• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Trimetallic FeCoNi disulfide nanosheets for CO2-emission-free methanol conversion

    2022-06-18 03:00:54YunnYiJunshnLiChunhuCui
    Chinese Chemical Letters 2022年2期

    Yunn Yi, Junshn Li, Chunhu Cui,b,*

    a Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China

    b Yangtza Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China

    c Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore

    ABSTRACT The electrocatalytic methanol conversion is of importance in direct methanol fuel cell, biomass reforming, and hydrogen generation.To achieve a “carbon-neutral” target, CO2 byproducts derived from biofuels should be mitigated.In contrast to the complete oxidation of methanol to CO2, the selective oxidation of methanol to formate is a CO2-emission-free route without the generation of toxic CO intermediates.Herein, we present a highly active catalyst based on transition-metal disulfide nanosheet arrays supported on Ni foam for methanol conversion.Through composition screening, we find that the FeCoNi disulfide nanosheet exhibits a highly efficient and selective methanol-to-formate conversion.The surface reconstruction of this catalyst allows us to produce 0.66 mmol cm-2 h-1 of formate at low potential(1.40 V) with high faradaic efficiency of >98%.This work offers a substantial composition tuning strategy to construct noble-metal-free active multi-metal sites for CO2-emission-free conversion of methanol to value-added formate.

    Keywords: Nanosheet Trimetallic catalyst Transition-metal sulfide Electrocatalysis Methanol oxidation Formate

    Selective electrocatalysis nowadays is very crucial in the field of small molecule conversions.Driven by renewable electricity,this technique allows reducing protons and CO2to useful fuels and chemicals on which human society depends [1].On the other hand, selective electrochemical oxidation of renewable hydrocarbon resources such as methane and biofuels to vectored chemicals has not been fully established by now [2].As major biomass-derived intermediates, methanol is a widely used commodity chemical, with a large energy density (6.13 kWh/kg), next to that of hydrogen.Besides, it is cheap, abundant, renewable [3],and easy to be transported and stored [4,5].Based on these advantages, methanol has been used as a raw material or precursor for the synthesis of a few upgraded chemicals.

    Formate is an essential chemical used in various fields, including chemical, printing and dyeing, agricultural and food industries[6].Furthermore, formate can be used as feedstock to obtain higher valuable formic acid under low-cost, and eco-friendly conditions[7].Methanol-to-formate conversion is a cost-effective process because the market value of formic acid/formate (>539 €/ton) is much higher than that of methanol itself (~350 €/ton) [8,9].In industry, the current technology for producing formic acid/formate is to hydrolyze the methyl formate that is pre-prepared by a combination of methanol with CO under high temperature (80 °C) and high pressure (4 MPa) [7].This route requires harsh conditions involving hazardous and flammable CO.In contrast, the electrochemical methanol oxidation reaction (MOR) is a mild and facile route,which also can couple with electrochemical hydrogen evolution reaction on cathode [8–11].

    The development of an efficient and durable electrocatalyst for the MOR remains a challenge.Pt-based materials demonstrated doable catalytic activity for the MOR but the Pt sites are susceptible to CO poisoning [12–15].Besides, the high cost and scarcity of Pt limit their wide applications [16–19].In general, Pt-based catalysts could not realize selective methanol-to-formate conversion[18].Among the various noble metal-free alternatives, Ni-based materials are shown to be promising [18,20].However, monometallic Ni catalysts showed low MOR activity, while bimetallic Nibased catalysts lead to improved MOR performance in alkaline media, such as bimetallic alloys [21,22], oxides [23,24], hydroxides[10,25], carbides [26], phosphides [27] and chalcogenides [28,29].Among them, the chalcogenides-derived materials experience surface structure and composition reconstructions under anodic polarization, leading to the formation of unique metal coordinated sites[30,31].The chalcogenide-derived hydroxide surface layer with an amorphous structure shows better catalytic activity relative to the directly synthesized amorphous materials.In our previous works[32,33], we demonstrated that the charged Ni are active sites for the MOR, and the electronic structure of Ni sites can be tuned by introducing second or/and third metals [34].In chalcogenidederived hydroxides, the dynamic existence of trace sulfur species in the amorphous layer is proposed to further modify the coordination environments.However, to the best of our knowledge, it remains a major challenge to mediate Ni sites for selective methanolto-formate with tailored composition and coordinations.

    Fig.1.(a) Schematic illustration of the synthesis process of FCNS@NF.(b–d) SEM images of FCNS@NF at different scales.

    Herein, we present a composition screening method to obtain a trimetallic FeCoNi disulfide nanosheet catalyst on Ni foam (FCNS@NF) that presents higher MOR activity relative to monometallic Ni disulfide and bimetallic NiFe and NiCo disulfide on Ni foam in alkaline media.By characterizing the morphology,structure, chemical state and intermediate, the origin of the improved MOR activity on FCNS@NF has been clarified.

    The FCNS@NF electrode was synthesized through a facile twostep hydrothermal process, as shown in Fig.1a.To compare the MOR activity, the monometallic Ni disulfide (Ni3S2@NF), and bimetallic Fe-Ni disulfide (FNS@NF) and Co-Ni disulfide (CNS@NF)on NF were synthesized by a similar method.The details of experiments are available in supporting information.The scanning electron microscopy (SEM) images of FCNS@NF show vertically aligned nanosheet arrays on the surface of the porous NF (Figs.1b–d).The average thickness of the nanosheets is ~30 nm.The SEM images of control samples are shown in Fig.S1 (Supporting information).The FNS and CNS exhibit similar nanosheet morphology relative to FCNS@NF, which can preclude the effect of structure.The SEM-EDS mapping results indicate the uniform distribution of Fe, Co, Ni and S elements on the FCNS@NF (Fig.S2 in Supporting information).

    The crystal structures of the as-prepared electrodes were initially analyzed by X-ray diffraction (XRD), as shown in Fig.2a.For all electrodes, except for the three strong peaks are belong to the metallic Ni from the NF, the diffraction peaks at 21.9°, 31.3°, 38.1°,50.2° and 55.4° are assigned to the (101), (110), (003), (113) and(122) lattice planes of Ni3S2, respectively [30,35–37].The incorporation of Fe or/and Co into Ni3S2for the formation of FNS@NF,CNS@NF and FCNS@NF leads to lattice distortion, reflected as slight shifts compared to Ni3S2@NF [35,38,39].Raman spectroscopy was performed to analyze the crystal structure of FCNS@NF (Fig.S3 in Supporting information).The six vibrational bands at 185 (Ag),195 (Eg), 216 (Eg), 299 (Eg), 321 (Ag), and 345 cm-1(Eg) are ascribed to the Ni3S2phase [30,40].The transmission electron microscopy (TEM) images further confirm the nanosheet structure for FCNS@NF (Figs.2b and c), and the corresponding high-resolution TEM (HRTEM) images show the lattice spacing of 2.38, 2.91 and 4.08, which are attributed to the (003), (110), and (101) planes of Ni3S2phase.The XRD, Raman and HRTEM (Figs.2d–f) results show the Ni3S2phase in FCNS@NF, and the incorporation of Fe or/and Co does not change the crystal phase of Ni3S2.The highangle annular dark-field scanning transmission electron microscopy(HAADF-STEM) and corresponding element mapping results show the homogeneous distribution of Fe, Co, Ni and S elements at the nanoscale in FCNS@NF (Figs.2g and h).In addition, the element ratio in Fe-Ni-Co disulfide nanosheets was analyzed by STEM energy dispersive X-ray spectrum (STEM-EDS), and it is Fe0.45Co1.08Ni1.47S2(Fig.2i).The result further confirms the Ni3S2phase, and the element ratio of (Fe + Co + Ni)/S is exactly 1.5.Note that the Ni is the dominant component although without adding any Ni precursors in the synthesis process.It is probably due to the strong etching ability of Na2S enables the leaching of Ni from NF [30].

    Fig.2.(a) XRD patterns of the Ni foam and as-prepared electrodes.Inset shows the specific XRD patterns of the selected region.(b, c) TEM images, (d-f) HRTEM images, (g, h) HAADF-STEM image and corresponding elements mapping, and (i)EDS spectrum of FCNS@NF.The scale bar in (g, h) is 500 nm.

    Fig.3.XPS spectra of (a) Fe 2p, (b) Co 2p, (c) Ni 2p and (d) S 2p for FCNS@NF.

    The surface chemical compositions of the as-prepared electrodes were determined by X-ray photoelectron spectroscopy(XPS).The XPS survey spectra for Ni3S2@NF and FCNS@NF are shown in Fig.S4a (Supporting information).The additional Fe and Co peaks for FCNS@NF further confirm the incorporation of Fe and Co into Ni3S2.The high-resolution XPS spectra of Fe 2p, Co 2p, Ni 2p and S 2p region for electrodes are shown in Fig.3 and Fig.S4 (Supporting information).The Fe 2p spectra of FNS@NF and FCNS@NF exhibit Fe 2p3/2and Fe 2p1/2peaks at 713.5 and 725.7 eV with two satellites at 718.2 and 733.4 eV (Fig.3a and Fig.S4b).The two main peaks could be deconvoluted into two doublets at 710.8,723.3 eV; and 713.7, 726.3 eV, which are assigned to Fe2+and Fe3+,respectively [41–43].Fig.3b and Fig.S4c exhibit the Co 2p spectra of CNS@NF and FCNS@NF, their Co 2p3/2and Co 2p1/2peaks were also fitted into two doublets with the characteristics of Co3+(781.6 and 797.4 eV); and Co2+(785.6 and 799.9 eV) [44–47].The results demonstrate two kinds of chemical states (Fe2+/3+and Co2+/3+)in the FCNS@NF surface.As shown in Figs.3c and 4d–f, the Ni 2p3/2and Ni 2p1/2peaks at 856.2 and 873.8 eV, with two satellite peaks, indicate the surface Ni2+species, and the small peak at 853.1 eV is attributed to metallic Ni0[30,35,48,49].The intensity of the Ni0peak in Ni3S2@NF is weaker than those of FNS@NF,CNS@NF, and FCNS@NF.We propose that the S may diffuse to a deeper layer in the absence of deposited Co and Fe.Besides, the FNS@NF, CNS@NF, and FCNS@NF present a free-standing nanosheet structure, vertically on the Ni foam surface, exposing more metallic Ni.The deconvoluted XPS spectra of S show the 2p3/2peak at 162.1 eV, and 2p1/2peak at 163.1 eV correspond to the sulfur-metal bonds, where the former peak reflects the terminal S2-, and the latter peak arises from the bridging S22-(Figs.3c and Figs.S4g–i)[40,50,51].Compared to Ni3S2@NF, the larger peak of bridging S22-in FCNS@NF indicates the strong interaction between the crossed nanosheets.In addition, the peak at 168.6 eV is contributed to the surface SO42-from partial oxidation of surface S [30,40,52].These S-derived anions should modify the coordination environments.

    The electrochemical performance of the as-prepared electrodes was first evaluated by cyclic voltammetry (CV) at a scan rate of 10 mV/s in a 1.0 mol/L KOH electrolyte (Fig.S5a in Supporting information).During the forward scan, the oxidation peaks at~1.39 V can be observed on all electrodes, and these peaks are ascribed to the oxidation of surface Ni(OH)2to NiOOH in alkaline media, indicating that the surface Ni sulfide was firstly oxidized to Ni(OH)2and subsequently to NiOOH [32,53,54].The incorporation of Fe and Co into the Ni3S2increased the oxidation current density.This result suggests that the Fe and Co mediate the electronic structure and favor the formation of high valence metal sites.For the backward scan, the reduction current peak from NiOOH to Ni(OH)2appeared at ~1.29 V [33].The increased area of surface redox couples for FCNS@NF implies the abundant surface active sites.To preclude the effect of capacitive current on MOR performance (Fig.S5b in Supporting information), the MOR was evaluated by linear sweep voltammetry (LSV) at a low scan rate of 2 mV/s in a 1.0 mol/L KOH electrolyte with or without 1.0 mol/L methanol.As shown in Fig.4a, except for the oxidation current peaks, there is no appreciable current until the potential was increased to 1.50 V in 1.0 mol/L KOH solution.When adding 1.0 mol/L methanol into the 1.0 mol/L KOH solution, a sharp increase in current density was observed with an onset potential the same as that of the Ni2+/Ni3+during the anodic scan.However,other electrodes exhibited higher onset potential than those of the corresponding onset potential of redox couple.Thus, the FCNS@NF showed the lowest onset potential at 1.33 V for the MOR, indicating fast reaction kinetics (Fig.S5c in Supporting information).We exhibited the MOR activity order, with FCNS@NF>CNS@NF>FNS@NF>Ni3S2@NF.Fig.S5d (Supporting information) illustrates the comparison of the MOR and OER current density at 1.50 V.The FCNS@NF presents the highest MOR current density of 265 mA/cm2, much higher than those of CNS@NF (149 mA/cm2),FNS@NF (99 mA/cm2) and Ni3S2@NF (77 mA/cm2).The MOR current density of 100 mA/cm2was achieved at 1.53, 1.50, 1.46 and 1.42 V for Ni3S2@NF, FNS@NF, CNS@NF, and FCNS@NF, respectively.This FCNS@NF demonstrates improved MOR activity, among the state-of-the-art transition-metal-based electrocatalysts reported recently (Table S1 in Supporting information).The MOR activity tested at a higher scan rate (50 mV/s) is a little bit higher (Fig.S5e in Supporting information), meaning that the activity is somehow affected by the scan rate.In addition, the MOR activity of the FeCo precursor@NF is inferior to that of FCNS@NF (Fig.S5f in Supporting information).

    The electrochemically active surface areas (ECSAs) of electrodes were calculated based on the double-layer capacitance (Cdl) from the CVs tested at different scan rate in the non-faradaic potential range (Fig.S6 in Supporting information).Fig.4b displays the current density difference (Δj/2) at the center of the scanning potential range (0.975 V) as a function of the scan rate.The slopes of their linear fitting plots multiplied by the geometric area of the working electrode (1.0 cm2) equal theCdl[41], and the results were summarized in Table S2 (Supporting information).The FCNS@NF has the largest ECSA (134.75 cm2), indicating that increased active sites for the MOR [55].Furthermore, the charge transfer is a key parameter evaluating electrocatalytic kinetics.Potentiostatic electrochemical impedance spectroscopy (PEIS) of the electrodes was tested at 1.425 V, and the corresponding Nyquist plots are shown in Fig.4c.Impedance responses were fitted using an equivalent circuit (Fig.4c, inset) consisting of a series resistance (Rs),a charge transfer resistance (Rct), and a constant phase element(CPE) [56].The fitting results suggest a faster charge transfer on FCNS@NF with a smallerRctof 1.07Ω(Table S3 in Supporting information), suggesting an enhanced electronic transport at the electrode/electrolyte interface [8,36,57].

    In general, the electrochemical oxidation of methanol in alkaline solution on Ni-based catalysts proceeds with generated surface Ni3+sites.The proposed reaction mechanism is shown as follows[32,58]:

    The overall reaction:

    Therefore, the analysis of the redox Ni(OH)2?NiOOH process is shown to understand the mechanism of improved MOR activity.Fig.4d and Figs.S7a–d (Supporting information) display the CVs of the as-prepared electrodes in 1.0 mol/L KOH solution at different scan rates (10–100 mV/s).With the increase of the scan rate, the anodic/cathodic peak current (Ip) increases, the distance of coupled redox peaks increase.We show that theIpis proportional to the scan rate, the surface coverage of Ni(OH)2/NiOOH redox species (Γ*) and the proton diffusion coefficient (D) can be calculated using the previously reported methods [21,32,49,59–61].TheΓ*was calculated from the slope of the fitted line forIpvs.scan rate in low scan rate range, 10–50 mV/s (Fig.4e and Figs.S7e–h in Supporting information).TheD, as a controlled parameter for a diffusion-limited Ni(OH)2?NiOOH reaction, could be derived from the slope of the fitted line forIpvs.the square root of scan rate in a higher scan rate range, 60–100 mV/s (Fig.4f and Figs.S7i–l in Supporting information).The results were summarized in Table S4 (Supporting information), and the details of calculations are shown in Supporting information.TheΓ*value of FCNS@NF was estimated as 2.40 × 10-6mol/cm2, which is more than three times than that of Ni3S2@NF (7.54 × 10-7mol/cm2), and a little bit higher than that of FNS@NF (1.56 × 10-6mol/cm2) and FNS@NF(2.02 × 10-6mol/cm2).Furthermore, theDvalue of FCNS@NF is highest (3.56 × 10-6cm2/s), indicating a faster diffusion of the redox limiting species on the surface [32].These results show that FCNS@NF has favorable surface redox behaviors.

    Fig.4.(a) LSVs in a 1.0 mol/L KOH solution with (solid line) and without (dotted line) 1.0 mol/L methanol at 2 mV/s.(b) Linear fitting of current density difference (Δj/2)vs. the scan rate.(c) Nyquist plots of PEIS for Ni3S2@NF, FNS@NF, CNS@NF and FCNS@NF.inset: equivalent circuit.(d) CVs in a 1.0 mol/L KOH solution at different scan rates(10–100 mV/s).(e) Linear fitting of the anodic and cathodic peak current with the scan rate in the low scan rate range (10–50 mV/s).(f) Linear fitting of the anodic and cathodic peak current densities with the square roots of the scan rate in the higher scan rate range (60–100 mV/s).(g) CVs with different cycles at 50 mV/s in the ADT.(h)CA curve at 1.40 V, inset: SEM images of the catalyst after CA test.(i) Calculated faradaic efficiency of methanol-to-formate conversion with three independent tests after 10 h CA test for FCNS@NF in a 1.0 mol/L KOH solution containing 1.0 mol/L methanol.

    The CVs of FCNS@NF at 50 mV/s in 1.0 mol/L KOH solution containing 0.1 mol/L to 3.0 mol/L methanol were shown in Fig.S8a(Supporting information).Increasing the concentration of methanol increases the MOR current density, thus the oxidation peak of Ni2+to Ni3+and the MOR current peak are overlapped.Fig.S8b (Supporting information) displays the current density at 1.50 V as a function of methanol concentration.Based on the MOR reaction equation, at a lower concentration of methanol, the active Ni sites,and the interfacial OH-are adequate.At a higher concentration of methanol above 1.3 mol/L, the mass transfer of OH-is limited,which restricts the formation of active Ni sites and the oxidation of methanol [62].The linear fitting of the logarithmic dependence of the current densityvs.the methanol concentration in a low concentration range reveals an apparent methanol reaction order (RO)of FCNS@NF is approximately equal to 0.2 at 1.50 V (Fig.S8c in Supporting information), which is close to that of the (110)-faceted Ni nanoparticles (RO = 0.3) [61].

    The stability of FCNS@NF was evaluated by the accelerated durability test (ADT) and chronoamperometry (CA) in a 1.0 mol/L KOH solution containing 1.0 mol/L methanol.In Fig.4g, CVs exhibited a slight increase in current density within 600 cycles, then the current density gradually decreased.The current density at 1.50 V just exhibited a 21.8% loss after 1000 cycles.CA test at 1.40 V also showed an increase in current density in the first hour, whereafter the current density dropped slowly and still remained 56.2%of its initial value after 10 h (Fig.4h).At the beginning, the surface of FeCoNi disulfide nanosheets transformed into highly active metal oxyhydroxides under the MOR.Thus, the initial increase in current density during the ADT and CA test is likely due to this surface reconstruction.SEM insets in Fig.4h imply that the morphology and size of the nanosheet remained unchanged after the long-term MOR (10 h CA at 1.40 V).The analysis of MOR products was performed on an ion chromatography (IC) after the CA test.IC profiles of three independence measurements were shown in Fig.S9a (Supporting information), the dominant peaks at 5.15 min belong to HCOO-[32,63].Faradaic efficiency of the methanol-toformate was calculated to 98.08% by averaging the results of the three measurements (Fig.4i).After the test, the product of formate is 6.62 mmol through the injection of 2600 C of charge, with a yield of 0.66 mmol cm-2h-1.

    To further understand the origin of the superior MOR activity,the transformation of crystal structure and surface chemical composition for FCNS@NF after the MOR process were analyzed by Raman and XPS.The Raman spectrum of the post-FCNS@NF was shown in Fig.S10 (Supporting information), the vibrational bands of Ni3S2are weak, implying the hydroxylation of Ni3S2during the MOR.The two intense bands at 476 and 553 cm-1are ascribed to the Eg(Metal-O) bending vibration mode and A1g(metal-O)stretching vibration mode, indicating the generation of -OOH on the catalyst surface [64–66].The XPS spectra of FCNS@NF after the MOR as shown in Fig.S11 (Supporting information).The Fe 2p spectrum of post-FCNS@NF shows a similar chemical state to that of the initial one, and the intensity of the peaks decreased due to the leaching of Fe element during the MOR (Fig.S11a).The Co 2p spectra show an increased Co3+/Co2+ratio in the surface layer, indicating the partial oxidation of Co2+to Co3+(Fig.S11b).Concerning the Ni 2p spectra (Fig.S11c), the increased intensity of Ni3+relative to Ni2+implies a highly increased concentration of Ni3+species.These results verify that the incorporation of Co and Fe into Ni3S2favors the formation of active Ni3+.There no clear S 2p peak can be observed after the MOR owing to the S leaching under anodic polarization, suggesting that the surface metal disulfide was converted into metal oxyhydroxides (Fig.S11d) [45,67].For the O 1s spectra, the increase of surface hydroxyl further confirms the formation of metal oxyhydroxides after the MOR (Fig.S11e) [44].These Raman and XPS results demonstrate that the FeCoNi disulfide was transformed to metal oxyhydroxides, Ni(FeCo)OOH, during the MOR, and then the reconstructed Ni(FeCo)OOH triggered the highly effective and selective methanol-to-formate conversion.

    In summary, we demonstrated an electrochemical reconstruction of trimetallic FeCoNi disulfide to Ni(FeCo)OOH, where the concentration of active Ni3+was highly improved owing to the incorporation of Fe and Co, and the interplay between metals andin situformed FeCoNi disulfide/Ni(FeCo)OOH interfaces.The developed FCNS@NF achieved a current density of 265 mA/cm2for the MOR at 1.50 V in a 1.0 mol/L KOH electrolyte containing 1.0 mol/L methanol, and it can produce 0.66 mmol cm-2h-1of formate at 1.40 V with a high faradaic efficiency above 98%.This low-cost and easily available noble-metal-free MOR catalyst enables a highly efficient and CO2-emission-free methanol-to-formate conversion,providing a promising approach to convert biomass into valueadded chemicals on a large scale under environmental-friendly condition.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    C.Cui acknowledges the support from the Recruitment Program of Thousand Youth Talents.Y.Yi acknowledges the support from the program of China Scholarships Council (No.202006070158).J.Li obtained International Postdoctoral Exchange Fellowship Program (Talent-Introduction Program, No.YJ20190126) in 2019 and is grateful for the project (No.2019M663468) funded by the China Postdoctoral Science Foundation.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.07.005.

    超碰成人久久| 亚洲av中文av极速乱| 制服丝袜香蕉在线| 大香蕉久久网| 久久久久国产网址| 国产精品不卡视频一区二区| 欧美老熟妇乱子伦牲交| 亚洲精品一二三| 91精品三级在线观看| 国产精品国产av在线观看| 久久精品熟女亚洲av麻豆精品| 巨乳人妻的诱惑在线观看| 国产色婷婷99| 精品一区二区三卡| 久久久久久久亚洲中文字幕| 最近中文字幕高清免费大全6| 国产成人精品婷婷| 一区二区三区精品91| 欧美成人午夜精品| 男女啪啪激烈高潮av片| 久久99一区二区三区| 人体艺术视频欧美日本| 黄片小视频在线播放| 日韩在线高清观看一区二区三区| 18禁国产床啪视频网站| 国产伦理片在线播放av一区| 欧美变态另类bdsm刘玥| 午夜免费男女啪啪视频观看| 少妇被粗大的猛进出69影院| 在线观看免费视频网站a站| 赤兔流量卡办理| 久久久精品免费免费高清| 赤兔流量卡办理| 宅男免费午夜| 欧美老熟妇乱子伦牲交| 考比视频在线观看| 国产成人午夜福利电影在线观看| 欧美+日韩+精品| av有码第一页| 国产av精品麻豆| 久久人妻熟女aⅴ| 亚洲欧美一区二区三区黑人 | 精品一区二区免费观看| av福利片在线| 亚洲国产欧美在线一区| 亚洲av中文av极速乱| 欧美日韩视频精品一区| 亚洲av成人精品一二三区| av免费在线看不卡| 成人国产av品久久久| 久久人人97超碰香蕉20202| 韩国精品一区二区三区| 中文字幕制服av| 纯流量卡能插随身wifi吗| 亚洲国产色片| 国产亚洲一区二区精品| 午夜精品国产一区二区电影| 久久久久久人妻| 在线观看一区二区三区激情| 在线观看免费视频网站a站| a级片在线免费高清观看视频| 日韩,欧美,国产一区二区三区| 日韩,欧美,国产一区二区三区| 亚洲第一区二区三区不卡| 麻豆av在线久日| 两性夫妻黄色片| 亚洲av成人精品一二三区| av又黄又爽大尺度在线免费看| 国产视频首页在线观看| 黄色怎么调成土黄色| 久久人人爽av亚洲精品天堂| 黄色毛片三级朝国网站| 老司机影院成人| 少妇熟女欧美另类| 自线自在国产av| 欧美精品高潮呻吟av久久| 人人妻人人爽人人添夜夜欢视频| www.av在线官网国产| 狠狠婷婷综合久久久久久88av| 人成视频在线观看免费观看| 只有这里有精品99| 成人国产麻豆网| www.精华液| 日日摸夜夜添夜夜爱| 欧美日韩av久久| 久久久久久人人人人人| 久久久国产欧美日韩av| 亚洲国产精品999| 亚洲av电影在线进入| 男女免费视频国产| av免费观看日本| 国产97色在线日韩免费| 伦理电影免费视频| 丰满迷人的少妇在线观看| 大片免费播放器 马上看| 亚洲欧美中文字幕日韩二区| 久久久久国产精品人妻一区二区| 性色av一级| 女人高潮潮喷娇喘18禁视频| 午夜福利一区二区在线看| 黄色一级大片看看| 国产有黄有色有爽视频| 国产黄色免费在线视频| 免费在线观看黄色视频的| 精品久久久久久电影网| 欧美国产精品一级二级三级| 日本av手机在线免费观看| 久久国内精品自在自线图片| 国产日韩欧美视频二区| 18禁观看日本| 日韩电影二区| 九草在线视频观看| 成人毛片60女人毛片免费| 只有这里有精品99| 少妇人妻久久综合中文| 91久久精品国产一区二区三区| 国产成人免费无遮挡视频| 老司机亚洲免费影院| 韩国高清视频一区二区三区| 日日啪夜夜爽| 亚洲精品一二三| 肉色欧美久久久久久久蜜桃| 久久精品亚洲av国产电影网| 久久这里只有精品19| 久久久精品94久久精品| 国产精品女同一区二区软件| 毛片一级片免费看久久久久| a级毛片黄视频| 亚洲精品国产av蜜桃| 男女无遮挡免费网站观看| videosex国产| 91午夜精品亚洲一区二区三区| 亚洲国产av新网站| 亚洲精品国产色婷婷电影| 免费观看无遮挡的男女| 久久久久精品性色| 黑人巨大精品欧美一区二区蜜桃| 国产午夜精品一二区理论片| 免费高清在线观看日韩| 国产精品偷伦视频观看了| 熟女少妇亚洲综合色aaa.| 啦啦啦视频在线资源免费观看| 最近的中文字幕免费完整| 自线自在国产av| 亚洲男人天堂网一区| 亚洲一码二码三码区别大吗| 日韩不卡一区二区三区视频在线| 国产高清国产精品国产三级| 亚洲欧美一区二区三区久久| 久久久久久免费高清国产稀缺| 欧美精品高潮呻吟av久久| 国产在线免费精品| 男女边摸边吃奶| 丝袜美腿诱惑在线| 国产国语露脸激情在线看| 天美传媒精品一区二区| 韩国av在线不卡| 老熟女久久久| 18+在线观看网站| 美女脱内裤让男人舔精品视频| 91午夜精品亚洲一区二区三区| 99热网站在线观看| 久久ye,这里只有精品| 高清欧美精品videossex| 韩国高清视频一区二区三区| 国产日韩欧美在线精品| 亚洲男人天堂网一区| 国产av码专区亚洲av| 亚洲伊人久久精品综合| 搡老乐熟女国产| 飞空精品影院首页| 亚洲av欧美aⅴ国产| av一本久久久久| 三上悠亚av全集在线观看| 日本免费在线观看一区| 亚洲国产精品一区三区| 丝袜喷水一区| 欧美日韩成人在线一区二区| 日韩欧美精品免费久久| 国产又色又爽无遮挡免| 色吧在线观看| 晚上一个人看的免费电影| 老司机影院毛片| 黑人猛操日本美女一级片| 亚洲国产成人一精品久久久| 亚洲精品自拍成人| 亚洲欧美一区二区三区久久| 亚洲成av片中文字幕在线观看 | 韩国av在线不卡| 亚洲经典国产精华液单| 午夜久久久在线观看| 欧美成人精品欧美一级黄| 久久人妻熟女aⅴ| 黑人欧美特级aaaaaa片| 精品视频人人做人人爽| 亚洲国产av影院在线观看| 九色亚洲精品在线播放| 精品国产乱码久久久久久男人| 亚洲欧洲精品一区二区精品久久久 | 欧美国产精品一级二级三级| av在线app专区| 母亲3免费完整高清在线观看 | 久久亚洲国产成人精品v| 日韩制服骚丝袜av| 久久精品久久久久久久性| 亚洲成人av在线免费| 国产亚洲最大av| av线在线观看网站| 日本av免费视频播放| 国产在视频线精品| 99re6热这里在线精品视频| 亚洲精品乱久久久久久| 亚洲精品国产av蜜桃| 伊人亚洲综合成人网| 免费观看性生交大片5| 亚洲欧美色中文字幕在线| 国产精品一国产av| av不卡在线播放| 久久久国产欧美日韩av| 婷婷色综合大香蕉| 国产老妇伦熟女老妇高清| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩精品成人综合77777| 人妻人人澡人人爽人人| av有码第一页| 天堂8中文在线网| 国产又爽黄色视频| 日韩制服骚丝袜av| 亚洲精品在线美女| 视频在线观看一区二区三区| 中文乱码字字幕精品一区二区三区| 捣出白浆h1v1| 国产视频首页在线观看| 日本91视频免费播放| 国产精品成人在线| 春色校园在线视频观看| 90打野战视频偷拍视频| 亚洲精品久久午夜乱码| 亚洲欧美成人精品一区二区| 亚洲欧洲日产国产| 日韩视频在线欧美| 亚洲一级一片aⅴ在线观看| 美女视频免费永久观看网站| 18在线观看网站| 中文字幕精品免费在线观看视频| 九草在线视频观看| 观看美女的网站| 日韩精品免费视频一区二区三区| 成人国语在线视频| 丝瓜视频免费看黄片| 免费人妻精品一区二区三区视频| 亚洲欧美精品综合一区二区三区 | 亚洲精品久久午夜乱码| 久久亚洲国产成人精品v| 日韩中文字幕视频在线看片| 久久精品国产鲁丝片午夜精品| 这个男人来自地球电影免费观看 | 久久国产精品男人的天堂亚洲| 欧美人与性动交α欧美精品济南到 | 精品一区二区三卡| 一本色道久久久久久精品综合| 亚洲av综合色区一区| 肉色欧美久久久久久久蜜桃| 精品第一国产精品| 亚洲精品久久成人aⅴ小说| 国产麻豆69| 亚洲av综合色区一区| 亚洲av欧美aⅴ国产| 午夜91福利影院| 精品人妻熟女毛片av久久网站| 男女边吃奶边做爰视频| 精品亚洲成a人片在线观看| 波多野结衣一区麻豆| 狂野欧美激情性bbbbbb| 高清黄色对白视频在线免费看| 丝袜美足系列| 大香蕉久久网| 国精品久久久久久国模美| 国产午夜精品一二区理论片| 欧美中文综合在线视频| 美女中出高潮动态图| 亚洲国产av新网站| www.自偷自拍.com| 婷婷色综合大香蕉| 飞空精品影院首页| 亚洲天堂av无毛| 在线免费观看不下载黄p国产| 欧美日韩一区二区视频在线观看视频在线| 国产免费一区二区三区四区乱码| 精品少妇黑人巨大在线播放| 成人影院久久| 久久毛片免费看一区二区三区| 亚洲成国产人片在线观看| 天天躁夜夜躁狠狠躁躁| 中文字幕人妻熟女乱码| 久久久精品区二区三区| 2022亚洲国产成人精品| 久久久久国产精品人妻一区二区| a级毛片在线看网站| 不卡av一区二区三区| 看十八女毛片水多多多| 日日爽夜夜爽网站| 国产成人精品福利久久| 91在线精品国自产拍蜜月| 另类亚洲欧美激情| 欧美国产精品一级二级三级| 久久久精品免费免费高清| 国产一区亚洲一区在线观看| 91成人精品电影| 在线观看免费日韩欧美大片| 国产日韩欧美视频二区| 1024视频免费在线观看| 少妇熟女欧美另类| 欧美日韩成人在线一区二区| 久久久久国产精品人妻一区二区| 天天躁夜夜躁狠狠久久av| 2021少妇久久久久久久久久久| 黑丝袜美女国产一区| 黄色毛片三级朝国网站| 性高湖久久久久久久久免费观看| 黄色毛片三级朝国网站| 成人免费观看视频高清| 男男h啪啪无遮挡| 在线天堂中文资源库| 国产精品女同一区二区软件| 国产精品二区激情视频| 国产亚洲午夜精品一区二区久久| 日韩视频在线欧美| 国产激情久久老熟女| 久久精品国产亚洲av天美| 国产欧美日韩综合在线一区二区| 亚洲精品国产av蜜桃| 一区在线观看完整版| 性色av一级| 日产精品乱码卡一卡2卡三| 777久久人妻少妇嫩草av网站| 满18在线观看网站| 丝袜脚勾引网站| 男女免费视频国产| 丝袜脚勾引网站| 国产女主播在线喷水免费视频网站| 国产精品久久久久成人av| 老司机影院毛片| 嫩草影院入口| 人体艺术视频欧美日本| 免费在线观看视频国产中文字幕亚洲 | 91久久精品国产一区二区三区| 日韩电影二区| 有码 亚洲区| 美女中出高潮动态图| 久久久久国产一级毛片高清牌| 久久久a久久爽久久v久久| 国产97色在线日韩免费| 国产成人精品一,二区| 亚洲伊人久久精品综合| 一个人免费看片子| 一级片'在线观看视频| 久久久久久久亚洲中文字幕| 欧美日韩亚洲国产一区二区在线观看 | www.熟女人妻精品国产| 另类亚洲欧美激情| 黄片播放在线免费| 黄色一级大片看看| av国产久精品久网站免费入址| 波野结衣二区三区在线| 婷婷色综合www| 精品国产乱码久久久久久男人| 人妻人人澡人人爽人人| 制服丝袜香蕉在线| 亚洲国产精品成人久久小说| 午夜日本视频在线| 亚洲精品在线美女| 欧美bdsm另类| 十八禁高潮呻吟视频| 亚洲综合色惰| 国产精品麻豆人妻色哟哟久久| 成年女人毛片免费观看观看9 | 亚洲国产精品成人久久小说| 一级,二级,三级黄色视频| 亚洲精品第二区| 亚洲人成电影观看| 亚洲国产欧美日韩在线播放| 精品国产一区二区久久| av在线老鸭窝| 高清av免费在线| 精品人妻在线不人妻| 欧美国产精品一级二级三级| 欧美激情 高清一区二区三区| 久久综合国产亚洲精品| 国产一区二区三区综合在线观看| 免费观看无遮挡的男女| 国产av精品麻豆| 午夜老司机福利剧场| 美女脱内裤让男人舔精品视频| 亚洲欧美清纯卡通| 纵有疾风起免费观看全集完整版| 秋霞在线观看毛片| 国产熟女午夜一区二区三区| 亚洲图色成人| 在线观看三级黄色| 另类亚洲欧美激情| 日本爱情动作片www.在线观看| 久久鲁丝午夜福利片| 国精品久久久久久国模美| videosex国产| av不卡在线播放| 精品福利永久在线观看| 欧美成人午夜精品| 欧美日韩精品成人综合77777| 自线自在国产av| 国产成人免费观看mmmm| 天天影视国产精品| 国产片内射在线| 免费在线观看完整版高清| 久久精品久久精品一区二区三区| 成人亚洲精品一区在线观看| 欧美人与性动交α欧美软件| 一级片免费观看大全| 亚洲五月色婷婷综合| 中文欧美无线码| 午夜精品国产一区二区电影| 日韩大片免费观看网站| 80岁老熟妇乱子伦牲交| 亚洲精品久久午夜乱码| 欧美日韩综合久久久久久| 亚洲av免费高清在线观看| 男的添女的下面高潮视频| 97精品久久久久久久久久精品| 成人手机av| 国产精品蜜桃在线观看| 亚洲综合色惰| 久久这里有精品视频免费| 国产日韩一区二区三区精品不卡| 欧美日本中文国产一区发布| 美国免费a级毛片| 寂寞人妻少妇视频99o| 丝袜脚勾引网站| 只有这里有精品99| 日韩制服丝袜自拍偷拍| 啦啦啦在线观看免费高清www| 国产av一区二区精品久久| av天堂久久9| 亚洲国产日韩一区二区| 夜夜骑夜夜射夜夜干| 中文天堂在线官网| 婷婷色av中文字幕| 国产成人免费观看mmmm| 久久久精品免费免费高清| 人人澡人人妻人| 色94色欧美一区二区| 我要看黄色一级片免费的| 久久人人爽人人片av| 香蕉国产在线看| 九九爱精品视频在线观看| 可以免费在线观看a视频的电影网站 | 日韩,欧美,国产一区二区三区| 精品少妇内射三级| 亚洲av日韩在线播放| 精品少妇一区二区三区视频日本电影 | 欧美精品一区二区大全| 超碰97精品在线观看| 亚洲国产av新网站| h视频一区二区三区| 国产综合精华液| 亚洲成色77777| 在线 av 中文字幕| 如日韩欧美国产精品一区二区三区| 久久精品国产亚洲av天美| 亚洲国产欧美在线一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成年动漫av网址| 国产一区二区 视频在线| 久久久久久久久久久免费av| 亚洲国产精品成人久久小说| 亚洲天堂av无毛| 国产亚洲av片在线观看秒播厂| 亚洲内射少妇av| 国产精品二区激情视频| 午夜福利影视在线免费观看| 午夜日本视频在线| 欧美成人午夜免费资源| 午夜久久久在线观看| 99re6热这里在线精品视频| 99九九在线精品视频| 久久久久久久久久久久大奶| 欧美日韩亚洲高清精品| 18禁裸乳无遮挡动漫免费视频| 国产精品国产av在线观看| 看免费av毛片| 欧美日韩一区二区视频在线观看视频在线| 久久人人爽人人片av| 视频区图区小说| 欧美97在线视频| 人人澡人人妻人| 国产高清不卡午夜福利| 最近的中文字幕免费完整| 久久精品国产自在天天线| 日本91视频免费播放| 国产视频首页在线观看| 国产精品一区二区在线观看99| 国产精品久久久久久精品电影小说| 午夜av观看不卡| 一个人免费看片子| 亚洲情色 制服丝袜| 亚洲av电影在线进入| 九色亚洲精品在线播放| 亚洲欧美成人综合另类久久久| 美女午夜性视频免费| 久久久久久久久免费视频了| 欧美激情高清一区二区三区 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 18禁国产床啪视频网站| videossex国产| 1024视频免费在线观看| 乱人伦中国视频| 国产精品欧美亚洲77777| 大香蕉久久网| 国产 精品1| 99热国产这里只有精品6| 久久国产精品男人的天堂亚洲| 综合色丁香网| 大话2 男鬼变身卡| 黄色 视频免费看| 一区二区av电影网| 秋霞伦理黄片| 在线观看免费高清a一片| 成人毛片a级毛片在线播放| 18禁动态无遮挡网站| 大片电影免费在线观看免费| 国产在线免费精品| 97人妻天天添夜夜摸| 中文字幕人妻熟女乱码| h视频一区二区三区| 国产1区2区3区精品| 美女大奶头黄色视频| 18禁动态无遮挡网站| 一本—道久久a久久精品蜜桃钙片| 黄片小视频在线播放| 一本久久精品| 国产精品无大码| 在线观看一区二区三区激情| 精品少妇久久久久久888优播| 亚洲欧美一区二区三区黑人 | 日韩中文字幕视频在线看片| 99国产精品免费福利视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲欧美中文字幕日韩二区| 最新中文字幕久久久久| 赤兔流量卡办理| 精品国产国语对白av| 欧美亚洲 丝袜 人妻 在线| 国产野战对白在线观看| 久久人人爽av亚洲精品天堂| 天堂中文最新版在线下载| 国产精品久久久久久精品古装| 精品久久蜜臀av无| 在线天堂中文资源库| 97人妻天天添夜夜摸| 日韩制服骚丝袜av| 免费在线观看完整版高清| 欧美 亚洲 国产 日韩一| 国产熟女午夜一区二区三区| 亚洲精品久久成人aⅴ小说| 嫩草影院入口| 久久99精品国语久久久| 亚洲国产毛片av蜜桃av| 黄色怎么调成土黄色| 满18在线观看网站| 熟妇人妻不卡中文字幕| 国产精品一区二区在线不卡| 精品国产乱码久久久久久男人| 亚洲成人一二三区av| 久久久国产一区二区| 黄色一级大片看看| 少妇 在线观看| 国产成人免费观看mmmm| 亚洲在久久综合| 欧美日韩精品网址| 美女国产视频在线观看| 亚洲,欧美,日韩| av女优亚洲男人天堂| 亚洲国产av新网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产日韩一区二区| 日韩 亚洲 欧美在线| 性少妇av在线| 亚洲男人天堂网一区| 成年人午夜在线观看视频| 久久久久精品久久久久真实原创| 国产不卡av网站在线观看| 婷婷色综合www| 欧美日韩一级在线毛片| 热99久久久久精品小说推荐| 久久国内精品自在自线图片| 国产极品粉嫩免费观看在线| 亚洲精华国产精华液的使用体验| av不卡在线播放| 日韩不卡一区二区三区视频在线| 国产伦理片在线播放av一区| 男人爽女人下面视频在线观看| 精品国产一区二区久久| 伦精品一区二区三区| 黄色视频在线播放观看不卡| 国产97色在线日韩免费| 免费大片黄手机在线观看| 久久人人爽人人片av| xxx大片免费视频| 国产白丝娇喘喷水9色精品| 韩国高清视频一区二区三区| 国产男女内射视频| 叶爱在线成人免费视频播放| 丝袜在线中文字幕| 亚洲精品国产色婷婷电影| 久久精品国产亚洲av高清一级| 男人舔女人的私密视频|