亚洲中文字幕 | 一二三四社区在线视频社区8| 禁无遮挡网站| 在线a可以看的网站| 免费看美女性在线毛片视频| 天堂av国产一区二区熟女人妻| 国产蜜桃级精品一区二区三区| 最新在线观看一区二区三区| 色哟哟哟哟哟哟| 欧美黑人巨大hd| 一本综合久久免费| 久久香蕉国产精品| 天堂影院成人在线观看| 国产伦精品一区二区三区视频9 | 午夜福利在线在线| 操出白浆在线播放| 99久久久亚洲精品蜜臀av| 天天躁日日操中文字幕| 久久精品国产亚洲av涩爱 | 国产精品美女特级片免费视频播放器| 国产一级毛片七仙女欲春2| 一个人观看的视频www高清免费观看| 18+在线观看网站| 97超视频在线观看视频| 99久久成人亚洲精品观看| 日韩欧美精品v在线| 欧美日韩福利视频一区二区| 1000部很黄的大片| 欧美色视频一区免费| 在线观看66精品国产| 少妇裸体淫交视频免费看高清| 国产精品野战在线观看| 亚洲内射少妇av| av黄色大香蕉| 成人av一区二区三区在线看| 嫩草影院精品99| 精品99又大又爽又粗少妇毛片 | 男女之事视频高清在线观看| 一卡2卡三卡四卡精品乱码亚洲| 小说图片视频综合网站| 日本精品一区二区三区蜜桃| 女警被强在线播放| 757午夜福利合集在线观看| 久久精品国产清高在天天线| 欧美日韩福利视频一区二区| 国产探花极品一区二区| 亚洲激情在线av| 一进一出抽搐动态| 亚洲va日本ⅴa欧美va伊人久久| 最新中文字幕久久久久| 午夜精品久久久久久毛片777| 熟妇人妻久久中文字幕3abv| h日本视频在线播放| www日本黄色视频网| 欧美色视频一区免费| 国内精品一区二区在线观看| 色吧在线观看| 18禁在线播放成人免费| 天美传媒精品一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲最大成人手机在线| 午夜精品一区二区三区免费看| 国产探花极品一区二区| 久久99热这里只有精品18| aaaaa片日本免费| 在线观看66精品国产| 一个人免费在线观看电影| 中文字幕人妻熟人妻熟丝袜美 | 美女cb高潮喷水在线观看| 亚洲中文日韩欧美视频| 九九久久精品国产亚洲av麻豆| 操出白浆在线播放| 成人国产综合亚洲| 99精品欧美一区二区三区四区| 日本撒尿小便嘘嘘汇集6| 中文亚洲av片在线观看爽| 久久久久久大精品| 精品日产1卡2卡| 精品一区二区三区视频在线观看免费| 九九热线精品视视频播放| 亚洲av电影不卡..在线观看| 国产亚洲精品久久久久久毛片| 噜噜噜噜噜久久久久久91| 在线播放国产精品三级| 嫩草影视91久久| 最近最新中文字幕大全免费视频| 国产 一区 欧美 日韩| 午夜免费成人在线视频| 岛国在线免费视频观看| 精品一区二区三区av网在线观看| 日本五十路高清| 99久久无色码亚洲精品果冻| 久久久精品大字幕| 国产野战对白在线观看| 午夜老司机福利剧场| 成人一区二区视频在线观看| 亚洲乱码一区二区免费版| 欧美成人一区二区免费高清观看| 国产激情欧美一区二区| 91av网一区二区| 国产精品嫩草影院av在线观看 | 黄色女人牲交| av女优亚洲男人天堂| www日本在线高清视频| 久久久久久久久久黄片| 欧美激情久久久久久爽电影| 一进一出好大好爽视频| 男人和女人高潮做爰伦理| 又黄又粗又硬又大视频| 丰满人妻一区二区三区视频av | 国产精品野战在线观看| 欧美日本亚洲视频在线播放| 成人午夜高清在线视频| 人妻丰满熟妇av一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美免费精品| 欧美极品一区二区三区四区| 精品国产亚洲在线| 成年女人看的毛片在线观看| 国产三级黄色录像| 欧美成人免费av一区二区三区| 在线a可以看的网站| 国产国拍精品亚洲av在线观看 | 日日夜夜操网爽| 男女午夜视频在线观看| 成人国产综合亚洲| 国产91精品成人一区二区三区| 精品99又大又爽又粗少妇毛片 | 99热6这里只有精品| 小蜜桃在线观看免费完整版高清| 国产真人三级小视频在线观看| 国产精华一区二区三区| 少妇的逼水好多| 精品国产三级普通话版| 欧美色视频一区免费| 麻豆一二三区av精品| 国产真实伦视频高清在线观看 | av福利片在线观看| 热99在线观看视频| 好男人在线观看高清免费视频| 少妇的逼水好多| 丁香欧美五月| 亚洲精品久久国产高清桃花| 脱女人内裤的视频| 国产精品久久久久久亚洲av鲁大| 欧美一区二区亚洲| www.熟女人妻精品国产| 女同久久另类99精品国产91| 亚洲精品粉嫩美女一区| 久久精品国产99精品国产亚洲性色| 亚洲专区国产一区二区| 亚洲内射少妇av| 成熟少妇高潮喷水视频| 国产免费一级a男人的天堂| 欧美日韩乱码在线| 一本精品99久久精品77| 欧美bdsm另类| 18禁黄网站禁片午夜丰满| 欧美日韩综合久久久久久 | 三级国产精品欧美在线观看| 免费电影在线观看免费观看| 亚洲美女视频黄频| 欧美日韩乱码在线| 一本精品99久久精品77| 在线观看av片永久免费下载| 噜噜噜噜噜久久久久久91| 亚洲av不卡在线观看| 欧美三级亚洲精品| 琪琪午夜伦伦电影理论片6080| 精品无人区乱码1区二区| 手机成人av网站| 色综合站精品国产| 久久伊人香网站| 成人国产一区最新在线观看| 色精品久久人妻99蜜桃| 18+在线观看网站| av欧美777| 日本一二三区视频观看| 欧美乱码精品一区二区三区| 国产91精品成人一区二区三区| 国内精品久久久久久久电影| 免费无遮挡裸体视频| 精品久久久久久久毛片微露脸| 久久久久久大精品| 老司机午夜十八禁免费视频| 99视频精品全部免费 在线| 国产精品爽爽va在线观看网站| 一卡2卡三卡四卡精品乱码亚洲| 国产爱豆传媒在线观看| 最近最新免费中文字幕在线| 一区二区三区国产精品乱码| 搡女人真爽免费视频火全软件 | 97人妻精品一区二区三区麻豆| tocl精华| 欧美日韩瑟瑟在线播放| 女生性感内裤真人,穿戴方法视频| 国内久久婷婷六月综合欲色啪| 日韩精品青青久久久久久| 久久九九热精品免费| 在线十欧美十亚洲十日本专区| www.999成人在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲av五月六月丁香网| 亚洲18禁久久av| 成年免费大片在线观看| 久久香蕉精品热| 久久精品综合一区二区三区| 老司机午夜福利在线观看视频| 欧美三级亚洲精品| 久久久久久大精品| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 麻豆一二三区av精品| 黄色女人牲交| 久久久久性生活片| 99视频精品全部免费 在线| 亚洲av日韩精品久久久久久密| www.熟女人妻精品国产| 人人妻,人人澡人人爽秒播| 国产成人影院久久av| 国产精品亚洲美女久久久| 99精品欧美一区二区三区四区| 亚洲专区中文字幕在线| 嫩草影院入口| 国产亚洲精品av在线| 国产精品一区二区三区四区久久| 日本在线视频免费播放| 午夜影院日韩av| 久久午夜亚洲精品久久| 免费看光身美女| 国产一区二区亚洲精品在线观看| 欧美中文综合在线视频| 国产精品影院久久| 国产亚洲av嫩草精品影院| 少妇熟女aⅴ在线视频| 欧美一区二区国产精品久久精品| 法律面前人人平等表现在哪些方面| 1000部很黄的大片| 国内精品美女久久久久久| 国产亚洲欧美在线一区二区| 级片在线观看| 午夜福利欧美成人| 老汉色av国产亚洲站长工具| 精品人妻一区二区三区麻豆 | 亚洲va日本ⅴa欧美va伊人久久| 亚洲熟妇熟女久久| 日韩欧美国产在线观看| av国产免费在线观看| 午夜激情福利司机影院| 精品一区二区三区视频在线观看免费| 亚洲国产精品成人综合色| 免费av观看视频| 国产av不卡久久| 天堂影院成人在线观看| 啦啦啦免费观看视频1| 在线免费观看不下载黄p国产 | 天天躁日日操中文字幕| 免费av观看视频| 波多野结衣高清作品| 久久久久精品国产欧美久久久| 久久人人精品亚洲av| 免费观看的影片在线观看| 老司机深夜福利视频在线观看| 在线免费观看的www视频| 熟女少妇亚洲综合色aaa.| 欧美日本亚洲视频在线播放| 成人性生交大片免费视频hd| 女同久久另类99精品国产91| 成人午夜高清在线视频| 国产成+人综合+亚洲专区| 国产国拍精品亚洲av在线观看 | 国语自产精品视频在线第100页| 搡老妇女老女人老熟妇| 欧美+日韩+精品| av在线天堂中文字幕| 国产亚洲精品一区二区www| 超碰av人人做人人爽久久 | 欧美区成人在线视频| 91久久精品国产一区二区成人 | 国产乱人视频| 国产精品嫩草影院av在线观看 | www.色视频.com| 亚洲avbb在线观看| 少妇人妻一区二区三区视频| 国产中年淑女户外野战色| 91久久精品电影网| 亚洲欧美日韩高清专用| 国产一级毛片七仙女欲春2| 性色avwww在线观看| 网址你懂的国产日韩在线| 两个人视频免费观看高清| 亚洲一区二区三区不卡视频| 国产一区二区亚洲精品在线观看| 夜夜躁狠狠躁天天躁| 久久久成人免费电影| 日本三级黄在线观看| 美女免费视频网站| 亚洲一区高清亚洲精品| 精品人妻1区二区| 在线免费观看不下载黄p国产 | 精品欧美国产一区二区三| 国产视频一区二区在线看| 老鸭窝网址在线观看| 国产精品一区二区三区四区免费观看 | 男女那种视频在线观看| 精品国产美女av久久久久小说| 丰满人妻熟妇乱又伦精品不卡| 欧美三级亚洲精品| 99国产精品一区二区蜜桃av| 欧美+日韩+精品| 国产精品自产拍在线观看55亚洲| 麻豆一二三区av精品| 亚洲熟妇熟女久久| 99精品在免费线老司机午夜| 长腿黑丝高跟| 脱女人内裤的视频| 麻豆国产97在线/欧美| 国产成人av激情在线播放| 久久中文看片网| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产av麻豆久久久久久久| 十八禁网站免费在线| 看免费av毛片| 国产成人福利小说| 可以在线观看毛片的网站| 亚洲精品国产精品久久久不卡| 成人欧美大片| 亚洲无线在线观看| netflix在线观看网站| 国产精品自产拍在线观看55亚洲| 色综合婷婷激情| 国产黄色小视频在线观看| 757午夜福利合集在线观看| 亚洲欧美日韩卡通动漫| 欧美日韩精品网址| www.www免费av| 国产一级毛片七仙女欲春2| 最后的刺客免费高清国语| 一区二区三区激情视频| 真人一进一出gif抽搐免费| 岛国视频午夜一区免费看| 久久久久精品国产欧美久久久| 国产私拍福利视频在线观看| 亚洲av成人精品一区久久| 国产国拍精品亚洲av在线观看 | 999久久久精品免费观看国产| 日韩亚洲欧美综合| 欧美+亚洲+日韩+国产| 首页视频小说图片口味搜索| 中文字幕人成人乱码亚洲影| 成人18禁在线播放| 美女高潮喷水抽搐中文字幕| 国产探花在线观看一区二区| 琪琪午夜伦伦电影理论片6080| 欧美日本视频| 欧美成人性av电影在线观看| 小说图片视频综合网站|