• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-assemblies of TTF derivatives with fluorinated phenyls and pyridine group

    2022-06-18 03:01:04JinghuFngXioyngZhuWendiLuoJinxunShiLejiWngBinTuQingdoZengXunwenXio
    Chinese Chemical Letters 2022年2期

    Jinghu Fng, Xioyng Zhu, Wendi Luo, Jinxun Shi, Leji Wng, Bin Tu,Qingdo Zeng,*, Xunwen Xio

    a College of Material Science and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China

    b CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China

    c Zhejiang Pharmaceutical College, Ningbo 315100, China

    ABSTRACT The self-assembly characteristics of tetrathiafulvalene (TTF) derivatives molecules 1–3 at the 1-phenyloctane/HOPG (HOPG = highly oriented pyrolytic graphite) interface had been carefully studied by scanning tunneling microscopy (STM) method.The number of F atoms on the phenyl group had significantly affected the self-assembly structures.High-resolution STM images make clear the different assembly structures between the molecules 1–3, which attribute to the different F atom numbers and pyridine group in the molecule.Density functional theory (DFT) calculations have been performed to reveal the formation mechanism.

    Keywords:TTF Self-assembly STM DFT calculation Hydrogen bonds

    In view of the excellent electron-donating ability and reversible redox features, tetrathiafulvalene derivatives (TTFs) were extensively utilized as donor units in the molecular material, especially in the organic conductor/superconductor materials [1,2].The oxidation potential of TTFs could be modified by peripheral substitution on the TTF core.Previous research results made clear that the stacking pattern of TTFs could also be influenced by the substituent groups.Tetrathiafulvalene derivatives (TTFs) which were modified by peripheral arylation showed many advantages to get organic optoelectronic materials [3,4].Moreover, phenyl and pyridine units are the most common peripheral aryls unit.The different peripheral aryls units in the TTF core play a key role in constructing different arrangements in the condensed matter based on such donor molecule [5–7].

    We previously reported the self-assemblies of TTF-pyridyl derivatives at the liquid/solid interface with the scanning tunneling microscope (STM) method.With one pyridine group connected with the TTF core, 4-pyridyl-(ethylenedithio)TTF (EDTTF)could form a brand network with the help of 1,3,5-tris(10-carboxydecyloxy)-benzene at room temperature, which finally transforms into a more stable line structure [8].When two pyridine groups were directly lined with TTF core, the para-pyridine-TTF and meta-pyridine-TTF molecules could both assemble into a regular linear structure at the heptanoic acid (HA)/HOPG interface.And also, by co-assembling with the TCDB (TCDB = 1,3,5-tris(10-carboxydecyloxy)-benzene) molecule, these two TTF derivatives could disturb the H-bonding network of TCDB, and form new co-assembled structures [9].More, the directionality of hydrogen bonds tends to facilitate the arrangement of neighboring molecules and surface structures controlled by hydrogen bonds are reported recently [10–13].These results indicate that the assembled mode of the TTF derivatives could be affected by changing the substituent on the TTF molecule.Therefore the self-assemblies of the TTFs are still worth further exploring.

    In this paper, we modify the TTF molecule with fluorine (Fluorine element has the highest electronegativity) which could offer two obvious advantages: (1) fluorination could reduce both the HOMO and the LUMO energy levels of these organic optoelectronic molecules, so that the p-type organic semiconductor may be converted into the n-type one; (2) fluorine-involved intermolecular interactions play an important role in the crystal engineering of such kind molecule, leading to the assembly structure more orderly, consequently enhancing the charge carrier mobility of TTF derivatives [14–16].Herein we design molecules 1–3, which fluorinated phenyls and/or pyridyl group linked with the TTF core, as shown in Scheme 1.The difference between molecules 1–3 is the F atom number on the aromatic group of terminal groups.The selfassembled structures of 1–3 were studied by the STM method for having absolute predominance in revealing the assembled structure at the atomic level [17].Moreover, density functional theory(DFT) calculations have been executed to resolve the possible formation mechanism of their self-assembly structures.

    Fig.1.STM images of molecule 1 assembly structure at the HOPG/1-phenyloctane interface: (a) Large scale; (b) high resolution.Tunneling conditions: Iset = 198.4 pA,Vbias = 499.9 mV.

    Molecules 1–3 were separately dissolved in 1-phenyloctane,and each concentration is less than 10-4mol/L.Then the selfassembly structures were prepared by depositing a droplet of the corresponding solution (0.1 μL) onto the freshly cleaved highly oriented pyrolytic graphite (HOPG) surface, respectively.Afterwards, the self-assembly structures were observed at the HOPG/1-phenyloctane interface by using the STM method under ambient conditions.More, the detailed synthesis of compounds 1–3 is shown in Fig.S1 (Supporting information) and the detail of STM investigation and theoretical calculations are shown in Fig.S2(Supporting information).

    First, the assembly structure of molecule 1 at the 1-phenyloctane/HOPG interface was characterized by using STM.The large-scale nanostructure of molecule 1 was shown in Fig.1a, and the high-resolution image of the self-assembled structure was revealed in Fig.1b.Fig 2 shows the proposed corresponding molecular model based on the DFT calculation.From Fig.1b, three different assembly structures (A–C) of compound 1 were formed in the same area at the same time.More detailed structure was seen in high resolution STM image, as shown in Fig.1b.Type A is dimer; type B contained six molecules; and type C contained eight molecules.The fluorinated phenyls and pyridyl groups in the molecule are in thecisconfigurations.As a result, molecule 1 adopts a U-shaped structure [18].Type A is a dimer which was formed by two molecules with a tail to tail mode.Type B was formed by six molecules with head to head and tail to tail mode.And C was formed by eight molecules with head to head, tail to tail, and head to tail mode as shown in Fig.2.The width (W) of the bright spots is 0.8 ± 0.1 nm which is in accordance with the size of TTF.Therefore we could deduce that each bright spot represents one molecule 1.Each bright rectangle spot corresponds to the conjugated backbone of the TTF molecules due to the high electron cloud density.In type A, the two molecules in the dimer can interact with each other through C–H···F and C–H···N hydrogen bond between fluorophenyl and pyridine groups in 1 (marked by the red dashed circle for C–H···F and black dashed circle for C–H···N in Fig.2a).And it was indicated by a rectangular box marked A in Fig.1b.And the measured unit cell parameters for type A area= 1.3 nm ± 0.1 nm,b= 2.0 nm ± 0.1 nm,α= 90°± 2°.In type B, these are C–H···N and C–H···F hydrogen bonds from two pyridine group with a tail to tail mode, which marked by the red dashed circle for C–H···F and black dashed circle for C–H···N in Fig.2b and F···F halogen-bond interaction (marked by the violetdashed circle for F···F in Fig.2b) from two 4-fluorophenyls with head to head mode.The measured unit cell parameters for type B area= 4.5 nm ± 0.1 nm,b= 3.5 nm ± 0.1 nm,α= 130°±2°.For type C, there are C–H···N, C–H···F and C-F···F interactions in this ring of eight molecules (marked by the red dashed circle for C–H···F, black dashed circle for C–H···N and the violet dashed circle for F···F in Fig.2c).The measured unit cell parameters for type C area= 6.1 nm ± 0.1 nm,b= 3.0 nm ± 0.1 nm,α= 120°± 2°,respectively.

    Table 1 Experimental (Expt.) and calculated (Calcd..) unit cell parameters of the selfassembly of molecule 1 on the HOPG surface.

    Therefore, we could speculate that the intermolecular halogen bond, hydrogen bond interaction in TTF core play an important role in the self-assembly process.There is little difference between these intermolecular interactions.On the basis of STM observations, molecule 1 could form three types of self-assembly structures.Fig.2 showed the corresponding molecular model proposed by the DFT calculations.The calculated lattice parameters for the self-assembly structures of molecule 1 are summarized in Tables 1 and 2.Combined with the DFT result, the total energy per unit area of 1 of A–C was equal to -0.261, -0.175 and -0.149 kcal mol-1-2, respectively.There is little difference of the lowest energy of these three type modes.As a result, three self-assembly structures of molecule 1 were formed.It is notable that the total energy per unit area of type A is the lowest, indicating that the type A is the most energetically favourable pattern of these three type structures.

    Then we investigated the effect of different F atoms of TTF derivatives on their assembly behavior.In molecule 2, two H atoms of the benzene ring were replaced by two F atoms.Compared with molecule 1, only one more H atom of benzene ring was replaced by an F atom in molecule 2.However, the assembly of 2 at 1-phenyloctane/HOPG interface showed much difference with molecule 1.As seen in Fig.3, molecule 2 formed only one arrangement in a large-scale order.The width (W) of the bright stick is 0.8 ± 0.1 nm, which is in accordance with the width of molecule 2.Therefore, the bright structure could be assigned to only one molecule 2.The measured unit cell parameters area= 3.9 nm ± 0.1 nm,b= 1.1 nm ± 0.1 nm,α= 80° ± 2°, and this was indicated by a white rectangular box in Fig.3b.On the basis of STM observations, a suggested molecular model is proposed, as shown in Fig.3c.Molecule 2 also adopts thecisconfigurations.The up and down configurations of 2 are column arrangements.For the assembled structure of 2, two adjacent 2 molecules adopt the head to head and tail to tail mode.Molecule 2 contains two F atoms;two pairs of C–H···F hydrogen bonds could be formed (marked by the red dashed circle for C–H···F in Fig.3c).Moreover, C–H···N hydrogen bonds could also be formed with the help of pyridine group(marked by the black dashed circle for C–H···N in Fig.3c).From the STM images, we can estimate that fluorine atoms and pyridine group participate in assembly behavior and the intermolecular interactions are mainly C–H···F and C–H···N hydrogen bonds.Therefore, the assembly structure of 2 showed single regular structures.Moreover, almost no defects were found in large areas.On the basis of STM observations, Fig.3c shows the corresponding molecular model proposed by the DFT calculations.The calculated lattice parameters for the self-assembly structures of molecule 2 are summarized in Table 3.The intermolecular C–H···F and C–H···N hydrogen bonds are relatively strong.As a result, molecule 2 interacted with each other by the head to head mode through the hydrogen bonds of the terminal fluorobenzene and pyridine group.

    Fig.2.Three simulated molecular packing structures of 1, (a) for type A; (b) for type B, (c) for type C.

    Table 2 Total energies and energies per unit area of self-assembly of molecule 1 on the HOPG surface.a

    Fig.3.STM images of molecule 2 assembly structure at the HOPG/1-phenyloctane interface: (a) Large scale; (b) high resolution.Tunneling conditions: Iset = 212.4 pA,Vbias = 489.8 mV.(c) The simulated molecular packing structure.

    Table 3 Experimental (Expt.) and calculated (Calcd.) unit cell parameters of self-assemblies of molecules 2 and 3 on the HOPG surface.

    In order to further investigate the effect of the number of F atoms on the self-assembly of TTF core, molecule 3 was designed.In molecule 3, two difluorobenzene groups were directly connected with TTF core and no pyridine group appeared in molecule 3.At the HOPG/1-phenyloctan interface, molecule 3 forms a grid selfassembly structure, which is different from that of molecule 1 or 2.As seen from the Fig.4, the width (W) of the bright spot is 0.7 ± 0.1 nm, which is slightly less than that of molecule 1 or 2.The measured unit cell parameters area= 3.3 nm ± 0.1 nm,b= 1.4 nm ± 0.1 nm,α= 55° ± 2°, and this was indicated by a white rectangular box in Fig.4b.On the basis of STM observations, a suggested molecular model is proposed, as shown in Fig.4c.Molecule 3 also adopts thecisconfigurations.There are two different spots on the STM images, which could be identified as up or down configuration of molecule 3.In these systems, the main molecular interaction is C–H···F hydrogen bond (marked by the red dashed circle for C–H···F in Fig.4c).As the number of fluorine atoms in the phenyl increased, the interaction related with fluorine atoms was also increasing.Four pairs of C–H···F hydrogen bonds could be formed between the adjacent molecules because there are four F atoms in the molecule.And the intermolecular interactions were stronger than those of molecule 2, the density of the whole assembly structure of 3 was bigger than that of 2.

    Table 3 lists the calculated unit cell parameters of molecules 2 and 3 assembly systems, which agree well with the corresponding experimental results.The interaction energies of molecules 2 and 3 self-assemblies were presented in Table 4 and the lower energy indicates the stronger interaction herein.It can be observed that the total energy per unit area of molecule 3 (-0.115 kcal mol-1-2) is lower than that of molecule 2 (-0.067 kcal mol-1-2), which is largely due to the extra C–H···F hydrogen bond interactions between difluorobenzene groups of molecule 3.Except the interaction between self-assembled molecules 2 and 3, the interaction between molecules and HOPG also plays an important role in the surface assembly.As shown in the third column in Table 4, the interaction energy between molecule 3 and substrate(-39.79 kcal/mol) is lower than that of molecule 2 and substrate(-26.55 kcal/mol), which caused the different interaction between TTF core and graphite substrate.Compared with the intermolecular interaction energies of molecules 1–3, the interaction energies between molecules and HOPG are much lower.These results may indicate that the absorption between molecules and HOPG substrate is quite strong.

    Fig.4.STM images of molecule 3 assembly structure at the HOPG/1-phenyloctane interface: (a) Large scale; (b) high resolution.Tunneling conditions: Iset = 230.0 pA,Vbias = 499.9 mV.(c) The simulated molecular packing structure.

    Scheme 1.Chemical structures of TTF-based molecules.

    Table 4 Total energies and energies per unit area of self-assemblies of molecules 2 and 3 on the HOPG surface.a

    From the experiment results, we could conclude that the three molecules 1–3 assemble into the linear patterns at the HOPG/1-phenyloctane interface.However, the different numbers of F atoms on the molecule cause the different assembly structures.As for the self-assembly of molecule 1, the self-assembly structure is formed by the help of C-F···H, C–N···H hydrogen bond and F···F halogen bond.As for the self-assembly of molecule 2, the linear pattern is formed by the C-F···H and C–N···H intermolecular hydrogenbond interaction.As for 3, the assembly pattern is formed with the help of the C-F···H intermolecular hydrogen-bond interaction.Due to no alkyl chains in molecules 1–3, the interactions between molecules and substrate may come from theπ-πstacking interaction between TTF core and graphite substrate.Therefore the peripheral substitution or chemical modification of the TTF core is important for the self-assembly on the graphite substrate.Combined with the DFT result, the total energy of one molecule 3(-44.75 kcal/mol) is much lower than that of molecule 2 (-28.43 kcal/mol) and molecule 1 (type A: -59.559/2 = -29.78; type B:-211.731/6 = -35.28; type C: -236.486/8 = -29.56 kcal/mol).As a result, a closest molecular arrangement and the best thermodynamic stability of molecule 3 are formed among molecules 1–3.

    Taking advantage of DFT calculation, the precise self-assembled structures of molecules 1–3 based on the observed STM image were understood.The calculated parameters are in good agreement with the experimental data.The molecules 1–3 make use of the F···F, C–N···H and C–F···H interaction to form self-assembly structure.Due to the different number of F atoms on the fluorinated phenyls and pyridine group which directly connected to the TTF core, molecules 1–3 showed different self-assembly characteristics and formed different 2D morphologies of nanostructures.As a result, the F···F, C–N···H and C–F···H interactions could play a vital role in stabilizing such molecules on the surface, which helps us to predict and construct new structures of functional molecules.

    In summary, the self-organizing behavior of fluorobenzene-TTF derivative molecules 1–3 without long alkyl chains had been studied by STM method for the first time.At the HOPG/1-phenyloctan interface, molecule 1 containing fluorobenzene and pyridine group could form three kinds of assembly structure.With one difluorobenzene group and one pyridine group, molecule 2 shows single regular structures with few defects in the self-assembly area.Moreover, with two difluorobenzene groups connected to the TTF core, molecule 3 showed a more compact arrangement compared with molecule 2.These results showed that the packing of TTF cores could be effectively controlled by the different number of F atoms on the substitution on the TTF molecule.This new phenomenon may make us understand the self-assembly of TTF at interfaces more clearly.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported NSF of Zhejiang Province of China(Nos.Y20B020032, LY18B020016), the National Natural Science Foundation of China (Nos.21773041, 21805144 and 21972031) and the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDB36000000).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.08.030.

    欧美久久黑人一区二区| 丰满人妻一区二区三区视频av | 熟女电影av网| 黄色女人牲交| 一个人观看的视频www高清免费观看 | 一个人免费在线观看电影 | 窝窝影院91人妻| 一级黄色大片毛片| avwww免费| 90打野战视频偷拍视频| x7x7x7水蜜桃| 国产亚洲精品一区二区www| 日韩免费av在线播放| 国产91精品成人一区二区三区| 国产成人精品无人区| 成年免费大片在线观看| 欧美高清成人免费视频www| 12—13女人毛片做爰片一| 黄色女人牲交| 日本一二三区视频观看| 亚洲av成人精品一区久久| 曰老女人黄片| 久久亚洲精品不卡| 国产精品久久视频播放| 久久久久精品国产欧美久久久| 成人高潮视频无遮挡免费网站| 人人妻人人澡欧美一区二区| 少妇裸体淫交视频免费看高清 | 999久久久精品免费观看国产| 久久精品夜夜夜夜夜久久蜜豆 | 午夜日韩欧美国产| 国产av在哪里看| 久久久久久国产a免费观看| 午夜精品在线福利| 丰满人妻熟妇乱又伦精品不卡| 757午夜福利合集在线观看| 久久人人精品亚洲av| 91成年电影在线观看| 女警被强在线播放| 在线观看舔阴道视频| 久久精品人妻少妇| 久久中文字幕一级| 中出人妻视频一区二区| 亚洲午夜精品一区,二区,三区| 欧美av亚洲av综合av国产av| 亚洲一码二码三码区别大吗| svipshipincom国产片| 日韩精品中文字幕看吧| avwww免费| 日韩av在线大香蕉| 黄色丝袜av网址大全| 老熟妇乱子伦视频在线观看| 国产av一区二区精品久久| 免费人成视频x8x8入口观看| 欧美一级毛片孕妇| 国产精品98久久久久久宅男小说| 亚洲男人天堂网一区| 高清毛片免费观看视频网站| 亚洲欧美日韩高清在线视频| 大型黄色视频在线免费观看| 极品教师在线免费播放| 欧美成人免费av一区二区三区| 国产免费男女视频| 亚洲 欧美 日韩 在线 免费| 国内少妇人妻偷人精品xxx网站 | 在线观看免费视频日本深夜| www.自偷自拍.com| 在线视频色国产色| 亚洲美女视频黄频| 亚洲精品粉嫩美女一区| 日本a在线网址| 午夜福利视频1000在线观看| 亚洲人成伊人成综合网2020| 国产片内射在线| 人人妻人人看人人澡| 久久久久国产精品人妻aⅴ院| 亚洲 欧美 日韩 在线 免费| 丁香欧美五月| 久久精品综合一区二区三区| 国模一区二区三区四区视频 | 午夜久久久久精精品| 国产精品一区二区精品视频观看| 日本精品一区二区三区蜜桃| 国产日本99.免费观看| 亚洲av成人一区二区三| 啦啦啦免费观看视频1| 日韩av在线大香蕉| 国内精品久久久久精免费| 色哟哟哟哟哟哟| 久久精品影院6| 99久久国产精品久久久| 中文字幕高清在线视频| 18禁黄网站禁片免费观看直播| 亚洲欧美一区二区三区黑人| 伦理电影免费视频| 男人舔女人的私密视频| 国产黄色小视频在线观看| 中出人妻视频一区二区| 精品国产亚洲在线| a级毛片a级免费在线| 老司机午夜十八禁免费视频| 成人永久免费在线观看视频| 久久婷婷人人爽人人干人人爱| 18美女黄网站色大片免费观看| 级片在线观看| 亚洲av中文字字幕乱码综合| www.自偷自拍.com| 啪啪无遮挡十八禁网站| 亚洲欧美日韩高清在线视频| 天天躁狠狠躁夜夜躁狠狠躁| www.www免费av| 中文在线观看免费www的网站 | 久久久国产成人精品二区| 韩国av一区二区三区四区| 亚洲美女黄片视频| 在线观看午夜福利视频| 亚洲中文日韩欧美视频| avwww免费| 桃红色精品国产亚洲av| 一级毛片精品| 精品人妻1区二区| 男女做爰动态图高潮gif福利片| 最近最新中文字幕大全免费视频| 国产真实乱freesex| 日韩欧美在线二视频| 一区二区三区激情视频| 91成年电影在线观看| 又爽又黄无遮挡网站| 757午夜福利合集在线观看| 久久99热这里只有精品18| 毛片女人毛片| 麻豆一二三区av精品| 国产亚洲精品第一综合不卡| 男插女下体视频免费在线播放| 99精品在免费线老司机午夜| 女人高潮潮喷娇喘18禁视频| 日韩高清综合在线| 国内精品久久久久精免费| 欧美又色又爽又黄视频| 国产伦人伦偷精品视频| 人妻丰满熟妇av一区二区三区| 日韩欧美国产一区二区入口| 亚洲国产欧美一区二区综合| 麻豆一二三区av精品| 亚洲欧美日韩无卡精品| 最近最新免费中文字幕在线| 日日摸夜夜添夜夜添小说| 久久久久亚洲av毛片大全| 日本免费a在线| 午夜成年电影在线免费观看| 亚洲一区二区三区色噜噜| 视频区欧美日本亚洲| 精品久久蜜臀av无| 999精品在线视频| 天天添夜夜摸| 精品久久久久久成人av| 999久久久国产精品视频| 男女之事视频高清在线观看| 日韩欧美国产在线观看| 99国产极品粉嫩在线观看| 日日干狠狠操夜夜爽| 午夜久久久久精精品| 18禁观看日本| 母亲3免费完整高清在线观看| 两个人看的免费小视频| 波多野结衣高清无吗| cao死你这个sao货| 日韩欧美在线乱码| 18禁国产床啪视频网站| 最新在线观看一区二区三区| 国产精品1区2区在线观看.| 欧美黑人欧美精品刺激| 99久久精品国产亚洲精品| 欧美不卡视频在线免费观看 | 一本大道久久a久久精品| 国产精品av视频在线免费观看| 两性夫妻黄色片| 色综合婷婷激情| 国产一区二区在线观看日韩 | 99精品欧美一区二区三区四区| 亚洲成人久久爱视频| 欧美绝顶高潮抽搐喷水| 国产av不卡久久| 亚洲一区高清亚洲精品| 不卡一级毛片| 日本免费a在线| 制服人妻中文乱码| 欧美av亚洲av综合av国产av| 久9热在线精品视频| 色综合婷婷激情| 久久亚洲精品不卡| 亚洲成人久久爱视频| 日韩精品中文字幕看吧| 国产一区二区激情短视频| 亚洲一区高清亚洲精品| ponron亚洲| 男女床上黄色一级片免费看| 麻豆国产av国片精品| 精品久久久久久久人妻蜜臀av| 黑人操中国人逼视频| 国产亚洲av高清不卡| 亚洲乱码一区二区免费版| 久久久久久国产a免费观看| 桃红色精品国产亚洲av| 亚洲国产中文字幕在线视频| 国产免费男女视频| 亚洲精品在线观看二区| 日韩欧美三级三区| 嫁个100分男人电影在线观看| 黄色丝袜av网址大全| 欧美精品亚洲一区二区| 国产精品久久久人人做人人爽| 亚洲精华国产精华精| 精品午夜福利视频在线观看一区| 在线观看舔阴道视频| www.自偷自拍.com| 中文字幕熟女人妻在线| 欧洲精品卡2卡3卡4卡5卡区| 精品人妻1区二区| 又大又爽又粗| 国产精品乱码一区二三区的特点| 欧美一区二区国产精品久久精品 | 国产高清视频在线播放一区| a在线观看视频网站| 亚洲成av人片在线播放无| 黄色女人牲交| 老司机福利观看| 免费在线观看影片大全网站| 中国美女看黄片| 欧美乱码精品一区二区三区| АⅤ资源中文在线天堂| 久久久久精品国产欧美久久久| 婷婷精品国产亚洲av在线| 中国美女看黄片| 好看av亚洲va欧美ⅴa在| 日韩欧美三级三区| 国产精品永久免费网站| 亚洲国产精品sss在线观看| 午夜精品在线福利| 一边摸一边做爽爽视频免费| 两个人视频免费观看高清| 久久 成人 亚洲| 国产蜜桃级精品一区二区三区| 免费在线观看成人毛片| 国内少妇人妻偷人精品xxx网站 | 中文字幕久久专区| 亚洲成人国产一区在线观看| 欧美另类亚洲清纯唯美| 村上凉子中文字幕在线| 女警被强在线播放| 我的老师免费观看完整版| 亚洲va日本ⅴa欧美va伊人久久| 男女床上黄色一级片免费看| 午夜久久久久精精品| 在线视频色国产色| xxxwww97欧美| 每晚都被弄得嗷嗷叫到高潮| 成人手机av| 欧美精品啪啪一区二区三区| 天天添夜夜摸| 国产激情欧美一区二区| 五月玫瑰六月丁香| 精品久久久久久成人av| 巨乳人妻的诱惑在线观看| 十八禁人妻一区二区| 亚洲一区二区三区不卡视频| 女生性感内裤真人,穿戴方法视频| 色av中文字幕| 国产野战对白在线观看| 麻豆成人午夜福利视频| 婷婷亚洲欧美| 亚洲精品中文字幕一二三四区| 啦啦啦观看免费观看视频高清| av在线播放免费不卡| 国产真实乱freesex| 一级黄色大片毛片| 最近最新免费中文字幕在线| 成年版毛片免费区| 51午夜福利影视在线观看| 日日爽夜夜爽网站| 99精品欧美一区二区三区四区| 99热这里只有精品一区 | 国产免费av片在线观看野外av| 97超级碰碰碰精品色视频在线观看| 精品国产亚洲在线| 男人的好看免费观看在线视频 | 欧美在线一区亚洲| 亚洲自偷自拍图片 自拍| 国产黄a三级三级三级人| 亚洲男人的天堂狠狠| 中文字幕高清在线视频| 琪琪午夜伦伦电影理论片6080| 色尼玛亚洲综合影院| 色在线成人网| 亚洲欧美激情综合另类| 国产精品久久久久久亚洲av鲁大| 在线观看日韩欧美| 999精品在线视频| 国模一区二区三区四区视频 | 久久欧美精品欧美久久欧美| 国产精品美女特级片免费视频播放器 | 18禁黄网站禁片午夜丰满| 曰老女人黄片| 国产伦人伦偷精品视频| 好看av亚洲va欧美ⅴa在| 日韩三级视频一区二区三区| 精品国内亚洲2022精品成人| 亚洲熟妇中文字幕五十中出| 日本一本二区三区精品| 国产私拍福利视频在线观看| www.熟女人妻精品国产| 欧美在线黄色| 老司机午夜福利在线观看视频| 久久久久亚洲av毛片大全| av福利片在线| 999久久久国产精品视频| 亚洲色图 男人天堂 中文字幕| 一边摸一边做爽爽视频免费| 久久久久九九精品影院| 女同久久另类99精品国产91| 99riav亚洲国产免费| 婷婷精品国产亚洲av| 岛国在线免费视频观看| 国产亚洲精品一区二区www| 午夜福利免费观看在线| 国产亚洲精品综合一区在线观看 | 无限看片的www在线观看| 91成年电影在线观看| 国产精品电影一区二区三区| 国产精品九九99| 欧美久久黑人一区二区| 深夜精品福利| 欧美久久黑人一区二区| 中文字幕人妻丝袜一区二区| 亚洲av成人精品一区久久| 宅男免费午夜| 久久久久精品国产欧美久久久| 欧美黑人精品巨大| 日韩欧美在线二视频| 美女午夜性视频免费| 亚洲免费av在线视频| 人人妻,人人澡人人爽秒播| bbb黄色大片| 我的老师免费观看完整版| 亚洲成av人片免费观看| 亚洲熟女毛片儿| 日本 欧美在线| 亚洲色图av天堂| 99国产精品一区二区蜜桃av| 欧美 亚洲 国产 日韩一| 我要搜黄色片| 老司机深夜福利视频在线观看| 香蕉丝袜av| 久久久久久久久中文| 变态另类丝袜制服| 精品高清国产在线一区| 极品教师在线免费播放| 两性午夜刺激爽爽歪歪视频在线观看 | 观看免费一级毛片| 少妇被粗大的猛进出69影院| 国产aⅴ精品一区二区三区波| 婷婷六月久久综合丁香| 国内久久婷婷六月综合欲色啪| 国产精品久久久av美女十八| av超薄肉色丝袜交足视频| 国产精品永久免费网站| 在线a可以看的网站| av欧美777| 1024视频免费在线观看| 色尼玛亚洲综合影院| 久久久久久免费高清国产稀缺| 亚洲国产欧美人成| 国产av一区在线观看免费| 婷婷精品国产亚洲av| 老汉色av国产亚洲站长工具| 两人在一起打扑克的视频| 精品不卡国产一区二区三区| 十八禁人妻一区二区| 亚洲成人免费电影在线观看| 后天国语完整版免费观看| 亚洲电影在线观看av| 亚洲成av人片免费观看| 日韩免费av在线播放| 女警被强在线播放| 男女午夜视频在线观看| 精品日产1卡2卡| 搡老岳熟女国产| 欧美成人免费av一区二区三区| 国产一区二区在线观看日韩 | 欧美日韩亚洲综合一区二区三区_| 欧美日韩国产亚洲二区| 99国产精品一区二区蜜桃av| 在线a可以看的网站| 十八禁人妻一区二区| 欧美三级亚洲精品| 免费在线观看黄色视频的| 天天躁夜夜躁狠狠躁躁| 国产亚洲欧美98| 国产野战对白在线观看| 午夜福利成人在线免费观看| 免费av毛片视频| xxx96com| 变态另类丝袜制服| 国产亚洲精品av在线| 黄色视频,在线免费观看| 亚洲国产日韩欧美精品在线观看 | 哪里可以看免费的av片| 国产1区2区3区精品| 琪琪午夜伦伦电影理论片6080| 午夜日韩欧美国产| 亚洲av第一区精品v没综合| 日韩精品中文字幕看吧| 十八禁人妻一区二区| 国产99白浆流出| av福利片在线| 久久人人精品亚洲av| 99久久综合精品五月天人人| 久久精品国产亚洲av香蕉五月| 国产av一区在线观看免费| 日韩欧美三级三区| 国产激情偷乱视频一区二区| 91av网站免费观看| 曰老女人黄片| 国产亚洲av嫩草精品影院| 身体一侧抽搐| 97超级碰碰碰精品色视频在线观看| 日韩成人在线观看一区二区三区| 亚洲在线自拍视频| 美女高潮喷水抽搐中文字幕| 国产av麻豆久久久久久久| 久久久精品欧美日韩精品| 两性午夜刺激爽爽歪歪视频在线观看 | 窝窝影院91人妻| 国产精品爽爽va在线观看网站| 亚洲专区字幕在线| 久久精品91无色码中文字幕| 999久久久精品免费观看国产| 可以在线观看的亚洲视频| 久久欧美精品欧美久久欧美| 婷婷丁香在线五月| 亚洲成人国产一区在线观看| 亚洲av中文字字幕乱码综合| 国产精品日韩av在线免费观看| 日韩欧美在线乱码| 久久久久久久精品吃奶| 免费看十八禁软件| 三级男女做爰猛烈吃奶摸视频| 日韩高清综合在线| 天天躁夜夜躁狠狠躁躁| 狂野欧美激情性xxxx| 黄色女人牲交| 窝窝影院91人妻| 欧美日韩亚洲综合一区二区三区_| 日韩精品中文字幕看吧| 日韩高清综合在线| 久久精品人妻少妇| 成人三级做爰电影| 亚洲成人国产一区在线观看| 男男h啪啪无遮挡| 18禁美女被吸乳视频| 三级男女做爰猛烈吃奶摸视频| 精品欧美国产一区二区三| 99国产极品粉嫩在线观看| 婷婷丁香在线五月| 宅男免费午夜| 日韩欧美在线乱码| 夜夜爽天天搞| 少妇粗大呻吟视频| 可以免费在线观看a视频的电影网站| av在线播放免费不卡| 久久热在线av| 久久久精品欧美日韩精品| 国产精品国产高清国产av| 免费看十八禁软件| 亚洲 国产 在线| 国产成人欧美在线观看| 日韩欧美一区二区三区在线观看| 国产av麻豆久久久久久久| 免费观看人在逋| 一级黄色大片毛片| 黄色片一级片一级黄色片| 日韩欧美精品v在线| www.熟女人妻精品国产| 欧美一区二区国产精品久久精品 | 九九热线精品视视频播放| 少妇熟女aⅴ在线视频| 在线观看午夜福利视频| 97碰自拍视频| 午夜成年电影在线免费观看| 19禁男女啪啪无遮挡网站| 老司机深夜福利视频在线观看| 免费看十八禁软件| 国产三级中文精品| 国产久久久一区二区三区| 亚洲熟妇熟女久久| 天天一区二区日本电影三级| 两性夫妻黄色片| 男女午夜视频在线观看| 天堂影院成人在线观看| 视频区欧美日本亚洲| 亚洲一区中文字幕在线| 欧美成狂野欧美在线观看| 2021天堂中文幕一二区在线观| 亚洲第一电影网av| 久久久久久大精品| 国产精品1区2区在线观看.| 成人av在线播放网站| 搡老岳熟女国产| 国产精品一区二区免费欧美| 精品国产乱码久久久久久男人| 国产亚洲av高清不卡| 非洲黑人性xxxx精品又粗又长| av欧美777| 一级毛片精品| 亚洲黑人精品在线| 999久久久国产精品视频| 人妻久久中文字幕网| 岛国视频午夜一区免费看| 女人爽到高潮嗷嗷叫在线视频| 国产精品 国内视频| 999久久久国产精品视频| 欧美极品一区二区三区四区| 日韩三级视频一区二区三区| 欧美激情久久久久久爽电影| 成人av在线播放网站| 国产真人三级小视频在线观看| 欧美一级a爱片免费观看看 | 夜夜看夜夜爽夜夜摸| 热99re8久久精品国产| 草草在线视频免费看| 一级毛片高清免费大全| 中亚洲国语对白在线视频| 久久久久久九九精品二区国产 | 亚洲18禁久久av| 特级一级黄色大片| 后天国语完整版免费观看| 搡老岳熟女国产| 夜夜躁狠狠躁天天躁| 亚洲av第一区精品v没综合| 身体一侧抽搐| 午夜福利成人在线免费观看| 麻豆国产97在线/欧美 | 免费观看人在逋| 动漫黄色视频在线观看| 国产69精品久久久久777片 | 两性夫妻黄色片| 少妇人妻一区二区三区视频| 啦啦啦观看免费观看视频高清| 久久精品国产亚洲av高清一级| 三级国产精品欧美在线观看 | 欧美 亚洲 国产 日韩一| 久久午夜亚洲精品久久| 美女午夜性视频免费| 可以在线观看毛片的网站| av视频在线观看入口| 欧美一区二区精品小视频在线| 国产激情久久老熟女| 欧美性猛交黑人性爽| 麻豆成人av在线观看| 国产亚洲欧美98| 深夜精品福利| 久久久久国产精品人妻aⅴ院| 在线观看免费午夜福利视频| 国产av一区二区精品久久| 黑人操中国人逼视频| 男插女下体视频免费在线播放| 少妇人妻一区二区三区视频| 脱女人内裤的视频| 亚洲av熟女| 999久久久精品免费观看国产| 欧美日韩一级在线毛片| 国产av在哪里看| 婷婷丁香在线五月| 五月伊人婷婷丁香| 欧美一级毛片孕妇| 日韩 欧美 亚洲 中文字幕| 高潮久久久久久久久久久不卡| 国产成人精品久久二区二区91| 一区二区三区高清视频在线| 日本在线视频免费播放| 俄罗斯特黄特色一大片| 色哟哟哟哟哟哟| 美女扒开内裤让男人捅视频| 国产精品爽爽va在线观看网站| 亚洲中文字幕日韩| 欧美中文日本在线观看视频| www.999成人在线观看| 成年版毛片免费区| 国产视频内射| 长腿黑丝高跟| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲欧美98| 国产av不卡久久| 国产精品免费视频内射| 久久久久久亚洲精品国产蜜桃av| 老汉色av国产亚洲站长工具| 国产精品1区2区在线观看.| 国产亚洲欧美98| 亚洲熟妇熟女久久| 麻豆成人av在线观看| 老司机午夜福利在线观看视频| 女生性感内裤真人,穿戴方法视频| 麻豆成人av在线观看| 免费看日本二区| 国产精品日韩av在线免费观看| 国产亚洲精品久久久久久毛片| 91麻豆av在线| 国产精品爽爽va在线观看网站| 亚洲精品在线美女| 精品日产1卡2卡| 中文字幕熟女人妻在线| 亚洲精品中文字幕在线视频| 日本三级黄在线观看| 精品国产乱码久久久久久男人| ponron亚洲|