• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Automated synthesis of gadopentetate dimeglumine through solid-liquid reaction in femtosecond laser fabricated microfluidic chips

    2022-06-18 03:01:02DifengYinYuenLiLinglingXiaWenboLiWeiChuJianpingYuMiaoWuYaChengaMingHu
    Chinese Chemical Letters 2022年2期

    Difeng Yin, Yuen Li, Lingling Xia, Wenbo Li,d, Wei Chu, Jianping Yu,Miao Wu, Ya Chenga,d,, Ming Hu,*

    a State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China

    b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

    c State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

    d School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China

    e XXL – The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

    ABSTRACT Despite the continuously increased requirement on automated synthesis of medicines for distributed manufacturing and personal care, it remains a challenge to realize automated synthesis which requires solid-liquid phase reactions.In this work, we demonstrated an automated solid-liquid synthesis for gadopentetate dimeglumine, the most widely used magnetic resonance imaging (MRI) contrast agent.The high-efficiency reaction was performed in a 3D microfluidic chip which was fabricated by femtosecond laser micromachining.The structure of the chip realized 3D shear flow which was essential for highly efficient mixing and movement of the solid-liquid mixtures.Ultraviolet visible (UV–vis) spectrometer was employed for in-line analysis to help automation of this system.Comparing with the round-bottom flask system, this synthetic system showed significantly higher reaction rate, indicating the advantage of the 3D microfluidic technology in micro chemical engineering.

    Keywords:Automated synthesis Femtosecond laser micromachining Microfluidics MRI imaging UV–vis absorption spectrum

    Automated synthesis realized by microfluidic chips has been recognized to be an important part of next–generation chemical engineering [1].This technology saves people from timeconsuming lab work, therefore, has drawn much attention both in academic and industry fields [1–17].Multiphase reactions have been demonstrated to be possible and are usually enhanced inside the microfluidic chips [18–24].However, the solid-liquid reactions remain rare [18–24].One reason is that the channels may be easily blocked by the solid-state reactants.Compared with the gas phase and liquid phase reactants, solid phase reactants have their own advantages such as low cost and easy for storage.Particularly,in some cases, solid phase is the only available form of the reactants.Therefore, despite the difficulty in performing solid-liquid reactions, it is necessary to find a way to realize high-efficiency and scalable solid-liquid synthesis in the microfluidic chips which is an essential step towards automated solid-liquid synthesis.

    So far, a main challenge is that the intrinsic narrow channels of the microfluidic chips are not suitable for solid-liquid reaction, because the solid phase reactants with large volumetric fraction can increase viscosity of the fluid which hinders fast passage and uniform mixing in the microreactor.One might expect that scaling-up of the microfluidic channels can solve this problem.However, simply extending the scale of the microfluidic channels is insufficient.It would be necessary to alternate the flow from two-dimensional(2D) to three-dimensional (3D) type which can enhance the mixing effect and accelerate the flow rate [25–27].Such a 3D-type shear flow can be realized by well-designed 3D channel structure which,however, is very difficult to be fabricated by planar manufacturing technologies, such as injection molding, hot embossing and casting.Alternatively, femtosecond laser direct writing (FLDW) extends the microfluidic structures from 2D to 3D geometries, which allows for integration of different types of 3D functional components in a straightforward packaging-free manner [28,29].

    Fig.1.(a) Structure illustration of the microfluidic chip.(b) Structural details and simulation the first segment (S1).(c) Structural details and simulation the second segment(S2).(d) Digital photo of the microfluidic chip.

    In this work, we designed a multifunctional 3D microfluidic chip and fabricated it using femtosecond laser assisted chemical wet etching technique [30–32].The 3D structures are expected to produce 3D shear flows inside the chip, enabling the passage acceleration of the solid-state reactants and the increase in flow rates.The key to succeed in solid-liquid reactions is to enlarge the contact area of fluids while keeping a high throughput.We specifically designed a new structure in this work.As illustrated in Fig.1a, the designed chip consists of two parts.The reactants enter the chip and flow through the first segment (S1) and second segment (S2)of the chip.The S1 consists of periodic 3D structure units which can squeeze the incoming fluids in the vertical direction (Fig.1b).As a result, the reactant fluids flowing vertically are split and reorganized into multiple fluids in the horizontal direction.In this process, the contact area between the two reactant fluids would be dramatically increased, improving the mixing efficiency.Furthermore, the convection effect induced by the sheer force effect between two adjacent sub-fluids will further increase the mixing of the two reactants.The mixing performance of the designed structure composed of mixing units was numerically simulated by solving the microfluidic incompressible Navier-Stokes and convection diffusion equations.The simulations result in Fig.1b shows an excellent mixing effect thanks to the working mechanism described above.Likewise, S2 consists of 5 × 6 2D mixing units arranged periodically in the transverse direction.The detailed structure of the unit can be seen in Fig.1c.The outlet width of each unit is sharply narrowed to 300 μm, which will not create a blockage of solids, yet enables a variation in flow rate that enhances mixing.In addition, each unit has a baffle in the center to create convection and turbulence which will further improve the mixing effect of the reactants.It should be noted that the mixing unit structure of the the designed microfluidic chip is flat, which facilitates heat dissipation in chemical reactions.The chip was fabricated by a ultrafast laser micromachining system as schematically illustrated in Fig.S1a (Supporting information).After the femtosecond laser irradiation, the substrate was immersed in a solution of potassium hydroxide (KOH) for selectively removing the material exposed to the irradiation of the laser pulses.The procedures of the laser fabrication were schematically illustrated in Fig.S1b (Supporting information).The photographs of the fabricated microfluidic chip and the detailed mixing units in S1 and S2 are shown in Fig.1d.The enlarged image of the microstructure and 3D details of the two units are shown in Fig.S2 (Supporting information).

    The model reaction is synthesis of gadopentetate dimeglumine which is the most widely used magnetic resonance imaging (MRI) contrast agent [33–36].Developing an automated flow synthesis system for gadopentetate dimeglumine can offer options for medical requirements in remote areas.The cost of the gadolinium-containing chemical varies greatly from oxide to nitrate.The gadolinium oxide is of a cheaper price and easier to be stored than the gadolinium nitrate, therefore is suitable for distributed synthesis in remote areas.However, because of the insolubility of the gadolinium oxide in water, the reaction is a solidliquid reaction in the microfluidic chip.Such a solid-liquid phase reaction is suitable for evaluating practical performance of our designed microreactor.

    Suspension of the solid-state reactants was pumped through the microfluidic chips to check whether the solid-state reactants could pass through without causing clogging of the fluid.Before testing, the viscosity of the suspension was characterized (Fig.S3 in Supporting information).During the test, the solid (gadolinium oxide) to liquid (water) ratio (in mass) was controlled in a range from 1:100 to 100:100.The viscosity of the suspension was increased with the solid to liquid ratio.A shear thinning behavior was observed in all the cases, matching with the typical fluid property of the solid-liquid mixture.Then, the suspension was passed through the microfluidic chip at 25 °C.The set and the experimental flow rates were compared in Fig.2.The set flow rates and the experimental flow rates are almost the same in all the tests.Increasing the solid to liquid ratio did not change the relationship between the two rates.This confirms that the solid phase reactants can pass through our microfluidic chip efficiently during synthesis,demonstrating that the specific structural design of the microfluidic channel works well for the mixed solid-liquid fluid.

    We assembled a flow reaction system by using this microfluidic chip with UV–vis spectrometer.Peristaltic pumps were employed to drive the flow under control of computer (Fig.3a).The reaction among gadolinium oxide, diethylene triamine pentaacetic acid(DTPA), andN-methylglucamine is carried under heating at 85 °C as illustrated in Fig.3b.Gadopentetate dimeglumine is the product, and water is the only byproduct.Typically, equivalent amount of gadolinium oxide, diethylene triamine pentaacetic acid (DTPA),andN-methylglucamine were mixed in water to form solid-liquid suspension.The molar ratio of the three reactants was kept to be 1:2:4.Scanning electron microscopy and optical microscopy present that the gadolinium oxide is composed of particles with micron sizes (2~10 μm in size) (Figs.S4 and S5 in Supporting information).The suspension was characterized by digital camera and optical microscopy as well (Figs.S6 and S7 in Supporting information).No significant dissolution of the particles can be observed at room temperature.After pumping the suspension into the microfluidic chip which was under heating at 85 °C in water bath,the product was collected through filtering, then got dried under vacuum at 100 °C for 8 h.

    Fig.2.Comparison of the flow rate between the set value (red) and experimental data (blue).

    Fig.3.(a) Schematic illustration for automated flow synthetic system.(b)Schematic illustration for chemical reaction happens in the flow synthetic system.

    Fig.S8 (Supporting information) shows the UV-vis spectrum of the obtained sample in water solution.The absorption peak centered at 275 nm is assigned to be metal-to-ligand charge transfer, suggesting successful coordination between Gd3+and the ligand.Fig.S9 (Supporting information) illustrates infrared (IR) spectrum of the harvested product [37–39].The absorption peaks at 3350 cm–1and 2900 cm-1correspond to the stretching vibration of –OH and C–H bonds of methylene, respectively.The intense absorption peaks at 1600 cm-1and 1409 cm-1are attributed to the symmetrical and asymmetrical stretching vibrations of C=O bond of –COOH group.And these two absorption peaks move towards lower wave number which may be rationalized to the coordination of COO–with Gd3+.The absorption peaks at 1093 cm–1and 1040 cm-1correspond to the stretching vibration of C–OH and C–N bond ofN-methylglucamine.High performance liquid chromatography (HPLC) confirms the deduction of the UV–vis spectrum and FTIR data (Fig.S10 in Supporting information).The obtained gadopentetate dimeglumine was tested in magnetic resonance imaging (MRI) (Fig.S11 in Supporting information).The gadopentetate dimeglumine solution was injected from the tail into a rat.After 10 min, image taken from the bladder showed enhanced contrast, which suggested that the gadopentetate dimeglumine synthesized by this flow system successfully worked in the animal test.

    Fig.4.Comparison of the reaction rates between the flow synthetic system and the flask synthetic system.

    The reaction rate of the flow synthetic system was automatically evaluated by the in-line UV–vis spectrum.Linear relationship between the concentration of the gadopentetate dimeglumine and the absorption at 275 nm was established in Fig.S12 (Supporting information).This linear relationship is employed for in-line analysis of the reaction rate of the gadopentetate dimeglumine.When the solid to liquid mass ratio was 5:100, the reaction rate in the flow synthetic system was 4.02 mg mL–1min–1(Fig.4).In comparison, the reaction was also carried in the round-bottom flask system (1 L in volume) as well.The typical product obtained in the flask reactor was characterized by UV–vis spectrometer and IR spectrometer as shown in Figs.S13 and S14 (Supporting information).The data confirms that the product synthesized in the roundbottom flask is the same as the molecules synthesized in the microfluidic chips.In the round-bottom flask with similar concentration of the reactants, the reaction rate was generally smaller.For instance, when the solid to liquid ratio was 5:100, the reaction rate in flask was about 2.74 mg mL–1min–1which is less than the reaction rate in the microfluidic chip (4.02 mg mL–1min–1).This trend of the rate difference is confirmed in a wide range of the solid to liquid mass ratios (1:100~100:100).The reaction rates in the microfluidic chips are higher than in the flasks.

    The enhancement of the yielding rate relates to the enhanced mass diffusion and collision in the microfluidic chip.This agrees with the mixing characteristic shown in Fig.1.The split and reorganization of the solid-liquid fluid in the microfluidic chip can induce convection effect among the adjacent sub-fluids (Fig.1b).The baffle in each unit shown in Fig.1c can also create convection and turbulence.The convection and turbulence effects enhance collision among the solid reactant and the molecular reactant.The products can also be taken away from the solid reactant,making the unreacted surface to be exposed fast.Apparently, this microfluidic chip can solve the obstacle in solid-liquid phase reactions in the microreactors.To further confirm the significance of the microfluidic chip reported in this work, we employed another microfluidic chip with a different micro-structure as shown in Fig.S15 (Supporting information).Different from the microfluidic chip shown in Fig.1, mixing in this microfluidic channel based on splitting, routing, and reorganizing of the fluid in a mixing unit [17].The number of microstreams is basically increased to 4 times by a unit, enabling high-efficiency mixing.The reaction rate in this microfluidic chip was tested and compared in Fig.S16 (Supporting information).It turns out that the reaction rate of the microfluidic chip is smaller, confirming that the undulating structure and the convective shear force in the microfluidic chip shown in Fig.1 is highly important for solid-liquid reaction.

    In summary, we presented a designed 3D microfluidic chip and fabricated it using femtosecond laser micromachining technology.The 3D shear flow induces by the designed mixing units greatly enhanced the mixing efficiency and accelerate movement of the solid-liquid phase mixture inside the microreactor.As a result, a solid-liquid reaction was realized in this unique microfluidic chip to synthesize gadopentetate dimeglumine, which greatly expanded the availability of the solid-state reactants.The flow system built up in our work showed much higher reaction rates than the system using round–bottom flask reactors, indicating that the 3D microfluidic chip realized by femtosecond laser fabrication has benefits in terms of improving the mixing efficiency and allowing the track of high-throughput synthesis.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    The work is supported by National Natural Science Foundation of China (No.11674340); Key Project of the Shanghai Science and Technology Committee (No.18DZ1112700).

    久久中文看片网| 国产成人欧美在线观看| 9191精品国产免费久久| 一区二区三区激情视频| 精品乱码久久久久久99久播| 美女cb高潮喷水在线观看 | 在线观看一区二区三区| 国产精品精品国产色婷婷| 国产亚洲av嫩草精品影院| 女人被狂操c到高潮| 在线国产一区二区在线| 精品电影一区二区在线| 在线免费观看的www视频| 亚洲av熟女| 久久久色成人| 国产aⅴ精品一区二区三区波| 国产精品99久久久久久久久| 老熟妇仑乱视频hdxx| 欧美日韩黄片免| 最新中文字幕久久久久 | 亚洲国产色片| 在线播放国产精品三级| 无限看片的www在线观看| 精品国产超薄肉色丝袜足j| 99re在线观看精品视频| 观看美女的网站| 国产淫片久久久久久久久 | 国产精品1区2区在线观看.| 欧美乱色亚洲激情| 久久精品综合一区二区三区| 后天国语完整版免费观看| 亚洲男人的天堂狠狠| 亚洲av片天天在线观看| 我的老师免费观看完整版| 国产精品久久久av美女十八| 欧美日韩中文字幕国产精品一区二区三区| 成年人黄色毛片网站| 人妻久久中文字幕网| 午夜成年电影在线免费观看| 国产精品一区二区免费欧美| 亚洲男人的天堂狠狠| 日本免费a在线| 国产三级黄色录像| www.999成人在线观看| 无遮挡黄片免费观看| 久久久久亚洲av毛片大全| 欧美日本亚洲视频在线播放| 午夜影院日韩av| av天堂在线播放| 亚洲中文字幕日韩| 中文亚洲av片在线观看爽| 在线十欧美十亚洲十日本专区| 精品久久久久久久久久免费视频| 欧美3d第一页| 真人一进一出gif抽搐免费| 桃红色精品国产亚洲av| 久久久国产成人免费| 老司机午夜十八禁免费视频| 欧美国产日韩亚洲一区| 男女那种视频在线观看| 好看av亚洲va欧美ⅴa在| 国产亚洲精品综合一区在线观看| 9191精品国产免费久久| 免费看光身美女| 日本成人三级电影网站| 在线a可以看的网站| 在线a可以看的网站| 三级国产精品欧美在线观看 | 国产精品一及| 丰满人妻一区二区三区视频av | 久久这里只有精品中国| 亚洲精品美女久久av网站| 国产成人精品无人区| 欧美丝袜亚洲另类 | 色播亚洲综合网| 成熟少妇高潮喷水视频| 精品一区二区三区视频在线观看免费| 亚洲,欧美精品.| 亚洲五月婷婷丁香| 日韩大尺度精品在线看网址| 亚洲精品在线观看二区| 岛国在线免费视频观看| 中文字幕最新亚洲高清| 91字幕亚洲| a级毛片a级免费在线| 午夜激情福利司机影院| 亚洲国产日韩欧美精品在线观看 | 俄罗斯特黄特色一大片| 男插女下体视频免费在线播放| 女人高潮潮喷娇喘18禁视频| 国产三级中文精品| www.自偷自拍.com| 欧美日本亚洲视频在线播放| 美女免费视频网站| 亚洲av美国av| av在线蜜桃| 亚洲自拍偷在线| 宅男免费午夜| 听说在线观看完整版免费高清| 一个人观看的视频www高清免费观看 | 成年女人永久免费观看视频| 国产伦人伦偷精品视频| 给我免费播放毛片高清在线观看| 又爽又黄无遮挡网站| 成人一区二区视频在线观看| 一二三四在线观看免费中文在| 午夜影院日韩av| 一个人免费在线观看的高清视频| aaaaa片日本免费| 欧美乱色亚洲激情| 国产伦精品一区二区三区视频9 | 亚洲成a人片在线一区二区| 国产午夜精品论理片| 中文字幕人成人乱码亚洲影| 好男人在线观看高清免费视频| 可以在线观看毛片的网站| 午夜福利高清视频| 欧美性猛交╳xxx乱大交人| 又爽又黄无遮挡网站| 成年版毛片免费区| 97超视频在线观看视频| 可以在线观看的亚洲视频| 国产熟女xx| 午夜免费成人在线视频| 性色av乱码一区二区三区2| 欧美另类亚洲清纯唯美| 免费在线观看影片大全网站| 精品国产乱码久久久久久男人| 人妻久久中文字幕网| 在线观看免费视频日本深夜| 90打野战视频偷拍视频| 婷婷丁香在线五月| 亚洲一区二区三区色噜噜| 久久久久久大精品| 高清在线国产一区| 欧美一区二区精品小视频在线| 九九热线精品视视频播放| 又爽又黄无遮挡网站| 国产精品1区2区在线观看.| 国产精品一区二区三区四区久久| 国产美女午夜福利| 国产免费男女视频| 在线免费观看的www视频| 国产精品美女特级片免费视频播放器 | 在线视频色国产色| 十八禁人妻一区二区| 淫妇啪啪啪对白视频| 国产爱豆传媒在线观看| 亚洲精品中文字幕一二三四区| 级片在线观看| 国产野战对白在线观看| 日韩高清综合在线| 真人做人爱边吃奶动态| 国内揄拍国产精品人妻在线| 男人和女人高潮做爰伦理| 日韩欧美在线乱码| 欧美午夜高清在线| 黄色片一级片一级黄色片| 亚洲无线观看免费| 国产精品一区二区三区四区久久| 中出人妻视频一区二区| 一进一出抽搐gif免费好疼| 成在线人永久免费视频| 天堂影院成人在线观看| 精品久久久久久,| 嫩草影院入口| 人人妻人人看人人澡| 国产一区二区在线观看日韩 | 精品无人区乱码1区二区| 欧美绝顶高潮抽搐喷水| 99在线人妻在线中文字幕| 首页视频小说图片口味搜索| 成年女人看的毛片在线观看| 日本免费a在线| 精品久久久久久久久久久久久| 人妻夜夜爽99麻豆av| 国产精品自产拍在线观看55亚洲| 观看免费一级毛片| 亚洲成人中文字幕在线播放| 99在线视频只有这里精品首页| 韩国av一区二区三区四区| 午夜a级毛片| 欧美乱妇无乱码| 亚洲国产欧美网| 亚洲国产看品久久| 中国美女看黄片| 中文在线观看免费www的网站| 看黄色毛片网站| 国产视频一区二区在线看| 男人舔奶头视频| 午夜免费观看网址| 狠狠狠狠99中文字幕| 色视频www国产| 亚洲 欧美一区二区三区| 网址你懂的国产日韩在线| 999久久久国产精品视频| 丰满的人妻完整版| 免费大片18禁| 国产精品美女特级片免费视频播放器 | 黄色日韩在线| 美女午夜性视频免费| 久久中文字幕一级| 国产成人aa在线观看| 欧美一级a爱片免费观看看| 亚洲专区国产一区二区| 欧美在线黄色| 国产精品精品国产色婷婷| 欧美日韩一级在线毛片| 久久午夜综合久久蜜桃| 精品福利观看| 日韩成人在线观看一区二区三区| 制服丝袜大香蕉在线| 国产69精品久久久久777片 | www.精华液| 国产aⅴ精品一区二区三区波| 国产乱人伦免费视频| 亚洲真实伦在线观看| 精品免费久久久久久久清纯| 老司机午夜福利在线观看视频| 欧美中文日本在线观看视频| 一本精品99久久精品77| 黑人操中国人逼视频| 999久久久国产精品视频| 国产精品av视频在线免费观看| or卡值多少钱| 国产精品 国内视频| 老司机福利观看| 国产av一区在线观看免费| 少妇的逼水好多| 久久人人精品亚洲av| 日本 av在线| 在线观看美女被高潮喷水网站 | 91字幕亚洲| 宅男免费午夜| 亚洲欧美一区二区三区黑人| 久久亚洲真实| 国产单亲对白刺激| 欧美日韩国产亚洲二区| 精品国产超薄肉色丝袜足j| 天堂√8在线中文| 国产亚洲精品久久久com| 日本在线视频免费播放| 国产精品电影一区二区三区| 手机成人av网站| 精品国产超薄肉色丝袜足j| 99精品欧美一区二区三区四区| a在线观看视频网站| 亚洲人成网站高清观看| 中文亚洲av片在线观看爽| 亚洲av成人不卡在线观看播放网| 亚洲国产欧洲综合997久久,| 中亚洲国语对白在线视频| 精品国内亚洲2022精品成人| 久久欧美精品欧美久久欧美| 午夜视频精品福利| 18禁黄网站禁片免费观看直播| 国产高清激情床上av| 国产精品一区二区三区四区久久| 免费看十八禁软件| 国产欧美日韩一区二区精品| 精品久久久久久久久久免费视频| 又黄又爽又免费观看的视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久久久精品电影| 国产成人av教育| svipshipincom国产片| 亚洲中文日韩欧美视频| 成人国产综合亚洲| 身体一侧抽搐| 淫秽高清视频在线观看| aaaaa片日本免费| 看片在线看免费视频| 不卡av一区二区三区| 国产午夜福利久久久久久| 在线视频色国产色| 免费搜索国产男女视频| 免费在线观看亚洲国产| 国产伦精品一区二区三区四那| 麻豆成人av在线观看| 在线观看一区二区三区| 欧美黑人巨大hd| 无人区码免费观看不卡| 国产精品亚洲av一区麻豆| 制服人妻中文乱码| 中文字幕高清在线视频| 超碰成人久久| 久久久国产欧美日韩av| 精品免费久久久久久久清纯| 精品熟女少妇八av免费久了| 国产v大片淫在线免费观看| 亚洲国产日韩欧美精品在线观看 | 成人av一区二区三区在线看| 免费观看人在逋| 丝袜人妻中文字幕| 国产亚洲精品久久久com| bbb黄色大片| 久久久国产成人精品二区| 国产毛片a区久久久久| 一级a爱片免费观看的视频| a在线观看视频网站| 成人一区二区视频在线观看| 日韩欧美国产一区二区入口| 国产精品av久久久久免费| 日本撒尿小便嘘嘘汇集6| 小说图片视频综合网站| 18美女黄网站色大片免费观看| 欧美日韩国产亚洲二区| 偷拍熟女少妇极品色| 国产1区2区3区精品| 黄片小视频在线播放| 校园春色视频在线观看| 久久人人精品亚洲av| 国产美女午夜福利| 国内精品美女久久久久久| 久久天躁狠狠躁夜夜2o2o| 无限看片的www在线观看| 淫秽高清视频在线观看| 一级毛片精品| 国产亚洲欧美在线一区二区| 成人精品一区二区免费| 欧美黑人欧美精品刺激| 色尼玛亚洲综合影院| 91av网一区二区| 两人在一起打扑克的视频| www.自偷自拍.com| 成人av在线播放网站| 夜夜看夜夜爽夜夜摸| 麻豆av在线久日| 成年版毛片免费区| 亚洲五月天丁香| 又黄又爽又免费观看的视频| 亚洲国产精品成人综合色| 久久精品亚洲精品国产色婷小说| 性色av乱码一区二区三区2| 韩国av一区二区三区四区| 久久精品综合一区二区三区| 看黄色毛片网站| 国产亚洲欧美在线一区二区| 日韩欧美在线乱码| 露出奶头的视频| 麻豆一二三区av精品| 亚洲熟妇熟女久久| 欧美一级a爱片免费观看看| 99热只有精品国产| 最新美女视频免费是黄的| 99re在线观看精品视频| 99热这里只有精品一区 | 99久久国产精品久久久| ponron亚洲| 欧美日韩一级在线毛片| 日韩欧美 国产精品| 久久性视频一级片| 夜夜看夜夜爽夜夜摸| 性色avwww在线观看| 一级黄色大片毛片| 国产精华一区二区三区| 黑人巨大精品欧美一区二区mp4| 日本 欧美在线| 亚洲色图av天堂| а√天堂www在线а√下载| 国产午夜精品论理片| 俄罗斯特黄特色一大片| 日本熟妇午夜| 亚洲国产欧美一区二区综合| 九九在线视频观看精品| 两性夫妻黄色片| 全区人妻精品视频| 一本久久中文字幕| 欧美日韩综合久久久久久 | 久久久久国产精品人妻aⅴ院| 国产伦人伦偷精品视频| 曰老女人黄片| 亚洲精华国产精华精| h日本视频在线播放| cao死你这个sao货| 成年版毛片免费区| a在线观看视频网站| 夜夜看夜夜爽夜夜摸| 男插女下体视频免费在线播放| 午夜两性在线视频| 男插女下体视频免费在线播放| 一区二区三区激情视频| 99精品久久久久人妻精品| ponron亚洲| 国产麻豆成人av免费视频| 午夜福利高清视频| 久久久久性生活片| 国产男靠女视频免费网站| 色视频www国产| 亚洲自拍偷在线| 久久草成人影院| 在线视频色国产色| 欧美中文综合在线视频| 国产欧美日韩一区二区三| 午夜久久久久精精品| 97超视频在线观看视频| 日韩大尺度精品在线看网址| 久久久久久大精品| 搡老熟女国产l中国老女人| 观看美女的网站| www日本在线高清视频| 欧美激情在线99| 婷婷精品国产亚洲av| 亚洲国产欧美一区二区综合| 日本黄色视频三级网站网址| 99在线视频只有这里精品首页| 日本免费一区二区三区高清不卡| 两人在一起打扑克的视频| 在线视频色国产色| 一卡2卡三卡四卡精品乱码亚洲| av欧美777| 国产高清videossex| 欧美黄色片欧美黄色片| 脱女人内裤的视频| 久久久久久国产a免费观看| 亚洲午夜理论影院| 久久中文字幕人妻熟女| 亚洲欧美日韩东京热| 91久久精品国产一区二区成人 | 亚洲av成人不卡在线观看播放网| 两人在一起打扑克的视频| 国产成人系列免费观看| 欧美另类亚洲清纯唯美| 亚洲,欧美精品.| 欧美最黄视频在线播放免费| 黄色视频,在线免费观看| 搞女人的毛片| 成人无遮挡网站| 久久香蕉精品热| 最近在线观看免费完整版| 久久久久久人人人人人| 又紧又爽又黄一区二区| 亚洲精品久久国产高清桃花| 国产精品综合久久久久久久免费| 国产69精品久久久久777片 | 看免费av毛片| 舔av片在线| 熟妇人妻久久中文字幕3abv| 欧美激情在线99| 在线观看免费视频日本深夜| 亚洲人成电影免费在线| 日韩欧美精品v在线| 欧美成人免费av一区二区三区| 久久亚洲精品不卡| 国产在线精品亚洲第一网站| 亚洲av电影在线进入| 国产伦在线观看视频一区| 亚洲国产中文字幕在线视频| 一a级毛片在线观看| svipshipincom国产片| 男女床上黄色一级片免费看| 成人精品一区二区免费| 久久久久久久精品吃奶| 全区人妻精品视频| 在线免费观看不下载黄p国产 | 亚洲在线自拍视频| 90打野战视频偷拍视频| 亚洲午夜精品一区,二区,三区| 俺也久久电影网| 我的老师免费观看完整版| 日本撒尿小便嘘嘘汇集6| 色噜噜av男人的天堂激情| 真实男女啪啪啪动态图| 久久精品综合一区二区三区| www日本在线高清视频| 99riav亚洲国产免费| 国产爱豆传媒在线观看| 老司机午夜福利在线观看视频| 日韩欧美一区二区三区在线观看| 欧美最黄视频在线播放免费| 91av网站免费观看| 女同久久另类99精品国产91| 99精品久久久久人妻精品| 午夜福利18| 国产精品永久免费网站| 亚洲国产欧美人成| 亚洲国产精品合色在线| 桃红色精品国产亚洲av| 99国产极品粉嫩在线观看| 亚洲欧美精品综合久久99| 18禁国产床啪视频网站| 亚洲午夜理论影院| 国产精品久久视频播放| 91字幕亚洲| 色av中文字幕| 美女高潮喷水抽搐中文字幕| 人人妻人人看人人澡| cao死你这个sao货| 每晚都被弄得嗷嗷叫到高潮| 最新在线观看一区二区三区| 黄色女人牲交| 波多野结衣巨乳人妻| 亚洲欧美日韩卡通动漫| 麻豆久久精品国产亚洲av| 在线看三级毛片| 久久婷婷人人爽人人干人人爱| 欧美最黄视频在线播放免费| а√天堂www在线а√下载| 国产精品久久久久久久电影 | 在线观看舔阴道视频| cao死你这个sao货| 老熟妇仑乱视频hdxx| 国产v大片淫在线免费观看| 在线免费观看的www视频| 91在线观看av| 99riav亚洲国产免费| 久久欧美精品欧美久久欧美| 国内久久婷婷六月综合欲色啪| 哪里可以看免费的av片| 欧美日韩瑟瑟在线播放| 精品欧美国产一区二区三| 国产野战对白在线观看| 真实男女啪啪啪动态图| 精品国产乱码久久久久久男人| 精品不卡国产一区二区三区| 久久久久性生活片| 久久精品国产清高在天天线| 精品久久久久久久人妻蜜臀av| 日韩av在线大香蕉| 悠悠久久av| 国产单亲对白刺激| 国产精品一区二区三区四区久久| 91在线观看av| 男女之事视频高清在线观看| 亚洲最大成人中文| 国产一区二区三区视频了| 国产精品自产拍在线观看55亚洲| 欧美一级a爱片免费观看看| 美女黄网站色视频| 亚洲天堂国产精品一区在线| 日韩欧美一区二区三区在线观看| svipshipincom国产片| 一区福利在线观看| 99热这里只有精品一区 | 嫩草影院精品99| 亚洲av成人一区二区三| 国产精品女同一区二区软件 | 搡老岳熟女国产| 99久久综合精品五月天人人| 久久亚洲精品不卡| 欧美大码av| 一二三四社区在线视频社区8| 天堂av国产一区二区熟女人妻| 国产一区二区三区在线臀色熟女| 国产亚洲精品一区二区www| 国产精品av久久久久免费| 少妇熟女aⅴ在线视频| 亚洲av熟女| 三级男女做爰猛烈吃奶摸视频| 国产成人影院久久av| 亚洲一区二区三区色噜噜| 在线观看日韩欧美| 999精品在线视频| 91麻豆av在线| 亚洲熟妇中文字幕五十中出| 亚洲自偷自拍图片 自拍| 1024手机看黄色片| avwww免费| 美女被艹到高潮喷水动态| 成人午夜高清在线视频| 国产乱人视频| 国产av一区在线观看免费| 俄罗斯特黄特色一大片| 不卡一级毛片| 美女扒开内裤让男人捅视频| 国产精品日韩av在线免费观看| 亚洲专区国产一区二区| 桃色一区二区三区在线观看| 亚洲国产欧洲综合997久久,| 婷婷亚洲欧美| 在线免费观看不下载黄p国产 | 欧美乱码精品一区二区三区| a在线观看视频网站| 少妇人妻一区二区三区视频| 国产激情欧美一区二区| 欧美成人一区二区免费高清观看 | 亚洲天堂国产精品一区在线| 制服丝袜大香蕉在线| 12—13女人毛片做爰片一| 午夜成年电影在线免费观看| 国产精品精品国产色婷婷| 国产一级毛片七仙女欲春2| 亚洲第一欧美日韩一区二区三区| www.999成人在线观看| 精品福利观看| 国产亚洲欧美98| 一二三四社区在线视频社区8| 精品福利观看| 国产亚洲欧美98| 亚洲精品美女久久av网站| 亚洲专区国产一区二区| 性欧美人与动物交配| 老汉色av国产亚洲站长工具| 国产精品98久久久久久宅男小说| 夜夜夜夜夜久久久久| 日本精品一区二区三区蜜桃| 欧美日韩精品网址| 久久久久性生活片| 亚洲精品美女久久久久99蜜臀| 特级一级黄色大片| 麻豆成人午夜福利视频| 精品国产美女av久久久久小说| 欧美乱色亚洲激情| 久99久视频精品免费| 免费av毛片视频| 超碰成人久久| 国产成人一区二区三区免费视频网站| 久久久久久久久久黄片| 老熟妇乱子伦视频在线观看| 两人在一起打扑克的视频| 变态另类丝袜制服| 又紧又爽又黄一区二区| 婷婷丁香在线五月| 亚洲狠狠婷婷综合久久图片| 精品一区二区三区视频在线观看免费|