• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controlled synthesis of core-shell Fe2O3@N-C with ultralong cycle life for lithium-ion batteries

    2022-06-18 03:00:56HuiHungLingjunKongWeiShungWeiXuJieHeXinHeBu
    Chinese Chemical Letters 2022年2期

    Hui Hung, Lingjun Kong,*, Wei Shung, Wei Xu, Jie He, Xin-He Bu,b,*

    a School of Materials Science and Engineering, TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300350, China

    b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China

    ABSTRACT Development of low-cost electrode materials with long cycle life and high volumetric capacity is important for large-scale applications of lithium-ion batteries (LIBs).Here, an electrode made from Fe2O3 encapsulated with N-doped carbon (Fe2O3@N-C) via ZIF-8 coating and carbonization process is reported.A cavity was generated between the Fe2O3 and N-C material during the carbonization process that is conducive to alleviating the volume expansion of Fe2O3.As a result, the Fe2O3@N-C composite exhibits a high specific capacity (1064 mAh/g at 0.1 A/g) and cycle stability (803.6 mAh/g at 1.0 A/g after 1100 cycles) when used as the LIB anode.In addition, the influence of carbonization under air on the LIB performance was investigated by controllably changing the crystal phase of Fe2O3 and the thickness of the carbon layer.This work provides a new method for the design and fabrication of yolk-shell composite electrodes for LIBs and other applications.

    Keywords:Lithium-ion batteries Anode Core-shell structure Fe2O3 N-doped carbon

    Rechargeable lithium-ion batteries (LIBs) have been widely used in electric vehicles, portable electronics, and stationary energy storage due to their outstanding advantages such as long lifespan,high energy density and environmental friendliness [1-8].Generally, graphite has been used for the anodes in commercial LIBs because of its structural stability during the cycling process [9].However, the theoretical specific capacity of graphite is only 372 mAh/g, making it difficult for graphite anodes to meet the increasing demands for energy storage in various electronic devices [10].Therefore, the development of LIB anodes with a high specific capacity, and excellent cycling stability is urgently necessary [11-13].

    Transition metal oxides have been regarded as promising anode materials due to their relatively low environmental impact, low cost, enhanced safety and high theoretical capacity.In particular,Fe2O3displays many advantages for use in LIB anodes including a high theoretical capacity (1060 mAh/g), low cost, and abundant reserves.However, its low conductivity, volume change,and severe pulverization lead to the loss of battery performance during long-term cycling process [14].Recently, it was found that the electrochemical performance of the Fe2O3anode can be greatly improved when it is coated with a carbon material to form the core-shell structure.For example, Zhenget al.prepared a core-shell Fe2O3@carbon materialviasol-gel coating followed by the carbonization process that demonstrated excellent LIB performance (1142 mAh/g at 0.2 A/g after 100 cycles) [15].Gaoet al.wrapped Fe2O3with carbon to effectively alleviate the volume changes during long-term electrochemical reactions.When used as the anode in LIBs, the wrapped Fe2O3exhibited a stable capacity of 711.2 mAh/g at a current density of 0.5 A/g for 400 cycles [16].While these strategies facilitate electron transport and alleviate the volume expansion of Fe2O3, the obtained Fe2O3-based anodes still exhibited capacity fading during long-term cycling.Moreover,the excessive internal space between the carbon and Fe2O3greatly decreased the packing density of active materials, giving rise to a low volumetric energy density of the anode [17].Thus, it is important to fabricate a core-shell Fe2O3@carbon material with an appropriate cavity size and suitable thickness of the carbon layer.Recently, metal-organic frameworks (MOFs) have been considered to be good precursors for the fabrication of the structure-tailored N-doped carbon (N-C) materials [18].In particular, due to its facile synthesis, low cost and tunable size, ZIF-8 has been used as a precursor to prepare a wide range of N-C materials [19,20].

    Herein, we developed a facile method for the preparation of the core-shell Fe2O3@N-C anode.First, we fabricate ZIF-8 on the surface of cube-like Fe2O3.Then, the precursor was carbonized first at 700 °C for 2 h under Ar atmosphere and then at 350 °C for 2 h under air.Benefitting from a moderate-size cavity between the N-C layer and Fe2O3, the core-shell Fe2O3@N-C showed long-term cycle life (803.6 mAh/g at 1.0 A/g after 1100 cycles).

    Scheme 1.Synthetic process of Fe2O3@N-C.

    Fig.1.(A, B) FESEM images of Fe2O3 and Fe2O3@ZIF-8-0.08.(C) SEM image of Fe2O3@ZIF-8-0.08.(D) FESEM images of Fe2O3@N-C.(E, F) TEM images of Fe2O3@NC.(G-K) TEM-EDS of Fe2O3@N-C.

    The fabrication of the Fe2O3@N-C is illustrated in Scheme 1.Briefly, cube-like Fe2O3particles were first prepared according to the method described in a previous report [21].Then, the Fe2O3nanocubes were directly coated with ZIF-8 using an in-situ growth method, and the obtained product was named Fe2O3@ZIF-8-0.08.At last, Fe2O3@ZIF-8-0.08 was annealed under Ar atmosphere at 700 °C for 2 h and then annealed under air at 350 °C for 2 h.The as-synthesized material was named Fe2O3@N-C.The experimental details are provided in the experimental section.

    Fe2O3was characterized by field emission scanning electron microscopy (FESEM) and powder X-ray diffraction (PXRD).As shown in Fig.1A, Fe2O3exhibits a uniform cube-like structure.PXRD results confirm that the as-prepared Fe2O3is hematite (α-Fe2O3) (Fig.S1A in Supporting information).Compared to the original Fe2O3, the surface of Fe2O3@ZIF-8-0.08 was rough, which can be attributed to the formation of ZIF-8 on the surface of the Fe2O3nanocubes (Figs.1B and C).In addition, the PXRD patterns of Fe2O3@ZIF-8-0.08 match the combination of the patterns ofα-Fe2O3and ZIF-8 quite well (Fig.S1B in Supporting information).The core-shell structure of Fe2O3@ZIF-8-0.08 was further confirmed by transmission electron microscopy (TEM).It is observed from the obtained SEM image (Fig.S2 in Supporting information) that the ZIF-8 nanoparticles with an average size of 8 nm are densely coated on the Fe2O3surface and form a ZIF-8 shell.Moreover, transmission electron microscope-energy dispersive Xray spectroscopy (TEM-EDX) reveals that Zn and N elements are uniformly distributed in the shell of Fe2O3@ZIF-8-0.08, while the Fe element is distributed in the core (Fig.S3 in Supporting information).Furthermore, we also measured the porosity and surface area of Fe2O3and Fe2O3@ZIF-8-0.08.It is found that the Fe2O3displays a typical type IV isotherm with a surface area of 29.96 m2/g and a pore size distribution centered at 1.48 nm.The Fe2O3@ZIF-8-0.08 displays a typical type I isotherm with a surface area of 432.24 m2/g and a pore size distribution centered at 1.1 nm (Figs.S4A-D in Supporting information).These results indicate that the ZIF-8 shell had been successfully coated on the surface of Fe2O3.

    Fig.2.(A) XRD pattern of Fe2O3@N-C.(B) Raman spectrum of Fe2O3@N-C.(C) The survey, (D) C 1s, (E) Fe 2p and (F) Zn 2p spectra of Fe2O3@N-C.

    The morphology of the Fe2O3@N-C was first investigated by FESEM (Fig.1D).It is observed that the nanoparticles are perfectly maintained and uniformly distributed.After the annealing treatment, the original morphology of the ZIF-8 shell was destroyed,and porous carbon layers were formed.TEM images show that a thin carbon shell was uniformly coated on the inner Fe2O3particles (Fig.1E).It is important to note that Fe2O3exhibits a spherelike structure instead of a cube-like structure, with a cavity created between the carbon layer and the Fe2O3particles (Fig.1E).To elucidate the origin of the structural change, we compared the average diameters of the Fe2O3particles before and after the 700 °C treatment.As shown in Fig.S5 (Supporting information), the sizes of the initial Fe2O3particles are mainly distributed around 556 nm,which is larger than that of Fe2O3-700 (526 nm).The average diameter of the Fe2O3particles is 528 nm, also larger than that of the Fe2O3-700 (500 nm).This decrease in the particle size may be attributed to the condensation of the loose microstructure of Fe2O3during the pyrolysis process.Furthermore, the EDS mappings results (Figs.1F-K) show the uniform distribution of Fe and O elements inside, and of the C, N and Zn elements outside, confirming that the sample after the annealing consists of the N-C shell and the Fe2O3core.

    Fig.3.(A) CV curves Fe2O3@N-C in the voltage range of 0.01-3.00 V at a scan rate of 0.1 mV/s.(B) Different charge-discharge profiles of Fe2O3@N-C at 1.0 A/g.(C) Cycling performance of Fe2O3@N-C and Fe2O3-700 at 1.0 A/g.(D) Rate performance of Fe2O3@N-C at different current densities.(E) Nyquist plots of Fe2O3-700, Fe2O3@NC-0.08, Fe2O3@N-C and Fe2O3@N-C after 300 cycles.

    XRD measurements were carried out to study the structure and composition of the Fe2O3@N-C.As shown in Fig.2A, the hematite phase appears after the pyrolysis process.Carbon diffraction peaks were not found in the XRD pattern, indicating the presence of an amorphous carbon structure [22].In addition, the Raman spectrum of the Fe2O3@N-C (Fig.2B) shows a pronounced wide peak at approximately 1500 cm-1that corresponds to amorphous carbon, further confirming the amorphous structure of the carbon shell [23].The surface chemical composition of the Fe2O3@N-C was studied by X-ray photoelectron spectroscopy (XPS).As shown in Fig.2C, typical Fe, Zn, C, O and N signals were detected.In the C 1s high-resolution spectrum (Fig.2D), four distinct peaks located at 284.5, 284.8, 285.5 and 288.5 eV correspond to C=C, C-C, C-O and C-N, respectively [24,25].The Fe 2p high-resolution XPS spectrum(Fig.2E) is deconvoluted into five peaks, with the peaks at 712.1 eV and 725.1 eV assigned to Fe 2p3/2and Fe 2p1/2of Fe3+, the peaks at 710.3 eV and 723.4 eV assigned to Fe 2p3/2and Fe 2p1/2of Fe2+,and the satellite peaks, located at 719.0 eV and 732.7 eV, respectively [14,26,27].The XPS spectrum of Zn 2p is fitted by two peaks(Fig.2F), in which the Zn 2p3/2signal centered at 1021.5 eV is assigned to the Zn–O bond and the peak at 1044.6 eV assigned to Zn 2p1/2[28].We also fitted the O 1s spectrum, as shown in Fig.S6A(Supporting information), and the peaks at approximately 530.0 eV are assigned to O2-, while the peaks at 531.0 and 532.2 eV are attributed to C-O and Zn–O, respectively [29].In the N 1s highresolution spectrum (Fig.S6B in Supporting information), the three distinct peaks located at 398.4, 399.8 and 401.2 eV correspond to pyridinic N, pyridonic N and graphitic N, respectively [25].According to the above analysis, an Fe2O3core encapsulated with an Ndoped amorphous carbon hollow shell structure was successfully prepared.

    The electrochemical properties of the Fe2O3@N-C were first studied by cyclic voltammetry (CV) in the voltage range of 0.01-3.00 V (vs.Li+/Li) at a scan rate of 0.1 mV/s (Fig.3A).The sharp peak observed in the first sweep cycle at 0.61 V can be attributed to the formation of a solid electrolyte interphase (SEI) film and the reduction of Fe3+to Fe0, and the anodic peak at 1.65 V is related to the oxidation of Fe0to Fe3+[30-32].In the subsequent 2ndand 3rdcycles, the cathodic and anodic peaks shift to 0.94 V and 1.71 V, respectively, implying the improved electrical contact between the electrolyte and electrodes and irreversible phase transformation [33,34].The well-overlapped CV curves in the 2ndand 3rdcycles indicate good electrochemical reversibility.The chargedischarge profiles of the Fe2O3@N-C electrode at different cycles under a current density of 1.0 A/g are shown in Fig.3B.In the first cycle, the Fe2O3@N-C shows a voltage plateau at 0.7 V that is related to the reduction of Fe2O3and the formation of the SEI layer.Interestingly, the subsequent 2nd, 3rdand 100thcharge-discharge profiles almost have a similar voltage plateau at approximately 1.0 V that originates from either textural modifications or the drastic lithium-driven structural change [35].Then, the voltage plateau of 300thdrops to about 0.85 V mainly attributing to the alteration in the polarization arising from the SEI film.The Fe2O3@N-C electrode delivers an initial discharge-charge capacity of 1371.6/806.3 mAh/g with an initial coulombic efficiency (CE) of 58.4%.Then, the discharge capacity gradually increases to 1000 mAh/g after 300 cycles with high CEs of approximately 99.5%, demonstrating its long-term cycling reversibility.This phenomenon can be related to the continuous activation of Fe2O3, along with long-term cycling stability [36,37].Furthermore, the long-term cycling stability tests were also carried out at a current density of 1.0 A/g in order to evaluate the performance of the electrodes in LIBs.As shown in Fig.3C, the Fe2O3@N-C anode retains a reversible capacity of 803.6 mAh/g after 1100 cycles.Comparison to the reports shows that the cycling performance of Fe2O3@N-C is better than those of some reported ferric oxide-based anode materials (Table S1 in Supporting information).The pure Fe2O3anode shows a significant capacity decay(only 274.5 mAh/g after 300 cycles), further confirming the importance of the carbon shell and cavity for cycle stability.The rate capability of the Fe2O3@N-C electrode was investigated in order to examine the suitability of this electrode for practical applications.As shown in Fig.3D, the Fe2O3@N-C electrode exhibits the average capacities of 951.7, 838.3, 768.9, 708.7, 627.3 and 324.9 mAh/g at the current densities of 0.1, 0.2, 0.5, 1.0, 2.0 and 5.0 A/g, respectively.Subsequently, a higher capacity of 1035.6 mAh/g can be obtained when the current density returns to 0.1 A/g, demonstrating its high rate capability (Fig.3D).By contrast, the Fe2O3-700 electrode exhibits lower capability than that of the Fe2O3@N-C electrode, which exhibits the average specific capacities of 825.1, 717.4,638.4, 561.2, 488.6 and 342.3 mAh/g at the current densities of 0.1,0.2, 0.5, 1.0, 2.0 and 5.0 A/g, respectively, and returns to the capacity of 840 mAh/g at 0.1 A/g.

    To further understand the improved performance, electrochemical impedance spectroscopy (EIS) was performed for the Fe2O3-700, Fe2O3-@N-C-0.08, Fe2O3-@N-C, and Fe2O3-@N-C samples after 300 cycles with the obtained EIS results shown in Fig.3E and the equivalent circuit presented in the inset.An examination of Fig.3E shows that all EIS plots display a semicircle in the range from high to medium frequency and a line inclined at approximately 45° at low frequencies.Reis the electronic resistance of active materials and the basic parameter for the characterization of the transport resistance in materials.The semicircle is due to two contributions, namely the charge transfer resistance (Rct) of the electrolyteelectrode interface and the solid electrolyte interface resistance(RSEI).The low-frequency line at 45° line corresponds to the Warburg impedance (ZW) that is related to the Li+diffusion within the cathode materials andReis the ohmic resistance [38,39].The values of these parameters are presented in Table S2 (Supporting information).It is observed from an examination of the data presented in Table S2 that theRctfor Fe2O3-700 is 105.9Ωand that for Fe2O3-@N-C is 83.4Ω, suggesting that the carbon coating can accelerate charge transfer during the test.TheRctof the Fe2O3@NC electrode after 300 cycles (36.9Ω) is much smaller than that prior to cycling, which ensured the superior performance of this electrode during long-term cycling.TheRSEIfor Fe2O3@N-C (16.60Ω) is much smaller than that after 300 cycles (70.28Ω), which is attributed to the formation of a thicker SEI film.

    Fig.4.(A) CV curves Fe2O3@N-C in the voltage range of 0.01-3.00 V at the scan rates of 0.1, 0.2, 0.4 and 0.8 mV/s.(B) The relationship between log (peak current,mA) and log (sweep rate, mV/s) and in the cathodic and anodic processes.(C) CV curve that separates into a capacitive current (red region) and a diffusion current(green region) at a scan rate of 0.8 mV/s.(D) Relationship between diffusion and capacity at different scan rates.

    To understand the chemical reaction kinetics of Fe2O3@N-C during the charge-discharge process, CV tests at different scan rates were conducted (Fig.4A).Based on the power-low relationship(eq.1), the mathematical relationship between the scan rates (v)and the peak current (i) is

    where the parameterbcan be calculated from the linear plot slop of log(v) versus log(|i|) (eq.2) [40,41].Generally, if thebvalue is 0.5, the electrode exhibits a typical diffusion-controlled process.Theb-value is 1, indicating an ideal surface capacitive-controlled kinetics process [41].In our case, thebvalues are 0.757 and 0.821 at cathodic and anodic peaks, respectively, suggesting a capacitivecontrolled mixed diffusion behavior (Fig.4B).Then, the current is divided into the capacitive controlled and diffusion controlled contributions according to the following equation:

    wherek1vandk2v1/2represent the capacitive and diffusion contributions, respectively.We can obtain a series ofk1(the linear plot slope) andk2(intercept) at certain scan rates.Fig.4C shows the obtained CV curves at 0.8 mV/s where the red represents the capacitive-controlled region and the green represents the diffusion-controlled region.The capacitive-controlled contribution is 87.4% of the overall charge stored at the 0.8 mV/s.The capacity contribution at the other four scan rates was also calculated.As shown in Fig.4D, the proportions of the capacity contribution are 65.8%, 70.9% and 79.7% at 0.1, 0.2, 0.4 mV/s, indicating a mainly capacitive-controlled process.

    To understand the effects of annealing under air and Zn element on the LIB performance, Fe2O3@N-C-0.04, Fe2O3@N-C-0.06, Fe2O3@N-C-0.08, Fe2O3@N-C-0.12 and Fe2O3@N-C-0.24 were prepared by changing the amount of Zn(NO3)2.6H2O and 2-methylimidazole, followed by annealing only under Ar at 700°C.Fig.S7A (Supporting information) shows the cycling stability of Fe2O3@N-C-0.04, Fe2O3@N-C-0.06, Fe2O3@N-C-0.08, Fe2O3@N-C-0.12 and Fe2O3@N-C-0.24 at a current density of 1.0 A/g.After 200 cycles, the specific capacity values of Fe2O3@N-C-0.04 and Fe2O3@N-C-0.06 were 464.2 mAh/g and 329.7 mAh/g, respectively.Similar to Fe2O3-700, these electrodes show a significant capacity decay.Fe2O3@N-C-0.08 exhibits a reversible capacity of 583.6 mAh/g at the first cycle and 705.3 mAh/g after 200 cycles without obvious capacity decay.The capacity curve of Fe2O3@N-C-0.12 is similar to Fe2O3@N-C-0.08, but the capacity is lower than Fe2O3@N-C-0.08.It is interesting to note that the specific capacity of Fe2O3@N-C-0.24 is only 208.6 mAh/g at the first cycle and 213.6 mAh/g after 185 cycles.Thus, it is reasonable to conclude that the significant capacity decay of Fe2O3@N-C-0.04 and Fe2O3@N-C-0.06 is mainly due to the insufficient carbon layers derived from ZIF-8.By contrast, excessive carbon layers of Fe2O3@N-C-0.24 hinder Li-ion diffusion, resulting in a lower specific capacity [42].In addition to changing the amount of the precursor, annealing under air is another effective approach for controlling the thickness of the carbon layer.Therefore, we anneal Fe2O3@N-C-0.08 at 350 °C in the air to further reduce the thickness of the coated carbon layer.Fe2O3@N-C exhibits a reversible capacity of 942.8 mAh/g after 200 cycles, which is 273.8 mAh/g higher than that of Fe2O3-@N-C-0.08.It is important to note that the capacity of Fe2O3@N-C-0.24 only is 208.6 mAh/g at 1.0 A/g which is quite similar to that of the Ndoped ZIF-8-derived carbon reported by Taiet al.[43].However,after Fe2O3@N-C was treated in the air for 2 h, ZnO was formed.To investigate the effect of ZnO on the performance, we synthesized N-doped carbon by annealing ZIF-8 first under Ar atmosphere and then in air.Impressively, the specific capacity of N-C was 383.3 mAh/g after 200 cycles (Fig.S7B in Supporting information) which is much higher than that of Fe2O3@N-C-0.24.

    In summary, the Fe2O3@N-C electrode was successfully fabricated by coating ZIF-8 on the surface of cube-like Fe2O3followed by the carbonization at 700 °C for 2 h under Ar and then 350°C for 2 h under air.A void was created between the Fe2O3and N-C carbon shell during the carbonization process that alleviates the volume expansion of Fe2O3during Li intercalation.As a result,the as-prepared Fe2O3@N-C anode possesses a high specific capacity (1064 mAh/g at 0.1 A/g), and stable cycle life (803.6 mAh/g at 1.0 A/g after 1100 cycles).Moreover, we found that carbonization under air enables the creation of new active species and reduces the thickness of the carbon shell, promoting LIB performance.This work provides a new method for the design and fabrication of core-shell electrodes for a variety of applications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    The authors are grateful to the Program of Introducing Talents of Discipline to Universities (No.B18030), the National Natural Science Foundation of China (Nos.91856124 and 21531005), the Natural Science Foundation of Tianjin City (No.19JCZDJC37200),the National Postdoctoral Program for Innovative Talents (No.BX20190157) and the Postdoctoral Research Foundation of China(No.2019M660979).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.08.013.

    欧美性猛交黑人性爽| 国产视频首页在线观看| 两个人视频免费观看高清| 国产亚洲精品久久久com| 久久人人爽人人片av| 99热这里只有精品一区| 一个人看视频在线观看www免费| 日本免费一区二区三区高清不卡| 97超视频在线观看视频| 色播亚洲综合网| 夜夜夜夜夜久久久久| 国产成人a区在线观看| 三级经典国产精品| 国产精品av视频在线免费观看| 国产精品女同一区二区软件| 久久精品久久久久久久性| 日韩视频在线欧美| 亚洲欧美精品自产自拍| 五月玫瑰六月丁香| 久久久色成人| 国产精品麻豆人妻色哟哟久久 | 啦啦啦啦在线视频资源| 麻豆一二三区av精品| 欧美三级亚洲精品| 免费av毛片视频| 欧美激情在线99| 桃色一区二区三区在线观看| kizo精华| 哪个播放器可以免费观看大片| 日韩强制内射视频| 桃色一区二区三区在线观看| 国产成人freesex在线| 波多野结衣高清无吗| 国产亚洲91精品色在线| 国产麻豆成人av免费视频| 国产日韩欧美在线精品| 国产精品一区二区性色av| 高清日韩中文字幕在线| 亚洲av免费高清在线观看| av黄色大香蕉| 亚洲国产高清在线一区二区三| www.色视频.com| 欧美在线一区亚洲| 亚洲人成网站在线播| 搞女人的毛片| 男女下面进入的视频免费午夜| 天美传媒精品一区二区| 人妻久久中文字幕网| 国产伦一二天堂av在线观看| 亚洲精品日韩av片在线观看| 免费看美女性在线毛片视频| 蜜桃亚洲精品一区二区三区| 国产精品.久久久| 美女大奶头视频| 美女xxoo啪啪120秒动态图| 久久精品夜色国产| 欧美高清成人免费视频www| 日韩人妻高清精品专区| 欧美性猛交╳xxx乱大交人| 日韩 亚洲 欧美在线| 啦啦啦观看免费观看视频高清| 日本黄色视频三级网站网址| 哪里可以看免费的av片| 美女 人体艺术 gogo| 美女被艹到高潮喷水动态| 我的老师免费观看完整版| www.色视频.com| 国产一区二区三区在线臀色熟女| 中文精品一卡2卡3卡4更新| 人人妻人人看人人澡| 免费看光身美女| 在线观看免费视频日本深夜| 欧美人与善性xxx| 国产精品国产高清国产av| av福利片在线观看| 国产免费一级a男人的天堂| 人人妻人人澡欧美一区二区| 久久99热这里只有精品18| 有码 亚洲区| 亚洲七黄色美女视频| 国产亚洲精品久久久com| 欧美丝袜亚洲另类| 国内久久婷婷六月综合欲色啪| 久久这里有精品视频免费| 亚洲最大成人中文| 我的老师免费观看完整版| 婷婷色综合大香蕉| АⅤ资源中文在线天堂| 亚洲国产色片| 91狼人影院| 久久人人精品亚洲av| 久久精品综合一区二区三区| 国产单亲对白刺激| 欧美激情久久久久久爽电影| av免费在线看不卡| 国产精品美女特级片免费视频播放器| 国产伦理片在线播放av一区 | 免费观看人在逋| 极品教师在线视频| 久久久久久久久久久免费av| 97超视频在线观看视频| 秋霞在线观看毛片| 色5月婷婷丁香| 黄片无遮挡物在线观看| 狠狠狠狠99中文字幕| 午夜福利成人在线免费观看| 日本成人三级电影网站| 有码 亚洲区| 99热全是精品| 婷婷亚洲欧美| 亚洲内射少妇av| 精品无人区乱码1区二区| 国产精品不卡视频一区二区| 2021天堂中文幕一二区在线观| 欧美性猛交黑人性爽| 日本黄色片子视频| 亚洲人成网站在线播放欧美日韩| 九色成人免费人妻av| 亚洲成人久久爱视频| 国产av麻豆久久久久久久| 国产爱豆传媒在线观看| 狂野欧美激情性xxxx在线观看| 青春草国产在线视频 | 久久人人爽人人爽人人片va| 日日干狠狠操夜夜爽| 成年免费大片在线观看| 女同久久另类99精品国产91| 中文精品一卡2卡3卡4更新| 狂野欧美白嫩少妇大欣赏| 国产精品不卡视频一区二区| eeuss影院久久| av卡一久久| 久久久久久久亚洲中文字幕| 男的添女的下面高潮视频| 国产精品三级大全| 国产精品蜜桃在线观看 | 青春草亚洲视频在线观看| 欧美色欧美亚洲另类二区| 免费看光身美女| 色综合亚洲欧美另类图片| 性色avwww在线观看| 亚洲人成网站高清观看| 少妇人妻一区二区三区视频| 亚洲高清免费不卡视频| 成人午夜精彩视频在线观看| 婷婷色综合大香蕉| 能在线免费观看的黄片| 国语自产精品视频在线第100页| 国产精品一及| 人妻少妇偷人精品九色| 熟妇人妻久久中文字幕3abv| 国产伦精品一区二区三区视频9| 欧美成人a在线观看| 观看免费一级毛片| 日产精品乱码卡一卡2卡三| 免费观看人在逋| 国产精品永久免费网站| 久久热精品热| 少妇猛男粗大的猛烈进出视频 | 青春草亚洲视频在线观看| 亚洲av电影不卡..在线观看| 日韩av不卡免费在线播放| 18禁在线播放成人免费| 真实男女啪啪啪动态图| 中文字幕av成人在线电影| 亚洲av第一区精品v没综合| 美女 人体艺术 gogo| 久久久久久久亚洲中文字幕| 日韩人妻高清精品专区| 国模一区二区三区四区视频| 中国美白少妇内射xxxbb| av福利片在线观看| 在线观看一区二区三区| 精品一区二区三区视频在线| 亚洲第一电影网av| 日本黄大片高清| 久久久久久久午夜电影| 极品教师在线视频| 成人毛片a级毛片在线播放| 黄色视频,在线免费观看| 成人亚洲精品av一区二区| 人体艺术视频欧美日本| 亚洲精品粉嫩美女一区| 成人二区视频| 欧美日韩一区二区视频在线观看视频在线 | 九色成人免费人妻av| 欧美丝袜亚洲另类| 插逼视频在线观看| 免费看美女性在线毛片视频| 国产高清三级在线| 只有这里有精品99| 精品欧美国产一区二区三| 看黄色毛片网站| 久久精品夜夜夜夜夜久久蜜豆| 国产精品嫩草影院av在线观看| 18+在线观看网站| 欧美日韩精品成人综合77777| 亚洲精品久久国产高清桃花| a级一级毛片免费在线观看| 精品人妻视频免费看| 欧美成人一区二区免费高清观看| 人人妻人人看人人澡| 精品国产三级普通话版| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区在线观看99 | 亚洲国产高清在线一区二区三| 日韩强制内射视频| 中文在线观看免费www的网站| 一区二区三区高清视频在线| 亚洲欧美日韩卡通动漫| 97超碰精品成人国产| 午夜a级毛片| 一本一本综合久久| 色5月婷婷丁香| 看非洲黑人一级黄片| 禁无遮挡网站| 国产伦在线观看视频一区| 欧美bdsm另类| 亚洲成a人片在线一区二区| 欧美最新免费一区二区三区| 一级二级三级毛片免费看| 亚洲图色成人| 国产极品天堂在线| 久久九九热精品免费| 精品少妇黑人巨大在线播放 | 一级毛片我不卡| 91精品一卡2卡3卡4卡| 久久久久久久久大av| 久久精品夜色国产| 寂寞人妻少妇视频99o| 国产黄片视频在线免费观看| 国产成人精品一,二区 | 十八禁国产超污无遮挡网站| 欧美bdsm另类| 欧美丝袜亚洲另类| 在线观看av片永久免费下载| 插阴视频在线观看视频| 伊人久久精品亚洲午夜| 国产精品日韩av在线免费观看| 午夜精品国产一区二区电影 | 性插视频无遮挡在线免费观看| 99精品在免费线老司机午夜| 国产伦精品一区二区三区视频9| 午夜激情福利司机影院| 欧美日韩综合久久久久久| 91久久精品国产一区二区三区| 九九爱精品视频在线观看| 久久热精品热| 插阴视频在线观看视频| h日本视频在线播放| 日韩强制内射视频| 欧美最黄视频在线播放免费| 成人国产麻豆网| 少妇熟女欧美另类| 久久久久久九九精品二区国产| 久久韩国三级中文字幕| 国产午夜精品论理片| 国产精品人妻久久久影院| 男人狂女人下面高潮的视频| 日韩av不卡免费在线播放| 能在线免费看毛片的网站| 久久亚洲国产成人精品v| av免费在线看不卡| 久久精品国产亚洲av天美| 亚洲精品日韩在线中文字幕 | 欧美另类亚洲清纯唯美| 国产精品久久久久久亚洲av鲁大| 男人的好看免费观看在线视频| 不卡视频在线观看欧美| 淫秽高清视频在线观看| 午夜精品一区二区三区免费看| 18禁黄网站禁片免费观看直播| 国产精品久久久久久精品电影小说 | 国产黄片美女视频| 99九九线精品视频在线观看视频| 波多野结衣巨乳人妻| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品一区二区三区人妻视频| 亚洲精品久久国产高清桃花| 久久久久久久久久久免费av| 嫩草影院新地址| 免费观看精品视频网站| 亚洲av免费在线观看| 极品教师在线视频| 日韩欧美精品v在线| 在现免费观看毛片| 欧美日韩综合久久久久久| 一夜夜www| 成人一区二区视频在线观看| 亚洲av男天堂| 国产久久久一区二区三区| 日韩av不卡免费在线播放| 午夜福利视频1000在线观看| 人人妻人人澡人人爽人人夜夜 | 黄片无遮挡物在线观看| 国产日本99.免费观看| 精品熟女少妇av免费看| 亚洲五月天丁香| 午夜免费男女啪啪视频观看| 久久人人爽人人爽人人片va| 亚洲在线观看片| 亚洲美女视频黄频| 又爽又黄无遮挡网站| 成人毛片a级毛片在线播放| 日韩高清综合在线| 国产成人午夜福利电影在线观看| 变态另类丝袜制服| 大又大粗又爽又黄少妇毛片口| 美女大奶头视频| 一边摸一边抽搐一进一小说| .国产精品久久| 超碰av人人做人人爽久久| 看片在线看免费视频| 免费电影在线观看免费观看| 午夜精品国产一区二区电影 | 成人性生交大片免费视频hd| 国产精品一区二区性色av| 激情 狠狠 欧美| 国产成人精品一,二区 | 亚洲无线观看免费| 欧美性猛交╳xxx乱大交人| 乱码一卡2卡4卡精品| 亚洲精品成人久久久久久| 能在线免费观看的黄片| 日本免费一区二区三区高清不卡| 简卡轻食公司| 在线观看av片永久免费下载| 国产精品美女特级片免费视频播放器| ponron亚洲| 久久九九热精品免费| 国产老妇女一区| 99久久无色码亚洲精品果冻| 三级经典国产精品| 亚洲精品影视一区二区三区av| 伦精品一区二区三区| 精品久久国产蜜桃| 国产精品野战在线观看| 久久精品影院6| 精品久久久久久久久久免费视频| 国产高清激情床上av| 女的被弄到高潮叫床怎么办| 亚洲国产精品sss在线观看| 麻豆乱淫一区二区| 神马国产精品三级电影在线观看| 最近2019中文字幕mv第一页| 在线观看av片永久免费下载| 最近的中文字幕免费完整| 欧美精品一区二区大全| 久久久久网色| 我的老师免费观看完整版| 午夜福利视频1000在线观看| 寂寞人妻少妇视频99o| 最近手机中文字幕大全| 亚洲第一区二区三区不卡| 精品久久久久久久末码| 在线a可以看的网站| 欧美zozozo另类| 欧美+日韩+精品| 美女xxoo啪啪120秒动态图| 亚洲精华国产精华液的使用体验 | 天天一区二区日本电影三级| 欧美zozozo另类| 人妻制服诱惑在线中文字幕| 日日干狠狠操夜夜爽| 欧美激情国产日韩精品一区| 在线观看美女被高潮喷水网站| 91精品一卡2卡3卡4卡| 狂野欧美激情性xxxx在线观看| 精品久久久久久久人妻蜜臀av| 国产成人福利小说| 国产午夜精品一二区理论片| 最近视频中文字幕2019在线8| 成人午夜精彩视频在线观看| 我要看日韩黄色一级片| 日韩成人伦理影院| 国产精品女同一区二区软件| 伊人久久精品亚洲午夜| 色播亚洲综合网| 看十八女毛片水多多多| 亚洲精品久久国产高清桃花| 国产老妇女一区| 日韩高清综合在线| 夜夜看夜夜爽夜夜摸| 男人的好看免费观看在线视频| 在线天堂最新版资源| 一本久久精品| 天堂中文最新版在线下载 | 少妇熟女aⅴ在线视频| 在线观看美女被高潮喷水网站| 麻豆成人av视频| 99九九线精品视频在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 丰满乱子伦码专区| 免费av观看视频| 嫩草影院精品99| 尾随美女入室| 校园人妻丝袜中文字幕| 老熟妇乱子伦视频在线观看| 在线观看午夜福利视频| 不卡一级毛片| 午夜激情欧美在线| 国产一区二区三区av在线 | 久久99热这里只有精品18| 中文字幕精品亚洲无线码一区| av.在线天堂| 亚洲av免费高清在线观看| 两个人的视频大全免费| 国产中年淑女户外野战色| 日韩精品青青久久久久久| 麻豆乱淫一区二区| 亚洲精品日韩av片在线观看| 日本三级黄在线观看| 亚洲美女视频黄频| 亚洲人成网站高清观看| 国国产精品蜜臀av免费| 91精品一卡2卡3卡4卡| 在线观看美女被高潮喷水网站| 亚洲欧美日韩东京热| av在线播放精品| 黄色配什么色好看| 美女内射精品一级片tv| 成人特级黄色片久久久久久久| 在现免费观看毛片| 亚洲精品乱码久久久久久按摩| 成人av在线播放网站| 男人舔奶头视频| 啦啦啦啦在线视频资源| 少妇被粗大猛烈的视频| 又爽又黄无遮挡网站| 色噜噜av男人的天堂激情| 亚洲人成网站在线播| 99热网站在线观看| 亚洲av不卡在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 午夜视频国产福利| 青青草视频在线视频观看| 黄色一级大片看看| 一级毛片我不卡| 色哟哟哟哟哟哟| 日韩三级伦理在线观看| 国产探花在线观看一区二区| 国产精品爽爽va在线观看网站| 欧美+日韩+精品| 免费搜索国产男女视频| 午夜福利在线观看免费完整高清在 | 亚洲高清免费不卡视频| 午夜精品在线福利| 中文资源天堂在线| av免费观看日本| 毛片一级片免费看久久久久| 国内精品久久久久精免费| av天堂在线播放| 女人十人毛片免费观看3o分钟| 国产亚洲av片在线观看秒播厂 | 日韩欧美三级三区| 国产人妻一区二区三区在| 在线播放无遮挡| 亚洲av男天堂| 亚洲不卡免费看| 2021天堂中文幕一二区在线观| 麻豆国产av国片精品| 99视频精品全部免费 在线| 久久久精品94久久精品| 国产精品蜜桃在线观看 | av国产免费在线观看| 好男人视频免费观看在线| 国产精品人妻久久久久久| 五月玫瑰六月丁香| 女人被狂操c到高潮| 欧美+亚洲+日韩+国产| 国模一区二区三区四区视频| 天堂网av新在线| 天堂中文最新版在线下载 | 97超视频在线观看视频| 成人二区视频| 亚洲电影在线观看av| 综合色丁香网| 可以在线观看毛片的网站| 国产 一区精品| 日韩高清综合在线| 亚洲最大成人中文| 亚洲精品国产成人久久av| 精品人妻一区二区三区麻豆| 日韩精品青青久久久久久| 国产精品久久久久久av不卡| 少妇的逼水好多| 免费av毛片视频| 国产精品久久久久久久久免| 国产免费一级a男人的天堂| 一夜夜www| 成人欧美大片| 我的女老师完整版在线观看| 最近的中文字幕免费完整| 国产成人精品久久久久久| 国产精品女同一区二区软件| 天堂av国产一区二区熟女人妻| 最新中文字幕久久久久| 一级黄片播放器| 精品熟女少妇av免费看| 午夜老司机福利剧场| 精品少妇黑人巨大在线播放 | 久久中文看片网| 非洲黑人性xxxx精品又粗又长| 寂寞人妻少妇视频99o| 99久国产av精品国产电影| 精品不卡国产一区二区三区| 色播亚洲综合网| 网址你懂的国产日韩在线| 日本爱情动作片www.在线观看| 久久久久国产网址| 99国产精品一区二区蜜桃av| 在线播放无遮挡| 欧美性猛交黑人性爽| 国产成人精品一,二区 | 日本撒尿小便嘘嘘汇集6| 亚洲国产高清在线一区二区三| 国产精品精品国产色婷婷| 欧美高清成人免费视频www| 久久精品综合一区二区三区| 国产精品电影一区二区三区| 色吧在线观看| 人妻久久中文字幕网| 亚洲欧美日韩无卡精品| 亚洲成a人片在线一区二区| 日韩一本色道免费dvd| 午夜福利视频1000在线观看| 高清午夜精品一区二区三区 | 少妇高潮的动态图| 精品免费久久久久久久清纯| 欧美+日韩+精品| 狠狠狠狠99中文字幕| 免费av观看视频| 久久久久久久午夜电影| 男女那种视频在线观看| 村上凉子中文字幕在线| 99久国产av精品国产电影| 全区人妻精品视频| 国产亚洲av嫩草精品影院| 在线a可以看的网站| 午夜免费激情av| 亚洲,欧美,日韩| 69人妻影院| 久久亚洲国产成人精品v| 欧美日韩乱码在线| 久久草成人影院| 午夜福利高清视频| 久久99热6这里只有精品| 黄片无遮挡物在线观看| 99热这里只有是精品在线观看| 日日啪夜夜撸| 老司机福利观看| 热99在线观看视频| 乱码一卡2卡4卡精品| 亚洲内射少妇av| 免费av观看视频| 亚洲欧美日韩卡通动漫| 国产精品一区二区三区四区免费观看| 一夜夜www| av福利片在线观看| 97热精品久久久久久| 欧美最新免费一区二区三区| 99久久无色码亚洲精品果冻| 国产成人精品久久久久久| 中国美女看黄片| 熟女电影av网| 久久久色成人| 亚洲真实伦在线观看| 99热这里只有是精品在线观看| 国产精品久久久久久亚洲av鲁大| 国产精品蜜桃在线观看 | 亚洲婷婷狠狠爱综合网| 不卡一级毛片| 中文字幕精品亚洲无线码一区| 国产三级在线视频| 婷婷色av中文字幕| 在线观看一区二区三区| 内地一区二区视频在线| 日韩欧美一区二区三区在线观看| 老女人水多毛片| 日韩三级伦理在线观看| 国产精品电影一区二区三区| a级毛片a级免费在线| 国产伦理片在线播放av一区 | 国产69精品久久久久777片| 亚洲国产精品sss在线观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美bdsm另类| 99久久成人亚洲精品观看| 日日撸夜夜添| 亚洲欧美日韩高清在线视频| 亚洲内射少妇av| 在线国产一区二区在线| 我要搜黄色片| 国产探花极品一区二区| 最近中文字幕高清免费大全6| 欧美激情国产日韩精品一区| 丝袜美腿在线中文| 99视频精品全部免费 在线| 国产精品嫩草影院av在线观看| 悠悠久久av| 一级黄片播放器| 亚洲国产精品sss在线观看| 高清毛片免费看| 色吧在线观看| 亚洲丝袜综合中文字幕| 欧美一区二区亚洲| 色综合色国产| 最后的刺客免费高清国语| 亚洲中文字幕一区二区三区有码在线看| 老司机影院成人| 三级国产精品欧美在线观看| 国产精品一区www在线观看| 日韩欧美 国产精品| 久久人人爽人人片av| 亚洲成人精品中文字幕电影|