• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Automated synthesis of gadopentetate dimeglumine through solid-liquid reaction in femtosecond laser fabricated microfluidic chips

    2022-06-18 03:01:02DifengYinYuenLiLinglingXiaWenboLiWeiChuJianpingYuMiaoWuYaChengaMingHu
    Chinese Chemical Letters 2022年2期

    Difeng Yin, Yuen Li, Lingling Xia, Wenbo Li,d, Wei Chu, Jianping Yu,Miao Wu, Ya Chenga,d,, Ming Hu,*

    a State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China

    b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

    c State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

    d School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China

    e XXL – The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

    ABSTRACT Despite the continuously increased requirement on automated synthesis of medicines for distributed manufacturing and personal care, it remains a challenge to realize automated synthesis which requires solid-liquid phase reactions.In this work, we demonstrated an automated solid-liquid synthesis for gadopentetate dimeglumine, the most widely used magnetic resonance imaging (MRI) contrast agent.The high-efficiency reaction was performed in a 3D microfluidic chip which was fabricated by femtosecond laser micromachining.The structure of the chip realized 3D shear flow which was essential for highly efficient mixing and movement of the solid-liquid mixtures.Ultraviolet visible (UV–vis) spectrometer was employed for in-line analysis to help automation of this system.Comparing with the round-bottom flask system, this synthetic system showed significantly higher reaction rate, indicating the advantage of the 3D microfluidic technology in micro chemical engineering.

    Keywords:Automated synthesis Femtosecond laser micromachining Microfluidics MRI imaging UV–vis absorption spectrum

    Automated synthesis realized by microfluidic chips has been recognized to be an important part of next–generation chemical engineering [1].This technology saves people from timeconsuming lab work, therefore, has drawn much attention both in academic and industry fields [1–17].Multiphase reactions have been demonstrated to be possible and are usually enhanced inside the microfluidic chips [18–24].However, the solid-liquid reactions remain rare [18–24].One reason is that the channels may be easily blocked by the solid-state reactants.Compared with the gas phase and liquid phase reactants, solid phase reactants have their own advantages such as low cost and easy for storage.Particularly,in some cases, solid phase is the only available form of the reactants.Therefore, despite the difficulty in performing solid-liquid reactions, it is necessary to find a way to realize high-efficiency and scalable solid-liquid synthesis in the microfluidic chips which is an essential step towards automated solid-liquid synthesis.

    So far, a main challenge is that the intrinsic narrow channels of the microfluidic chips are not suitable for solid-liquid reaction, because the solid phase reactants with large volumetric fraction can increase viscosity of the fluid which hinders fast passage and uniform mixing in the microreactor.One might expect that scaling-up of the microfluidic channels can solve this problem.However, simply extending the scale of the microfluidic channels is insufficient.It would be necessary to alternate the flow from two-dimensional(2D) to three-dimensional (3D) type which can enhance the mixing effect and accelerate the flow rate [25–27].Such a 3D-type shear flow can be realized by well-designed 3D channel structure which,however, is very difficult to be fabricated by planar manufacturing technologies, such as injection molding, hot embossing and casting.Alternatively, femtosecond laser direct writing (FLDW) extends the microfluidic structures from 2D to 3D geometries, which allows for integration of different types of 3D functional components in a straightforward packaging-free manner [28,29].

    Fig.1.(a) Structure illustration of the microfluidic chip.(b) Structural details and simulation the first segment (S1).(c) Structural details and simulation the second segment(S2).(d) Digital photo of the microfluidic chip.

    In this work, we designed a multifunctional 3D microfluidic chip and fabricated it using femtosecond laser assisted chemical wet etching technique [30–32].The 3D structures are expected to produce 3D shear flows inside the chip, enabling the passage acceleration of the solid-state reactants and the increase in flow rates.The key to succeed in solid-liquid reactions is to enlarge the contact area of fluids while keeping a high throughput.We specifically designed a new structure in this work.As illustrated in Fig.1a, the designed chip consists of two parts.The reactants enter the chip and flow through the first segment (S1) and second segment (S2)of the chip.The S1 consists of periodic 3D structure units which can squeeze the incoming fluids in the vertical direction (Fig.1b).As a result, the reactant fluids flowing vertically are split and reorganized into multiple fluids in the horizontal direction.In this process, the contact area between the two reactant fluids would be dramatically increased, improving the mixing efficiency.Furthermore, the convection effect induced by the sheer force effect between two adjacent sub-fluids will further increase the mixing of the two reactants.The mixing performance of the designed structure composed of mixing units was numerically simulated by solving the microfluidic incompressible Navier-Stokes and convection diffusion equations.The simulations result in Fig.1b shows an excellent mixing effect thanks to the working mechanism described above.Likewise, S2 consists of 5 × 6 2D mixing units arranged periodically in the transverse direction.The detailed structure of the unit can be seen in Fig.1c.The outlet width of each unit is sharply narrowed to 300 μm, which will not create a blockage of solids, yet enables a variation in flow rate that enhances mixing.In addition, each unit has a baffle in the center to create convection and turbulence which will further improve the mixing effect of the reactants.It should be noted that the mixing unit structure of the the designed microfluidic chip is flat, which facilitates heat dissipation in chemical reactions.The chip was fabricated by a ultrafast laser micromachining system as schematically illustrated in Fig.S1a (Supporting information).After the femtosecond laser irradiation, the substrate was immersed in a solution of potassium hydroxide (KOH) for selectively removing the material exposed to the irradiation of the laser pulses.The procedures of the laser fabrication were schematically illustrated in Fig.S1b (Supporting information).The photographs of the fabricated microfluidic chip and the detailed mixing units in S1 and S2 are shown in Fig.1d.The enlarged image of the microstructure and 3D details of the two units are shown in Fig.S2 (Supporting information).

    The model reaction is synthesis of gadopentetate dimeglumine which is the most widely used magnetic resonance imaging (MRI) contrast agent [33–36].Developing an automated flow synthesis system for gadopentetate dimeglumine can offer options for medical requirements in remote areas.The cost of the gadolinium-containing chemical varies greatly from oxide to nitrate.The gadolinium oxide is of a cheaper price and easier to be stored than the gadolinium nitrate, therefore is suitable for distributed synthesis in remote areas.However, because of the insolubility of the gadolinium oxide in water, the reaction is a solidliquid reaction in the microfluidic chip.Such a solid-liquid phase reaction is suitable for evaluating practical performance of our designed microreactor.

    Suspension of the solid-state reactants was pumped through the microfluidic chips to check whether the solid-state reactants could pass through without causing clogging of the fluid.Before testing, the viscosity of the suspension was characterized (Fig.S3 in Supporting information).During the test, the solid (gadolinium oxide) to liquid (water) ratio (in mass) was controlled in a range from 1:100 to 100:100.The viscosity of the suspension was increased with the solid to liquid ratio.A shear thinning behavior was observed in all the cases, matching with the typical fluid property of the solid-liquid mixture.Then, the suspension was passed through the microfluidic chip at 25 °C.The set and the experimental flow rates were compared in Fig.2.The set flow rates and the experimental flow rates are almost the same in all the tests.Increasing the solid to liquid ratio did not change the relationship between the two rates.This confirms that the solid phase reactants can pass through our microfluidic chip efficiently during synthesis,demonstrating that the specific structural design of the microfluidic channel works well for the mixed solid-liquid fluid.

    We assembled a flow reaction system by using this microfluidic chip with UV–vis spectrometer.Peristaltic pumps were employed to drive the flow under control of computer (Fig.3a).The reaction among gadolinium oxide, diethylene triamine pentaacetic acid(DTPA), andN-methylglucamine is carried under heating at 85 °C as illustrated in Fig.3b.Gadopentetate dimeglumine is the product, and water is the only byproduct.Typically, equivalent amount of gadolinium oxide, diethylene triamine pentaacetic acid (DTPA),andN-methylglucamine were mixed in water to form solid-liquid suspension.The molar ratio of the three reactants was kept to be 1:2:4.Scanning electron microscopy and optical microscopy present that the gadolinium oxide is composed of particles with micron sizes (2~10 μm in size) (Figs.S4 and S5 in Supporting information).The suspension was characterized by digital camera and optical microscopy as well (Figs.S6 and S7 in Supporting information).No significant dissolution of the particles can be observed at room temperature.After pumping the suspension into the microfluidic chip which was under heating at 85 °C in water bath,the product was collected through filtering, then got dried under vacuum at 100 °C for 8 h.

    Fig.2.Comparison of the flow rate between the set value (red) and experimental data (blue).

    Fig.3.(a) Schematic illustration for automated flow synthetic system.(b)Schematic illustration for chemical reaction happens in the flow synthetic system.

    Fig.S8 (Supporting information) shows the UV-vis spectrum of the obtained sample in water solution.The absorption peak centered at 275 nm is assigned to be metal-to-ligand charge transfer, suggesting successful coordination between Gd3+and the ligand.Fig.S9 (Supporting information) illustrates infrared (IR) spectrum of the harvested product [37–39].The absorption peaks at 3350 cm–1and 2900 cm-1correspond to the stretching vibration of –OH and C–H bonds of methylene, respectively.The intense absorption peaks at 1600 cm-1and 1409 cm-1are attributed to the symmetrical and asymmetrical stretching vibrations of C=O bond of –COOH group.And these two absorption peaks move towards lower wave number which may be rationalized to the coordination of COO–with Gd3+.The absorption peaks at 1093 cm–1and 1040 cm-1correspond to the stretching vibration of C–OH and C–N bond ofN-methylglucamine.High performance liquid chromatography (HPLC) confirms the deduction of the UV–vis spectrum and FTIR data (Fig.S10 in Supporting information).The obtained gadopentetate dimeglumine was tested in magnetic resonance imaging (MRI) (Fig.S11 in Supporting information).The gadopentetate dimeglumine solution was injected from the tail into a rat.After 10 min, image taken from the bladder showed enhanced contrast, which suggested that the gadopentetate dimeglumine synthesized by this flow system successfully worked in the animal test.

    Fig.4.Comparison of the reaction rates between the flow synthetic system and the flask synthetic system.

    The reaction rate of the flow synthetic system was automatically evaluated by the in-line UV–vis spectrum.Linear relationship between the concentration of the gadopentetate dimeglumine and the absorption at 275 nm was established in Fig.S12 (Supporting information).This linear relationship is employed for in-line analysis of the reaction rate of the gadopentetate dimeglumine.When the solid to liquid mass ratio was 5:100, the reaction rate in the flow synthetic system was 4.02 mg mL–1min–1(Fig.4).In comparison, the reaction was also carried in the round-bottom flask system (1 L in volume) as well.The typical product obtained in the flask reactor was characterized by UV–vis spectrometer and IR spectrometer as shown in Figs.S13 and S14 (Supporting information).The data confirms that the product synthesized in the roundbottom flask is the same as the molecules synthesized in the microfluidic chips.In the round-bottom flask with similar concentration of the reactants, the reaction rate was generally smaller.For instance, when the solid to liquid ratio was 5:100, the reaction rate in flask was about 2.74 mg mL–1min–1which is less than the reaction rate in the microfluidic chip (4.02 mg mL–1min–1).This trend of the rate difference is confirmed in a wide range of the solid to liquid mass ratios (1:100~100:100).The reaction rates in the microfluidic chips are higher than in the flasks.

    The enhancement of the yielding rate relates to the enhanced mass diffusion and collision in the microfluidic chip.This agrees with the mixing characteristic shown in Fig.1.The split and reorganization of the solid-liquid fluid in the microfluidic chip can induce convection effect among the adjacent sub-fluids (Fig.1b).The baffle in each unit shown in Fig.1c can also create convection and turbulence.The convection and turbulence effects enhance collision among the solid reactant and the molecular reactant.The products can also be taken away from the solid reactant,making the unreacted surface to be exposed fast.Apparently, this microfluidic chip can solve the obstacle in solid-liquid phase reactions in the microreactors.To further confirm the significance of the microfluidic chip reported in this work, we employed another microfluidic chip with a different micro-structure as shown in Fig.S15 (Supporting information).Different from the microfluidic chip shown in Fig.1, mixing in this microfluidic channel based on splitting, routing, and reorganizing of the fluid in a mixing unit [17].The number of microstreams is basically increased to 4 times by a unit, enabling high-efficiency mixing.The reaction rate in this microfluidic chip was tested and compared in Fig.S16 (Supporting information).It turns out that the reaction rate of the microfluidic chip is smaller, confirming that the undulating structure and the convective shear force in the microfluidic chip shown in Fig.1 is highly important for solid-liquid reaction.

    In summary, we presented a designed 3D microfluidic chip and fabricated it using femtosecond laser micromachining technology.The 3D shear flow induces by the designed mixing units greatly enhanced the mixing efficiency and accelerate movement of the solid-liquid phase mixture inside the microreactor.As a result, a solid-liquid reaction was realized in this unique microfluidic chip to synthesize gadopentetate dimeglumine, which greatly expanded the availability of the solid-state reactants.The flow system built up in our work showed much higher reaction rates than the system using round–bottom flask reactors, indicating that the 3D microfluidic chip realized by femtosecond laser fabrication has benefits in terms of improving the mixing efficiency and allowing the track of high-throughput synthesis.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    The work is supported by National Natural Science Foundation of China (No.11674340); Key Project of the Shanghai Science and Technology Committee (No.18DZ1112700).

    午夜免费鲁丝| 嫩草影院新地址| 伊人亚洲综合成人网| 日韩一区二区视频免费看| 国产精品一区www在线观看| 九色成人免费人妻av| 中文天堂在线官网| 国产精品国产av在线观看| 国产乱来视频区| 久久青草综合色| 亚洲怡红院男人天堂| 熟女电影av网| 久久久久久久久久久丰满| 一本大道久久a久久精品| 国产亚洲欧美精品永久| 男人舔奶头视频| 久久av网站| 精品99又大又爽又粗少妇毛片| 国产精品久久久久久av不卡| 亚州av有码| 国产黄色免费在线视频| 国产精品99久久久久久久久| 国产91av在线免费观看| 在线观看免费高清a一片| 亚洲国产最新在线播放| 国产精品嫩草影院av在线观看| 久久久久国产精品人妻一区二区| 日韩欧美精品免费久久| 精品久久久久久电影网| 美女脱内裤让男人舔精品视频| 国产亚洲av片在线观看秒播厂| 我要看黄色一级片免费的| 丰满迷人的少妇在线观看| 少妇被粗大猛烈的视频| 亚洲经典国产精华液单| 一个人免费看片子| 久久精品夜色国产| 免费观看性生交大片5| 菩萨蛮人人尽说江南好唐韦庄| 日本-黄色视频高清免费观看| h视频一区二区三区| 日本黄色片子视频| 亚洲精品第二区| 老司机影院成人| 欧美精品亚洲一区二区| 精品少妇久久久久久888优播| 亚洲国产欧美在线一区| 亚洲熟女精品中文字幕| 永久免费av网站大全| 女性生殖器流出的白浆| 久久亚洲国产成人精品v| av黄色大香蕉| 国产老妇伦熟女老妇高清| 最近中文字幕高清免费大全6| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久久电影| 日韩熟女老妇一区二区性免费视频| 国产深夜福利视频在线观看| 色婷婷久久久亚洲欧美| 国产日韩一区二区三区精品不卡 | 国产一级毛片在线| 一本久久精品| 丰满乱子伦码专区| 国产极品粉嫩免费观看在线 | 18禁动态无遮挡网站| 麻豆成人午夜福利视频| 亚洲,一卡二卡三卡| 国产日韩一区二区三区精品不卡 | 久久av网站| 观看免费一级毛片| 99久久精品国产国产毛片| 国产男女内射视频| 美女主播在线视频| 少妇被粗大猛烈的视频| 欧美日韩精品成人综合77777| 全区人妻精品视频| 国产女主播在线喷水免费视频网站| 欧美精品人与动牲交sv欧美| 成人毛片a级毛片在线播放| 人人妻人人爽人人添夜夜欢视频 | 在线观看人妻少妇| 赤兔流量卡办理| a级毛色黄片| 欧美日韩av久久| 国产精品久久久久久av不卡| 成人国产av品久久久| 亚洲,一卡二卡三卡| 黑人猛操日本美女一级片| 国产精品福利在线免费观看| 22中文网久久字幕| 日日摸夜夜添夜夜添av毛片| 亚洲精品乱码久久久v下载方式| 精品99又大又爽又粗少妇毛片| 久久久久网色| 亚洲四区av| av不卡在线播放| 亚洲国产最新在线播放| 久久午夜福利片| 久久99热这里只频精品6学生| 国产黄频视频在线观看| 亚洲成人av在线免费| 国产午夜精品一二区理论片| 青春草国产在线视频| 99久久精品热视频| 五月伊人婷婷丁香| 亚洲av欧美aⅴ国产| 中文天堂在线官网| 免费看光身美女| 中文字幕免费在线视频6| 伦理电影免费视频| 欧美区成人在线视频| 又黄又爽又刺激的免费视频.| 亚洲欧美中文字幕日韩二区| 狠狠精品人妻久久久久久综合| 国产成人午夜福利电影在线观看| 精品国产露脸久久av麻豆| 亚洲av国产av综合av卡| 国产精品无大码| 久久午夜综合久久蜜桃| 热99国产精品久久久久久7| 久久久久久久久久久丰满| 在线精品无人区一区二区三| 亚洲精品亚洲一区二区| 一本—道久久a久久精品蜜桃钙片| 精品久久国产蜜桃| 最近中文字幕高清免费大全6| 国产av国产精品国产| 日韩成人av中文字幕在线观看| 插阴视频在线观看视频| 午夜老司机福利剧场| 2021少妇久久久久久久久久久| 日韩一区二区三区影片| 老熟女久久久| 成人综合一区亚洲| h视频一区二区三区| 2021少妇久久久久久久久久久| 一本色道久久久久久精品综合| 午夜日本视频在线| 少妇高潮的动态图| 国产欧美日韩一区二区三区在线 | 多毛熟女@视频| 亚洲av日韩在线播放| 熟女av电影| 久久国内精品自在自线图片| 一本—道久久a久久精品蜜桃钙片| 九九在线视频观看精品| 永久网站在线| 大话2 男鬼变身卡| 国产毛片在线视频| 高清在线视频一区二区三区| 亚洲美女搞黄在线观看| 极品少妇高潮喷水抽搐| 一级爰片在线观看| 免费人成在线观看视频色| 国产午夜精品一二区理论片| 中文乱码字字幕精品一区二区三区| 9色porny在线观看| 日韩制服骚丝袜av| 国产永久视频网站| 高清午夜精品一区二区三区| 赤兔流量卡办理| 国产伦在线观看视频一区| 国产免费又黄又爽又色| 国产乱来视频区| 欧美日韩av久久| 简卡轻食公司| 国产高清三级在线| 美女脱内裤让男人舔精品视频| 看非洲黑人一级黄片| 欧美性感艳星| 韩国av在线不卡| 秋霞伦理黄片| 制服丝袜香蕉在线| 爱豆传媒免费全集在线观看| 亚洲va在线va天堂va国产| 亚洲精品一区蜜桃| 伦理电影大哥的女人| 三级国产精品欧美在线观看| 中文天堂在线官网| 3wmmmm亚洲av在线观看| 成人影院久久| 久久久久网色| 国产一区有黄有色的免费视频| 久久久久久久久久久免费av| 国产真实伦视频高清在线观看| 成人特级av手机在线观看| 老司机影院成人| 涩涩av久久男人的天堂| 少妇高潮的动态图| 少妇人妻一区二区三区视频| 在线观看国产h片| 狂野欧美白嫩少妇大欣赏| 久久久a久久爽久久v久久| 少妇高潮的动态图| 99热国产这里只有精品6| 亚洲精品久久午夜乱码| av国产久精品久网站免费入址| 免费观看无遮挡的男女| 国内揄拍国产精品人妻在线| 2018国产大陆天天弄谢| 99久久精品国产国产毛片| 亚洲欧美日韩另类电影网站| 亚洲精品乱码久久久v下载方式| 久久国产精品男人的天堂亚洲 | 国产亚洲欧美精品永久| 99九九在线精品视频 | 中文欧美无线码| 国产男女内射视频| 最近手机中文字幕大全| 麻豆精品久久久久久蜜桃| 免费少妇av软件| 欧美最新免费一区二区三区| 成人黄色视频免费在线看| 国产精品一区二区在线不卡| 水蜜桃什么品种好| 国产av一区二区精品久久| 男女啪啪激烈高潮av片| 一区二区三区免费毛片| 伦精品一区二区三区| 久久久久久伊人网av| 秋霞在线观看毛片| 日本免费在线观看一区| 亚洲欧美日韩卡通动漫| 少妇被粗大的猛进出69影院 | 国产精品99久久久久久久久| 黑人高潮一二区| 国产无遮挡羞羞视频在线观看| h日本视频在线播放| 欧美国产精品一级二级三级 | 亚洲av.av天堂| 少妇 在线观看| 国产精品一区二区在线观看99| 精品久久久久久久久av| 亚洲人成网站在线播| 人人妻人人澡人人爽人人夜夜| 久久精品国产自在天天线| 99久久中文字幕三级久久日本| 欧美少妇被猛烈插入视频| 欧美性感艳星| 欧美日韩国产mv在线观看视频| 国产无遮挡羞羞视频在线观看| 欧美老熟妇乱子伦牲交| 欧美亚洲 丝袜 人妻 在线| 国产亚洲最大av| 少妇 在线观看| a级片在线免费高清观看视频| 在线看a的网站| 自拍欧美九色日韩亚洲蝌蚪91 | 波野结衣二区三区在线| 视频区图区小说| 在线观看美女被高潮喷水网站| 国产精品久久久久久av不卡| 国产成人精品一,二区| 国产 一区精品| 丝袜脚勾引网站| 人妻制服诱惑在线中文字幕| 18禁在线播放成人免费| 秋霞伦理黄片| 九九久久精品国产亚洲av麻豆| 在线免费观看不下载黄p国产| 国产男女超爽视频在线观看| 免费观看无遮挡的男女| 尾随美女入室| 欧美少妇被猛烈插入视频| 国产在线一区二区三区精| 男人舔奶头视频| 一本大道久久a久久精品| 亚洲久久久国产精品| 国产一区亚洲一区在线观看| 国产深夜福利视频在线观看| 婷婷色综合大香蕉| 妹子高潮喷水视频| 亚洲精品日韩在线中文字幕| 国产精品久久久久久精品电影小说| av专区在线播放| 这个男人来自地球电影免费观看 | 成人特级av手机在线观看| av线在线观看网站| 国产精品久久久久久av不卡| 卡戴珊不雅视频在线播放| 一级av片app| 看十八女毛片水多多多| 街头女战士在线观看网站| 一级二级三级毛片免费看| 久久精品国产a三级三级三级| 久久久亚洲精品成人影院| 精品久久久久久久久av| 丰满饥渴人妻一区二区三| 欧美激情极品国产一区二区三区 | 亚洲欧美一区二区三区国产| 亚洲无线观看免费| 自拍偷自拍亚洲精品老妇| 日日摸夜夜添夜夜爱| 乱码一卡2卡4卡精品| 亚洲精品自拍成人| 18禁在线无遮挡免费观看视频| 精品亚洲成国产av| 亚洲欧美精品自产自拍| 久久综合国产亚洲精品| 一级爰片在线观看| 两个人的视频大全免费| 午夜激情久久久久久久| 亚洲av综合色区一区| 免费观看av网站的网址| 亚洲怡红院男人天堂| 欧美日韩av久久| 日日摸夜夜添夜夜添av毛片| 久久久久网色| 美女脱内裤让男人舔精品视频| 亚洲精品456在线播放app| 久久精品久久精品一区二区三区| 日韩强制内射视频| 校园人妻丝袜中文字幕| 男女国产视频网站| 激情五月婷婷亚洲| 国产av码专区亚洲av| 欧美日韩一区二区视频在线观看视频在线| 18+在线观看网站| 少妇被粗大的猛进出69影院 | 制服丝袜香蕉在线| 久久久久久久久久久久大奶| 99久久精品热视频| 欧美国产精品一级二级三级 | 亚洲丝袜综合中文字幕| 看十八女毛片水多多多| 中文天堂在线官网| av播播在线观看一区| 日韩大片免费观看网站| 伦理电影免费视频| 最后的刺客免费高清国语| 一区二区三区乱码不卡18| 亚洲精品456在线播放app| 秋霞伦理黄片| 老司机影院毛片| 日日啪夜夜撸| 免费不卡的大黄色大毛片视频在线观看| 久久ye,这里只有精品| 夫妻午夜视频| 午夜老司机福利剧场| 国产精品久久久久久久久免| 午夜免费观看性视频| 免费观看在线日韩| 免费观看a级毛片全部| 日本猛色少妇xxxxx猛交久久| 成人无遮挡网站| 亚洲国产欧美日韩在线播放 | 3wmmmm亚洲av在线观看| 国产男女内射视频| 最后的刺客免费高清国语| 亚洲精品456在线播放app| 国产一区有黄有色的免费视频| 国产精品国产av在线观看| 人人妻人人澡人人爽人人夜夜| 国产精品久久久久久久电影| 国产一区二区三区综合在线观看 | 久久久午夜欧美精品| 国产精品无大码| av又黄又爽大尺度在线免费看| 亚洲欧美日韩另类电影网站| 三级国产精品欧美在线观看| 中文字幕精品免费在线观看视频 | 午夜福利,免费看| 一级片'在线观看视频| 亚洲国产毛片av蜜桃av| 一级毛片 在线播放| 国产欧美日韩一区二区三区在线 | 人人澡人人妻人| 午夜视频国产福利| 国产视频首页在线观看| 国产成人午夜福利电影在线观看| 欧美国产精品一级二级三级 | 日本爱情动作片www.在线观看| 18+在线观看网站| 国产精品欧美亚洲77777| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91 | 丰满乱子伦码专区| 两个人免费观看高清视频 | 日韩在线高清观看一区二区三区| 高清av免费在线| 99热这里只有是精品50| 爱豆传媒免费全集在线观看| 少妇精品久久久久久久| 久久久久久久久大av| 精品99又大又爽又粗少妇毛片| 国产一区二区三区av在线| 丰满饥渴人妻一区二区三| 国产黄色免费在线视频| 欧美精品亚洲一区二区| 久久久亚洲精品成人影院| 欧美 亚洲 国产 日韩一| .国产精品久久| 国产精品免费大片| 9色porny在线观看| 免费av不卡在线播放| a级片在线免费高清观看视频| 一个人看视频在线观看www免费| 午夜免费男女啪啪视频观看| 久久狼人影院| 久久99一区二区三区| 好男人视频免费观看在线| 大香蕉久久网| 男男h啪啪无遮挡| av福利片在线观看| 嫩草影院入口| 欧美日韩一区二区视频在线观看视频在线| 色婷婷久久久亚洲欧美| 我的老师免费观看完整版| 我要看黄色一级片免费的| 成人亚洲欧美一区二区av| 毛片一级片免费看久久久久| 免费av不卡在线播放| 亚洲国产最新在线播放| 亚洲成色77777| 亚洲国产最新在线播放| 亚洲欧洲国产日韩| 少妇猛男粗大的猛烈进出视频| 国产精品蜜桃在线观看| 国产白丝娇喘喷水9色精品| 一区二区av电影网| 国产免费一区二区三区四区乱码| 乱码一卡2卡4卡精品| 全区人妻精品视频| 久久久国产一区二区| 久久人人爽人人片av| 中文字幕久久专区| 日本黄色日本黄色录像| 国产爽快片一区二区三区| 欧美精品高潮呻吟av久久| 国产精品人妻久久久久久| 亚洲中文av在线| 色吧在线观看| 亚洲国产色片| 少妇被粗大的猛进出69影院 | 黄色一级大片看看| 国产 一区精品| 久久人人爽av亚洲精品天堂| 亚洲精品成人av观看孕妇| 精品一区二区三卡| 最近中文字幕2019免费版| 亚洲欧洲国产日韩| 久久 成人 亚洲| 女的被弄到高潮叫床怎么办| 内射极品少妇av片p| freevideosex欧美| 一级二级三级毛片免费看| 免费黄色在线免费观看| 乱人伦中国视频| 免费看光身美女| 免费人妻精品一区二区三区视频| 一级毛片电影观看| 亚洲欧美日韩另类电影网站| 欧美日韩国产mv在线观看视频| 18禁在线无遮挡免费观看视频| 欧美丝袜亚洲另类| 久久精品熟女亚洲av麻豆精品| 国产成人精品福利久久| 国产精品欧美亚洲77777| 久久久久网色| 午夜影院在线不卡| 我的老师免费观看完整版| 国产成人免费观看mmmm| 成人18禁高潮啪啪吃奶动态图 | videos熟女内射| 亚洲成人av在线免费| 黄色怎么调成土黄色| 国产成人精品福利久久| 国产亚洲精品久久久com| 国产成人精品无人区| 最近2019中文字幕mv第一页| 国产精品福利在线免费观看| 亚洲不卡免费看| 高清午夜精品一区二区三区| 久久久久精品久久久久真实原创| 精品久久久久久久久av| 国产精品女同一区二区软件| 国产美女午夜福利| 中文字幕久久专区| 在线观看三级黄色| 国产午夜精品一二区理论片| 18禁在线播放成人免费| 岛国毛片在线播放| 国产成人a∨麻豆精品| 一级毛片黄色毛片免费观看视频| a 毛片基地| 国产精品成人在线| 美女视频免费永久观看网站| a级毛片在线看网站| 美女cb高潮喷水在线观看| 熟女av电影| 亚洲伊人久久精品综合| 在线观看www视频免费| 男女边摸边吃奶| 日韩欧美精品免费久久| 亚洲中文av在线| 亚洲av免费高清在线观看| 午夜福利网站1000一区二区三区| 久久久久国产精品人妻一区二区| 欧美bdsm另类| 极品少妇高潮喷水抽搐| 国产精品秋霞免费鲁丝片| 亚洲精品456在线播放app| 边亲边吃奶的免费视频| 精品国产一区二区久久| 亚洲内射少妇av| 精品一区二区三卡| 精品久久久久久久久av| h视频一区二区三区| 日本vs欧美在线观看视频 | 在线观看av片永久免费下载| 日韩亚洲欧美综合| 99精国产麻豆久久婷婷| 18禁在线无遮挡免费观看视频| 国产欧美亚洲国产| 国产视频首页在线观看| av视频免费观看在线观看| xxx大片免费视频| 中文字幕人妻熟人妻熟丝袜美| 黄片无遮挡物在线观看| 在现免费观看毛片| 欧美区成人在线视频| 一二三四中文在线观看免费高清| 国产伦在线观看视频一区| 免费av中文字幕在线| av专区在线播放| 少妇裸体淫交视频免费看高清| 成人亚洲欧美一区二区av| 国产精品久久久久久精品电影小说| 午夜av观看不卡| 久久精品国产鲁丝片午夜精品| 男女国产视频网站| 国产精品.久久久| 久久久久网色| 欧美日韩视频精品一区| 又黄又爽又刺激的免费视频.| 欧美另类一区| 久久久国产精品麻豆| 一本一本综合久久| 亚洲美女黄色视频免费看| 亚洲图色成人| 男女国产视频网站| 国产精品.久久久| 国产 精品1| 久久国产乱子免费精品| 一级爰片在线观看| 一级二级三级毛片免费看| 国产男女超爽视频在线观看| 少妇人妻精品综合一区二区| 国产欧美日韩综合在线一区二区 | 哪个播放器可以免费观看大片| 色94色欧美一区二区| videossex国产| 人体艺术视频欧美日本| 美女cb高潮喷水在线观看| 亚洲欧美精品自产自拍| 女性被躁到高潮视频| 天天操日日干夜夜撸| 亚洲欧美中文字幕日韩二区| 两个人的视频大全免费| 丝袜脚勾引网站| 国产极品天堂在线| 午夜精品国产一区二区电影| 日日撸夜夜添| 黄色欧美视频在线观看| 2018国产大陆天天弄谢| 中文字幕久久专区| 色哟哟·www| 人妻 亚洲 视频| 国产精品免费大片| 日韩精品免费视频一区二区三区 | 久久精品国产亚洲av天美| 成人特级av手机在线观看| 久久鲁丝午夜福利片| 国产老妇伦熟女老妇高清| 精华霜和精华液先用哪个| 久久久国产欧美日韩av| 人人澡人人妻人| 我的老师免费观看完整版| 亚洲欧美日韩另类电影网站| 一区二区av电影网| 国产免费又黄又爽又色| 一边亲一边摸免费视频| 极品少妇高潮喷水抽搐| 国产精品人妻久久久影院| 91成人精品电影| 中文精品一卡2卡3卡4更新| 久久婷婷青草| 一本—道久久a久久精品蜜桃钙片| 国产免费又黄又爽又色| 91精品伊人久久大香线蕉| 两个人的视频大全免费| av线在线观看网站| 伦理电影免费视频| 免费观看在线日韩| 午夜精品国产一区二区电影| 国产亚洲91精品色在线| 免费看光身美女| 女性被躁到高潮视频| 久久精品久久久久久噜噜老黄| 观看免费一级毛片| 国产国拍精品亚洲av在线观看| 精品一品国产午夜福利视频| 日韩av免费高清视频| 日韩精品免费视频一区二区三区 | 国产69精品久久久久777片| 视频区图区小说| 国产精品人妻久久久久久| 午夜老司机福利剧场| 欧美精品一区二区免费开放| 中文在线观看免费www的网站| 天堂8中文在线网| av.在线天堂| 18禁动态无遮挡网站| 日本猛色少妇xxxxx猛交久久| 夫妻性生交免费视频一级片|