• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunable phase transition, band gap and SHG properties by halogen replacement of hybrid perovskites [(thiomorpholinium)PbX3, X = Cl,Br, I]

    2022-06-18 03:00:56SiminLiuLeiHeYuzhenWangPingpingShiQiongYe
    Chinese Chemical Letters 2022年2期

    Simin Liu, Lei He, Yuzhen Wang, Pingping Shi, Qiong Ye

    Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University,Nanjing 211189, China

    ABSTRACT By the replacement of halogen anion, three new multifunctional organic-inorganic hybrid perovskites(thiomorpholinium)PbX3 (X = Cl, Br, I) were successfully synthesized and underwent reversible structural transformation above room temperature, accompanied by the anomalous change of dielectric constant.With the adjustment of the halogen anion from Cl to I in the inorganic skeleton, the space group is transformed from centrosymmetric space group P21/c ((thiomorpholinium)PbCl3) to chiral one P212121((thiomorpholinium)PbBr3, (thiomorpholinium)PbI3) at room temperature.The ordered-disordered transition of organic cations and the change of hydrogen bonds with the increase of temperature lead to above-room-temperature phase transitions.Ultraviolet absorption and second-harmonic generation (SHG)measurements confirmed that both the band gap and SHG activity of (thiomorpholinium)PbX3 (X = Cl, Br,I) crystals were tunable.The band gaps reveal a broadening trend with 3.532 eV, 3.410 eV and 3.175 eV along the Cl →Br →I series.This work provides an effective molecular design for multifunctional organic-inorganic perovskites.

    Keywords:Phase transition Band gap Nonlinear optical Organic-inorganic hybrid perovskite Halogen replacement

    Organic-inorganic hybrid perovskites (OHPs), combining the advantages of organic materials and inorganic materials, exhibit interesting properties to make them promising candidates for applications in optoelectronic devices, battery and energy storage [1–3].OHPs adopt the ABX3structural frameworks where generally “A” is organic cation [4,5].Due to the unusual flexibility of organic cation and various BX3frameworks, the OHP materials are diversiform and relatively thermal stable.The design of functional compounds has become an important challenge in OHP material science [6].

    OHPs based on group IV metals (Ge, Sn and Pb) are expected to exhibit semiconducting behavior and also play an important role in phase transition materials due to the presence of flexible organic components [7].A tunable band gap,Eg, is one of the ideal semiconductor characteristics where the value ofEgcan be tailored within the ideal range by the choice of halogen in the perovskite architecture [2].For instance, the band gap of acentric hybrid perovskite NH(CH3)3SnCl3which shows three phase transitions is 3.59 eV [8].After replacing Cl atoms with Br, the value of band gap of NH(CH3)3SnBr3decreased to 2.76 eV.In addition, a series of mixed halide halobismuthates, [NH2(CH2CH3)2]3Bi(Cl1-xBrx)6(x from 0 to 1), show that the band gap change from 3.26 eV to 2.81 eV and nonlinear optical capacities are different with increased Br inclusion [9].In view of the influence of replacement of halogen anions, we propose to take advantage of the strategy of halogen replacement to manipulate the phase transition, band gap and quadratic nonlinear optical properties of materials for realizing the multifunctional application.

    Herein, we chose thiomorpholine cations [(C4H10NS)+] as “A”embedded between inorganic chains, because only a very low activation energy is needed to change the conformation of such small annular organic cation [10–12].Three new thermoresponsive materials, (thiomorpholinium)PbX3(X = Cl, Br, I), were successfully synthesized and were found to undergo structural phase transition through differential scanning calorimetry (DSC) measurements.The replacement of halogen anions did not change the one-dimensional chain packing mode of the inorganic components in crystals.But the space group changed from centrosymmetricP21/cof (thiomorpholinium)PbCl3to chiralP212121of (thiomorpholinium)PbBr3and (thiomorpholinium)PbI3at room temperature.And the phase transition temperature has been greatly changed.The band gap and second-harmonic generation(SHG) signal response of materials were also adjusted.The precise modification of the OHPs by halogen substitute of inorganic frame is proved to be an effective way to tune phase transition temperature, optical and electrical properties.

    Crystals (C4H10NS)PbCl3(TMP-Cl), (C4H10NS)PbBr3(TMP-Br),(C4H10NS)PbI3(TMP-I) are prepared by slowly evaporating acid solution containing thiomorpholine and lead halides in a molar ratio of 1:1 for several days.The easy, low cost and low temperature processing through facile solution methods increases the possibility for the further practical applications of crystals.The phase purity was further verified by infrared spectroscopy (Fig.S1 in Supporting information) and powder X-ray diffraction (PXRD, Fig.S2 in Supporting information).The measured PXRD pattern matches well with the one simulated from the single-crystal X-ray diffraction structural data.Specific synthesis and test methods can be seen in Supporting information.

    DSC measurements were carried out to determine the existence of reversible phase transitions below the melting point.For the three compounds, no thermal anomaly was found below 360 K.In the Fig.1, a couple of exothermic (410.4 K) and endothermic(423.6 K) peaks indicate a reversible phase transition occurring in compound TMP-Cl.For TMP-Br, exothermic (398.4 K) and endothermic (401.4 K) peaks are clearly observed.The sharp peaks and the large heat hysteresis are the evidences of the first-order feature [13].During the cooling and heating processes, three pairs of reversible heat anomalies at 390.5 K/392.7 K, 451.0 K/454.1 K,488.7 K/480.4 K can be observed in the DSC curves of TMP-I, indicating three reversible phase transitions.On the basis of DSC results, the corresponding changes of total entropy (ΔS) of TMPCl and TMP-Br were calculated asΔSCl(3.79 J mol-1K-1),ΔSBr(4.46 J mol-1K-1).For TMP-I, the values ofΔSare 1.17, 7.07 and 16.24 J mol-1K-1, respectively.The halogen replacement of inorganic structure complicated the phase transition behavior.The change of phase transition temperature by halogen replacement provides a wider temperature range for the application of temperature-responsive materials.

    Fig.1.The DSC curves for (C4H10NS)PbX3 (X = Cl, Br, I).

    Generally speaking, temperature-dependent dielectric response is also a preliminary test to examine the presence of phase transition [14–16].As shown in Fig.2, the temperature dependent real parts (ε′) of compounds TMP-Cl, TMP-Br, TMP-I were measured in the heating-cooling cycles at 1 MHz.In the heating process, theε′value of compound TMP-Cl increased gradually.Then the curve showed a turning point at around 414 K.In the cooling process,the dielectric anomaly appeared again at around 427 K, which confirmed the reversibility of phase transition in TMP-Cl.For compound TMP-Br, theε′started at approximate 7.3 at 350 K in Fig.2b.And the value ofε′showed a gradual increase with temperature increasing.Suddenly, it displayed a sharp increase to about 12.5.A step-like anomaly was seen at around 400 K.Theε′at the high dielectric state is about 1.2 times that at the low dielectric state.A similar step-like anomaly can be seen in the cooling process, suggesting the occurrence of a reversible phase transition.

    Fig.2.Temperature-dependent real part (ε′) of the dielectric constant measured at 1 MHz for (a) TMP-Cl, (b) TMP-Br, (c) TMP-I and (d) the partially enlarged curves of TMP-I at 1 MHz.

    For compound TMP-I, three pairs of step-like anomalies were observed in Fig.2c.During the heating process, dielectric anomalies appeared at about 401 K, 443 K and 478 K.There was a minor change ofε′at around 401 K, which was partially magnified in Fig.2d.After further heating, the second dielectric anomaly appeared between 443 K and 460 K, and the value of dielectric constant changed obviously from 7.5 to 7.9.With further increase in temperature, the value ofε′increased sharply from 8.3 to 9.0 at around 478 K.During the process of cooling, the similar continuous step-like dielectric curve appeared again.The temperaturedependent dielectric responses for these three compounds were in good agreement with the DSC results mentioned above.Importantly, the dielectric responses of compounds TMP-Br and TMP-I can be regulated under two and four stable dielectric states, respectively.Due to such remarkable step-like dielectric anomalies,TMP-Br and TMP-I are expected to be promising switchable dielectric materials in a tunable temperature range [17,18].In all, the halogen substitution of (C4H10NS)PbX3(X = Cl, Br, I) leads to multiple switching between different dielectric states.

    The crystal structures of TMP-Cl, TMP-Br and TMP-I were analyzed in the room-temperature phase (RTP).The X-ray single crystal diffraction data was listed in the Table S1 (Supporting information).The room-temperature single crystal diffraction suggests that TMP- Cl belongs to the centrosymmetric monoclinic space groupP21/c, with the cell parameters ofa= 7.5615(7),b= 7.7437(7),c= 18.228(2),α=γ= 90.000°,β= 111.243(8)° andV= 994.80(18)3.While both TMP-Br and TMP-I crystallize in the chiral orthorhombic space groupP212121, and the cell parameters are (TMP-Br:a= 7.9595(9),b= 8.2785(10),c= 16.4715(16),α=β=γ= 90.000°,V=1085.4(2)3), (TMP-I:a=8.3664 (7),b= 8.7439(7),c= 16.8371(13),α=β=γ= 90.000°,V= 1231.72(17)3), respectively.As the halogen anions changed from Cl to I, the size of unit cell expanded at room temperature.With the change of space group fromP21/ctoP212121, the species of symmetry elements change from (E, C2,i, σh) of TMP-Cl to (E, C2,C′2,C′′2) of TMP- Br and TMP-I.We can see that the inversion center (i) and glide plane(σh) disappear, and two-fold symmetry axes (C′2,C′′2) emerge.

    Fig.3.Changes of spatial symmetry operations of compound TMP-Br between the HTP (Pnma) and RTP (P212121).

    Fig.4.For compound TMP-Br, packing structures viewed from the b axis in the (a)RTP and (b) HTP.The molecular structures in the (c) RTP and (d) HTP.

    Structurally, the three compounds were found to be the typical ABX3organic-inorganic hybrid perovskite structure in the RTP.The asymmetric units of three compounds consist of one thiomorpholine cation, three halogen anions and one Pb cation.The halogen anions and Pb cations establish an octahedral geometry.PbX6(X = Cl, Br, I) octahedrons extend indefinitely and form a onedimensional face-sharing chain lying on the two-fold axis.The lengths of Pb-X (X = Cl, Br, I) bonds control the size of inorganic framework.As listed in the Tables S2 and S3 (Supporting information), the Pb-Cl bond length ranges from 2.752(3)to 3.067(3), which is shorter than Pb-Br (2.8656(17)-3.158(2)) and Pb-I(3.0604(7)-3.3348(8)).Longer Pb-X (X = Cl, Br, I) bonds provide more free space for the movement of organic cations, and also make TMP-Br and TMP-I exhibit a higher symmetry than TMP-Cl.

    Given the DSC results that reveal the occurrence of phase transitions, crystal structures in the high-temperature phase (HTP)need to be further studied.When the temperature was increased to 423 K, the compound TMP-Br was transformed into the centrosymmetric orthorhombic space groupPnmawith the cell parameters:a= 8.0028(17),b= 8.1755(15),c= 17.121(4),α=β=γ= 90.000°, andV= 1120.2(4)3.As shown in Fig.3,from the RTP to HTP, the number of symmetry elements increased from four (E, C2,C′2,C′′2) to eight (E, C2, 2C′2,i, σh, 2σv).In the HTP, the asymmetric unit of TMP-Br comprises a half formula unit of (C4H10NS)PbBr3.

    From the RTP to HTP, the new mirror planes through the thiomorpholine cations and (PbBr3)nn-chains appeared as depicted in Fig.4, instead of the two-fold symmetry axis at the center of (PbBr3)nn-chains in the RTP.The bond length of Pb-Br became 2.8684(11)–3.1218(8), and the bond angle became 86.76(2)°–166.975(18)°.The inorganic chains changed slightly.For organic components, the thiomorpholine six-membered ring cations show chair-type conformation in the RTP.However, in the HTP, N and S atoms are located on the mirror planes.Some of the C atoms are distributed on both sides of the mirror planes, showing strong disorder motion in a twisted state.Meanwhile, the number of N-H…Br hydrogen bonds between organic and inorganic components reduced from three (N1-H1A…Br1, N1-H1A…Br3,N1-H1B…Br2) to two (N1-H1A…Br2, N1-H1B…Br2) with temperature increasing.Therefore, we can speculate that the phase transition of TMP-Br above room temperature is closely related to its hydrogen bonds and the ordered-disordered transition of thiomorpholine cations.Furthermore, the abundant hydrogen bonds of TMP-I may make an important contribution to its higher temperature phase transition.

    Fig.5.Variable-temperature PXRD patterns of (a) TMP-Cl and (b) TMP-I.

    We tried to collect the single-crystal structure of TMP-Cl and TMP-I in the high-temperature phase, but the crystal diffraction data was very poor.As a result, the variable temperature PXRD was measured to further verify the structural transformation at different temperatures.As shown in Fig.5, the sample of TMP-Cl was measured at 298 K, 403 K and 453 K, respectively.At 403 K,the diffraction peaks of TMP-Cl are consistent with that at room temperature.The diffraction peaks at 12.33°, 12.99°, 16.83°, 17.28°,19.96° existed at 403 K, but vanished at 453 K.In the meantime,new diffraction peaks emerged at 12.32°, 16.93°, 27.81°, 28.53°.Obviously, the number of diffraction peaks decreases at 453 K, indicating that the high-temperature structure has a higher symmetry.Among the results of Pawley refinements, the most possible space group of TMP-Cl at 453 K isCmcm(Fig.S3 in Supporting information).For TMP-I, the PXRD was measured at 298, 363, 423,488 and 523 K, respectively.At 423 K, the PXRD pattern of the TMP-I showed some changes.The diffraction peak at 31.65° disappeared and new peaks at 27.94°, 33.38° appeared.After the second phase transformation, the diffraction peaks at 15.54° and 25.364°disappeared.New diffraction peaks appeared at 14.07° and 32.14°.As the temperature increases to 523 K, the number of diffraction peaks decreases, indicating a highly symmetric lattice and severe molecular disorder at high temperature.Significant changes in PXRD patterns confirmed the presence of phase transitions in TMP-I.Combining the simulation results from Pawley refinements(Fig.S4 in Supporting information) with the crystal cell parameters obtained by single crystal diffractometer scanning at high temperature (Table S5 in Supporting information), thePnma, Pnma, Cmcmspace groups were suggested as the most possible ones at 423 K,488 K, 523 K, respectively.

    In order to further confirm and analyze the effects of halogen substitution on intermolecular interactions and structural phase transitions, Hirshfelddnormsurfaces and 2D fingerprint plots were studied [19].Hirshfelddnormsurface was highlighted in red, indicating atoms make intermolecular contacts closer than the sum of their van der Waals radii.And white color denotes contacts around the sum of van der Waals radii.Longer contacts are blue [20–22].

    Fig.6.Local H-bonded configurations of single thiomorpholine cation of (a) TMP-Cl, (b) TMP-Br and (c) TMP-I.(d) The Hirshfeld dnorm surfaces and the 2D fingerprint plots of the thiomorpholine cations in TMP-Cl, TMP-Br and TMP-I.(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).

    Fig.7.(a) Oscilloscope traces of SHG signals for TMP-Cl, TMP-Br, TMP-I and KDP at the room temperature.(b) The SHG curves of TMP-Br at variable temperature.

    In the Fig.6, the difference of red dot regions on the Hirsfielddnormsurface map among TMP-Cl, TMP-Br and TMP-I indicates that the interactions between thiomorpholine cations and the surrounding molecules have been changed.As shown in the Figs.6a–c, TMP-I has more abundant hydrogen bonds than those in TMPBr and TMP-Cl at room temperature, which mainly involve C–H…X and N–H…X (X = Cl, Br, I) bonds.Therefore, the Hirshfelddnormsurfaces of the thiomorpholine cations in TMP-I have the most numerous red and white regions.The specific hydrogen bond parameters are listed in Table S4 (Supporting information).It can be inferred from Fig.6d that H…X (X = Cl, Br, I) is the dominant interaction and responsible for the appearance of red part, whose percentage increased from 43.3% of TMP-Cl to 47.5% of TMP-Br.Then the proportion of TMP-I (52.3%) is the largest.It is worth noting that the halogen anions play an important part in the interactions.As temperature increases, it is the percentage of H…Br interactions for TMP-Br that underwent an evident change from 47.5% to 45.7%in the HTP (Fig.S5 in Supporting information), indicating the variation of the interactions between the thiomorpholine cations and surrounding (PbBr3)nn-chains alters the phase transition.

    Because of the chiral structures and the high temperature phase transitions, this series of OHPs is expected to be SHG materials.Powder SHG measurements were performed based on Kurtz-Perry method with KH2PO4(KDP) microcrystals serving as references in Fig.7a.At room temperature, the SHG intensities of TMP-Br and TMP-I were estimated to be 0.37 and 0.09 times as large as that of KDP, respectively.The TMP-Cl crystal with the centrosymmetric space group in the RTP has no SHG signal (only the noise error was detected).The TMP-Br and TMP-I exhibit high SHG responses(“SHG-ON state”) at room temperature [23–25].As the temperature changes, the space group and crystal symmetry may also change to be reflected in the SHG response [26].According to the results of the XRD diffraction measurement at 423 K, the space group of TMP-Br was transformed from the chiralP212121to the centrosymmetricPnma.For TMP-Br, a step-like decrease of SHG intensity appeared in the vicinity of 423 K, and then it keeps about zero(“SHG-OFF”) above the phase transition temperature (Fig.7b).For TMP-I, no SHG signal was observed above 413 K (Fig.S6in Supporting information), which verifies the reliability of the proposed centrosymmetric space groups at high temperatures.During the heating and cooling cycle, the NLO switching between the “SHGON” and “SHG-OFF” states suggests that TMP-Br and TMP-I crystals are promising SHG switching materials.The halogen replacement of hybrid perovskites is one of the doable methods to find SHG switching materials.

    The lead contained in the structure makes important contributions to potential semiconducting properties [7].To further explore the semiconducting properties of compounds, the UV-vis absorption spectra of (C4H10NS)PbX3(X = Cl, Br and I) perovskites in the range from 200 nm to 700 nm (Fig.S7 in Supporting information) at room temperature were studied.The absorption edge of (C4H10NS)PbX3(X = Cl, Br and I) have a red-shifting tendency from 293 nm (TMP-Cl) to 326 nm (TMP-Br), to 364 nm (TMP-I).

    The absorption region of organic-inorganic hybrid perovskite can be expanded by replacing halogen anions.It is well known that the absorption characteristics of materials are related to the type of band gap (direct band gap or indirect band gap).According to the Tauc equation (hvF(R∞))1/n=A(hv-Eg), where the value ofndepends on the transition type of sample,n= 2 (indirect band gap) or 1/2 (direct band gap).Based on DFT, the band gaps of these systems are calculated to be 3.532 eV (TMP-Cl), 3.410 eV (TMP-Br)and 3.175 eV (TMP-I).The conduction-band minimum (CBM) and the valence-band maximum (VBM) lie at different positions in the Brillouin zone (Fig.8, Figs.S8 and S9 in Supporting information).The calculation result indicates that they are all indirect band gap semiconducting materials.The values of theEgestimated from the Tauc plot are 3.587 eV (TMP-Cl), 3.391 eV (TMP-Br) and 3.053 eV(TMP-I), which are close to the values calculated by DFT.The band gaps decrease along the Cl →Br →I series.The method of halogen replacement adjusts the band gap of (thiomorpholinium)PbX3(X = Cl, Br, I), which makes great contributions in the field of controllable semiconducting materials.Furthermore, the partial density of states (PDOS) of this series has also been calculated to better understand band gap allocation.As shown in Fig.8b, Br 4s/p and Pb 6s/p played a major role in the band gap of TMPBr.In other words, the inorganic chain-like construction (PbX3)nn-(X = Cl, Br, I) is a significant factor for the semiconducting properties of this series.

    Fig.8.(a) Calculated band structure and (b) PDOS of compound TMP-Br.(c) The UV–v is absorption spectrum and the Tauc plot show the band gap of compound TMP-Br.

    To sum up, three organic-inorganic hybrid perovskites(C4H10NS)PbX3(X = Cl, Br, I) have been successfully synthesized and studied.The results of DSC and temperature-dependent dielectric constant reveal that the phase transition temperature could be tuned by the substitution of halogen anions.More than that, the centrosymmetric space groupP21/c(TMP-Cl) is also adjusted into the chiral space groupP212121(TMP-Br, TMP-I)with detectable SHG response at room temperature.And the band gaps have varied from 3.532 eV to 3.410 eV, then to 3.175 eV with the increase of halogen anion radius.From the application standpoint, the band gap progression in the series (C4H10NS)PbX3(X = Cl, Br, I) will hold promise for highly tunable semiconductor for electronic and energy applications.Structurally, it has been revealed that the substitution of halogen anions promotes the formation of intramolecular hydrogen bonds, which further affects the physical properties.The substitution of halogen anions to achieve tunable physical properties provides useful guidance for the design of multifunctional optoelectronic materials.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.21805033 and 21771037).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.07.039.The supplementary crystallographic data for this paper have been uploaded in the Cambridge Structural Database.The number of CCDC are as follows: 2072739 (TMP-Cl at 298 K), 2072740 (TMP-Br at 298 K), 2072742 (TMP-Br at 423 K) and 2072743 (TMP-I at 298 K).

    亚洲欧美激情在线| 国产有黄有色有爽视频| 人人妻人人澡人人看| 欧美大码av| 国产精品熟女久久久久浪| 国产深夜福利视频在线观看| 亚洲中文av在线| 成人手机av| 国产男人的电影天堂91| 9热在线视频观看99| 好男人电影高清在线观看| 国产欧美日韩一区二区三 | 国产精品.久久久| a级毛片黄视频| 十八禁高潮呻吟视频| 亚洲精品美女久久av网站| 欧美日韩成人在线一区二区| av天堂久久9| 女性被躁到高潮视频| videos熟女内射| av有码第一页| 国产一区二区三区av在线| 中文字幕最新亚洲高清| 欧美成人午夜精品| 国产精品久久久人人做人人爽| 久久99一区二区三区| 18禁裸乳无遮挡动漫免费视频| 真人做人爱边吃奶动态| 韩国高清视频一区二区三区| www.999成人在线观看| 免费高清在线观看视频在线观看| 久久久久久久久免费视频了| 晚上一个人看的免费电影| 久久av网站| 免费高清在线观看视频在线观看| 久久青草综合色| 啦啦啦啦在线视频资源| 国产在线免费精品| 人人妻人人澡人人看| 久久国产亚洲av麻豆专区| 免费在线观看影片大全网站 | 啦啦啦在线观看免费高清www| 午夜日韩欧美国产| 午夜精品国产一区二区电影| 国产在线视频一区二区| 别揉我奶头~嗯~啊~动态视频 | 悠悠久久av| 国产精品二区激情视频| 国产欧美日韩综合在线一区二区| 久久精品国产综合久久久| 亚洲图色成人| 天堂中文最新版在线下载| 国产成人欧美在线观看 | 久久99精品国语久久久| 一级毛片女人18水好多 | 18禁裸乳无遮挡动漫免费视频| 丰满少妇做爰视频| 亚洲欧美色中文字幕在线| 肉色欧美久久久久久久蜜桃| √禁漫天堂资源中文www| 下体分泌物呈黄色| 国产午夜精品一二区理论片| 免费高清在线观看视频在线观看| 久久热在线av| 国产视频一区二区在线看| 蜜桃在线观看..| 国产成人影院久久av| 久久午夜综合久久蜜桃| 超碰97精品在线观看| 亚洲精品美女久久久久99蜜臀 | 国产日韩欧美亚洲二区| 大型av网站在线播放| 777米奇影视久久| www日本在线高清视频| 美女午夜性视频免费| 国产女主播在线喷水免费视频网站| 国产男人的电影天堂91| 久久久精品区二区三区| 一二三四社区在线视频社区8| 如日韩欧美国产精品一区二区三区| 制服人妻中文乱码| 热re99久久精品国产66热6| 91精品三级在线观看| 一区在线观看完整版| 日日夜夜操网爽| 国产爽快片一区二区三区| videosex国产| 久久久国产一区二区| 精品福利观看| 老汉色av国产亚洲站长工具| 国产97色在线日韩免费| 少妇 在线观看| kizo精华| 久久这里只有精品19| 亚洲欧美一区二区三区久久| 国产xxxxx性猛交| 亚洲av欧美aⅴ国产| 一级毛片电影观看| 精品国产超薄肉色丝袜足j| 老汉色av国产亚洲站长工具| 国产97色在线日韩免费| 国产亚洲av高清不卡| 欧美黑人欧美精品刺激| 少妇人妻久久综合中文| 老司机亚洲免费影院| avwww免费| 亚洲一区二区三区欧美精品| 亚洲色图综合在线观看| 精品亚洲成国产av| 一级片免费观看大全| 欧美另类一区| 妹子高潮喷水视频| 99国产综合亚洲精品| 777米奇影视久久| 国产精品一区二区精品视频观看| 19禁男女啪啪无遮挡网站| 精品一区二区三区四区五区乱码 | 国产亚洲欧美在线一区二区| 91麻豆av在线| 中国美女看黄片| 亚洲精品国产色婷婷电影| 9191精品国产免费久久| 日韩精品免费视频一区二区三区| 精品视频人人做人人爽| 十八禁人妻一区二区| 久久综合国产亚洲精品| 91成人精品电影| 欧美精品一区二区大全| 亚洲色图综合在线观看| 日韩电影二区| 国产精品偷伦视频观看了| 亚洲 欧美一区二区三区| av线在线观看网站| 亚洲欧美一区二区三区黑人| 两个人看的免费小视频| 91成人精品电影| 男的添女的下面高潮视频| 亚洲av电影在线观看一区二区三区| 飞空精品影院首页| 亚洲七黄色美女视频| 欧美国产精品一级二级三级| 亚洲 国产 在线| 久久人妻福利社区极品人妻图片 | 亚洲精品久久成人aⅴ小说| 大香蕉久久成人网| 少妇猛男粗大的猛烈进出视频| 在线观看人妻少妇| 又大又爽又粗| 侵犯人妻中文字幕一二三四区| 飞空精品影院首页| 如日韩欧美国产精品一区二区三区| 叶爱在线成人免费视频播放| 电影成人av| 大香蕉久久成人网| 99热网站在线观看| 亚洲伊人色综图| 久久人人爽av亚洲精品天堂| 久久久久精品国产欧美久久久 | 国产成人精品久久二区二区91| 午夜福利一区二区在线看| avwww免费| 国产欧美日韩精品亚洲av| 亚洲av电影在线进入| 色精品久久人妻99蜜桃| 日韩伦理黄色片| 日韩中文字幕视频在线看片| 欧美另类一区| 国产成人精品久久二区二区免费| 一本久久精品| 天堂俺去俺来也www色官网| 日本五十路高清| 91麻豆精品激情在线观看国产 | 成年美女黄网站色视频大全免费| 亚洲情色 制服丝袜| 中文字幕制服av| 国产伦人伦偷精品视频| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久久久精品古装| 亚洲av电影在线进入| 国产男女内射视频| 狠狠精品人妻久久久久久综合| 国产熟女欧美一区二区| 黄片播放在线免费| 国产在线观看jvid| 欧美人与性动交α欧美精品济南到| 免费一级毛片在线播放高清视频 | 亚洲人成网站在线观看播放| 国产色视频综合| 中文精品一卡2卡3卡4更新| 久久精品亚洲熟妇少妇任你| 91精品三级在线观看| 国产成人免费观看mmmm| 婷婷色av中文字幕| 国产成人精品无人区| 国产一区二区 视频在线| 伊人久久大香线蕉亚洲五| 国产成人精品久久久久久| 国产精品一区二区在线不卡| 女人高潮潮喷娇喘18禁视频| 男人操女人黄网站| 男人爽女人下面视频在线观看| 欧美黑人欧美精品刺激| 国产男人的电影天堂91| 午夜精品国产一区二区电影| 你懂的网址亚洲精品在线观看| 国产精品欧美亚洲77777| 老汉色∧v一级毛片| 99国产综合亚洲精品| 欧美少妇被猛烈插入视频| 中文字幕亚洲精品专区| 男的添女的下面高潮视频| 日日夜夜操网爽| 天天影视国产精品| 国产色视频综合| 国语对白做爰xxxⅹ性视频网站| 少妇被粗大的猛进出69影院| 女人精品久久久久毛片| 老司机靠b影院| 欧美日韩亚洲综合一区二区三区_| 黑人猛操日本美女一级片| 伊人久久大香线蕉亚洲五| 亚洲黑人精品在线| 王馨瑶露胸无遮挡在线观看| www.999成人在线观看| 亚洲av男天堂| 欧美 日韩 精品 国产| 性色av乱码一区二区三区2| 久久热在线av| 在线观看免费视频网站a站| 国产熟女午夜一区二区三区| 水蜜桃什么品种好| 国产熟女欧美一区二区| 欧美日韩视频高清一区二区三区二| 91成人精品电影| 亚洲一区二区三区欧美精品| 中文字幕精品免费在线观看视频| 久久鲁丝午夜福利片| 777米奇影视久久| 另类精品久久| 日韩av不卡免费在线播放| 中文字幕av电影在线播放| 青春草视频在线免费观看| 久9热在线精品视频| 曰老女人黄片| 大陆偷拍与自拍| 国产高清videossex| 亚洲专区中文字幕在线| 免费高清在线观看视频在线观看| 亚洲欧美一区二区三区久久| 最近手机中文字幕大全| 午夜av观看不卡| 亚洲伊人久久精品综合| 成人影院久久| 超碰成人久久| 建设人人有责人人尽责人人享有的| 久久毛片免费看一区二区三区| 亚洲欧美一区二区三区黑人| 日韩人妻精品一区2区三区| 麻豆国产av国片精品| 国产精品免费大片| 热re99久久国产66热| 久热爱精品视频在线9| 亚洲成人手机| 黄色怎么调成土黄色| 欧美另类一区| 欧美精品av麻豆av| 午夜日韩欧美国产| 天堂俺去俺来也www色官网| 高清视频免费观看一区二区| 亚洲天堂av无毛| 日本av手机在线免费观看| 蜜桃国产av成人99| www.av在线官网国产| 视频区图区小说| av国产久精品久网站免费入址| 91成人精品电影| 亚洲一码二码三码区别大吗| xxx大片免费视频| 一级黄片播放器| 欧美日韩亚洲综合一区二区三区_| 看免费av毛片| 人人妻人人爽人人添夜夜欢视频| 国产视频首页在线观看| 欧美变态另类bdsm刘玥| 国产激情久久老熟女| 午夜免费成人在线视频| 视频区图区小说| 另类精品久久| 亚洲美女黄色视频免费看| 精品福利观看| 国产伦人伦偷精品视频| 午夜福利视频精品| 国产精品九九99| 成人18禁高潮啪啪吃奶动态图| 国产日韩欧美在线精品| 成年女人毛片免费观看观看9 | 成年人免费黄色播放视频| 国产高清国产精品国产三级| 少妇精品久久久久久久| 国产成人91sexporn| 老司机靠b影院| 欧美日韩成人在线一区二区| 亚洲熟女毛片儿| 国产福利在线免费观看视频| 99国产精品一区二区三区| 免费高清在线观看日韩| netflix在线观看网站| 老汉色av国产亚洲站长工具| 亚洲精品久久午夜乱码| 91精品三级在线观看| 欧美精品av麻豆av| 久久天堂一区二区三区四区| 色综合欧美亚洲国产小说| 人人妻,人人澡人人爽秒播 | 婷婷成人精品国产| 青草久久国产| 亚洲熟女毛片儿| 色精品久久人妻99蜜桃| 久久久久国产精品人妻一区二区| 男的添女的下面高潮视频| 高清欧美精品videossex| 成人免费观看视频高清| 精品少妇内射三级| 久久久国产精品麻豆| 一级毛片女人18水好多 | 亚洲av片天天在线观看| 老司机影院毛片| 91精品伊人久久大香线蕉| 啦啦啦 在线观看视频| 黄片播放在线免费| 一二三四社区在线视频社区8| 国产精品 欧美亚洲| 久久国产精品男人的天堂亚洲| 操美女的视频在线观看| 精品人妻1区二区| 人人妻人人澡人人看| 成年人免费黄色播放视频| 免费av中文字幕在线| 男人添女人高潮全过程视频| av网站在线播放免费| 午夜影院在线不卡| 日韩中文字幕视频在线看片| 日本欧美视频一区| 午夜激情久久久久久久| 久久精品熟女亚洲av麻豆精品| 爱豆传媒免费全集在线观看| 搡老岳熟女国产| 18禁裸乳无遮挡动漫免费视频| 黑人巨大精品欧美一区二区蜜桃| 日本wwww免费看| 国产高清视频在线播放一区 | 男女高潮啪啪啪动态图| 精品视频人人做人人爽| 国产一区亚洲一区在线观看| 国产淫语在线视频| 免费久久久久久久精品成人欧美视频| 国产在线观看jvid| 美女扒开内裤让男人捅视频| 欧美黑人精品巨大| 国产高清国产精品国产三级| 男女床上黄色一级片免费看| 校园人妻丝袜中文字幕| 国产欧美亚洲国产| 免费一级毛片在线播放高清视频 | 黄片小视频在线播放| 久久久久精品国产欧美久久久 | 国产精品.久久久| 亚洲精品av麻豆狂野| 亚洲成av片中文字幕在线观看| 欧美大码av| 午夜免费男女啪啪视频观看| 国产一区二区 视频在线| 亚洲,欧美精品.| 久久影院123| 国产欧美日韩一区二区三 | 国产成人a∨麻豆精品| av有码第一页| netflix在线观看网站| 黑丝袜美女国产一区| 精品久久久精品久久久| 亚洲欧美一区二区三区黑人| 亚洲欧美一区二区三区国产| 又大又爽又粗| 国产一级毛片在线| 精品国产一区二区久久| 国产日韩欧美亚洲二区| 成年女人毛片免费观看观看9 | 免费不卡黄色视频| 午夜福利视频在线观看免费| 啦啦啦在线观看免费高清www| 在线观看一区二区三区激情| 国产一区亚洲一区在线观看| 欧美黑人精品巨大| 丰满迷人的少妇在线观看| 国产午夜精品一二区理论片| 在线观看国产h片| 国产一卡二卡三卡精品| 日本av手机在线免费观看| 在线天堂中文资源库| 亚洲,一卡二卡三卡| 国产精品九九99| 亚洲av片天天在线观看| 亚洲欧美精品自产自拍| 777久久人妻少妇嫩草av网站| 日韩人妻精品一区2区三区| 侵犯人妻中文字幕一二三四区| 免费高清在线观看视频在线观看| 老汉色∧v一级毛片| 麻豆国产av国片精品| 成年av动漫网址| 操美女的视频在线观看| 青春草视频在线免费观看| 一级毛片电影观看| 欧美黑人欧美精品刺激| 热re99久久国产66热| 亚洲九九香蕉| 美女国产高潮福利片在线看| 亚洲av国产av综合av卡| 天堂俺去俺来也www色官网| 一区在线观看完整版| 男人舔女人的私密视频| 女人精品久久久久毛片| 久久亚洲精品不卡| 青春草亚洲视频在线观看| 午夜福利,免费看| 日日夜夜操网爽| 波野结衣二区三区在线| 国产老妇伦熟女老妇高清| 日韩av在线免费看完整版不卡| 亚洲精品第二区| 亚洲七黄色美女视频| 男男h啪啪无遮挡| 男女高潮啪啪啪动态图| 韩国高清视频一区二区三区| 国产在线免费精品| 一级毛片电影观看| 日本五十路高清| 亚洲天堂av无毛| 一级黄片播放器| 高清黄色对白视频在线免费看| 大片免费播放器 马上看| 亚洲,欧美精品.| 欧美少妇被猛烈插入视频| 国产免费又黄又爽又色| 亚洲国产av影院在线观看| 美女视频免费永久观看网站| 欧美日韩成人在线一区二区| a 毛片基地| 大话2 男鬼变身卡| 一区二区三区乱码不卡18| 黄色视频不卡| 黄色a级毛片大全视频| 91麻豆精品激情在线观看国产 | 自拍欧美九色日韩亚洲蝌蚪91| 精品一品国产午夜福利视频| 精品第一国产精品| 成人免费观看视频高清| 亚洲精品日本国产第一区| 亚洲人成电影观看| 嫩草影视91久久| 精品久久蜜臀av无| 尾随美女入室| 国产免费视频播放在线视频| 亚洲精品日本国产第一区| 色精品久久人妻99蜜桃| 欧美日韩亚洲高清精品| 免费不卡黄色视频| 午夜福利一区二区在线看| 校园人妻丝袜中文字幕| 国产有黄有色有爽视频| 亚洲欧美日韩另类电影网站| 国产欧美日韩综合在线一区二区| 国产成人系列免费观看| 成人影院久久| 国产精品一区二区在线观看99| 亚洲自偷自拍图片 自拍| 亚洲精品日韩在线中文字幕| 飞空精品影院首页| av又黄又爽大尺度在线免费看| 亚洲视频免费观看视频| 99久久综合免费| 国产成人精品久久久久久| 亚洲欧美激情在线| 亚洲国产av影院在线观看| 国产精品香港三级国产av潘金莲 | 亚洲九九香蕉| 国产亚洲av高清不卡| 又大又黄又爽视频免费| 精品一区二区三卡| 50天的宝宝边吃奶边哭怎么回事| 99国产综合亚洲精品| 久久久久国产精品人妻一区二区| 女警被强在线播放| 成年动漫av网址| 一级毛片女人18水好多 | 黄网站色视频无遮挡免费观看| 人人妻人人澡人人看| 精品国产一区二区三区四区第35| 校园人妻丝袜中文字幕| 性色av乱码一区二区三区2| 亚洲欧美激情在线| 操美女的视频在线观看| 蜜桃在线观看..| 美女福利国产在线| 母亲3免费完整高清在线观看| 婷婷成人精品国产| 日韩中文字幕视频在线看片| 高清视频免费观看一区二区| 日韩免费高清中文字幕av| 最新的欧美精品一区二区| 亚洲av成人不卡在线观看播放网 | www.自偷自拍.com| 国产男女内射视频| 黄色一级大片看看| a 毛片基地| 免费在线观看黄色视频的| 亚洲国产看品久久| 啦啦啦在线免费观看视频4| 国产av精品麻豆| 久热爱精品视频在线9| 人人妻人人澡人人看| 欧美黑人精品巨大| 中文字幕高清在线视频| av网站免费在线观看视频| 午夜视频精品福利| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成av片中文字幕在线观看| 无限看片的www在线观看| 18在线观看网站| 日本五十路高清| 久久ye,这里只有精品| 久久久国产精品麻豆| 国产黄色视频一区二区在线观看| 精品国产一区二区久久| 国产精品国产av在线观看| 王馨瑶露胸无遮挡在线观看| 在线看a的网站| 蜜桃国产av成人99| 又粗又硬又长又爽又黄的视频| 久久精品国产亚洲av涩爱| 免费日韩欧美在线观看| 国产精品一国产av| 少妇精品久久久久久久| 亚洲精品久久午夜乱码| 国产女主播在线喷水免费视频网站| 999精品在线视频| 国产男人的电影天堂91| 岛国毛片在线播放| 777久久人妻少妇嫩草av网站| 18禁黄网站禁片午夜丰满| 两个人免费观看高清视频| 久久国产亚洲av麻豆专区| cao死你这个sao货| 国产欧美日韩一区二区三区在线| 日本猛色少妇xxxxx猛交久久| 性高湖久久久久久久久免费观看| 九色亚洲精品在线播放| 国产麻豆69| 国产午夜精品一二区理论片| 亚洲国产最新在线播放| 国产精品偷伦视频观看了| 亚洲欧美色中文字幕在线| 一级毛片女人18水好多 | 每晚都被弄得嗷嗷叫到高潮| 婷婷丁香在线五月| 女性生殖器流出的白浆| 一级黄片播放器| 在线av久久热| 久久精品国产亚洲av涩爱| 曰老女人黄片| 亚洲国产av影院在线观看| a级片在线免费高清观看视频| 美国免费a级毛片| 欧美精品一区二区免费开放| 日韩 欧美 亚洲 中文字幕| 在线观看免费高清a一片| 久久天躁狠狠躁夜夜2o2o | 伦理电影免费视频| 国产av精品麻豆| 超碰97精品在线观看| 一边亲一边摸免费视频| 亚洲中文av在线| 国产视频一区二区在线看| 在线av久久热| 成年人免费黄色播放视频| 国产精品免费视频内射| 99久久精品国产亚洲精品| 在线精品无人区一区二区三| 手机成人av网站| 精品一区二区三区四区五区乱码 | 多毛熟女@视频| 人体艺术视频欧美日本| 天堂俺去俺来也www色官网| 777米奇影视久久| 色94色欧美一区二区| 国产精品国产三级国产专区5o| 精品久久蜜臀av无| 性高湖久久久久久久久免费观看| 国产精品国产三级国产专区5o| 婷婷丁香在线五月| 人人妻人人澡人人爽人人夜夜| 亚洲中文字幕日韩| 大片电影免费在线观看免费| 人人妻人人澡人人爽人人夜夜| 久久精品久久久久久久性| 又粗又硬又长又爽又黄的视频| 免费高清在线观看日韩| 蜜桃国产av成人99| 免费av中文字幕在线| 免费观看av网站的网址| 中文字幕亚洲精品专区| 制服人妻中文乱码| 天堂中文最新版在线下载| 18禁观看日本| 久久人人爽av亚洲精品天堂|