• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pt/TiO2–x nanofibrous aerogel for effective nitrogen reduction: A simple strategy for simultaneous Pt formation and TiO2–x vacancy engineering

    2022-06-18 03:00:54MengZhngJinDiShengmeiHungDnFngYitoLiuJinyongYuBinDingAndresGreiner
    Chinese Chemical Letters 2022年2期

    Meng Zhng, Jin Di, Shengmei Hung, Dn Fng, Yito Liu,*, Jinyong Yu,Bin Ding,*, Andres Greiner

    a Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China

    b Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95440, Germany

    ABSTRACT Electrocatalysis plays an increasingly important role in converting atmospheric molecules (e.g., N2, CO2 and H2O) to value-added products (e.g., NH3, C2H4 and H2).However, developing a simple strategy for preparing catalysts with high performance for the effective conversion of clean energy is still full of challenges.Herein, we describe a straightforward, one-step reduction method to achieve the formation of Pt nanoparticles (NPs) and the vacancy engineering of TiO2–x nanofibers (NFs) simultaneously, which can be accomplished in 5 min.Furthermore, a Pt/TiO2–x nanofibrous aerogel (NA) with an ordered cellular architecture is prepared through a directional freezing technology.The Pt/TiO2–x NA with excellent mechanical properties can be made into a self-supporting electrode for electrocatalytic N2 reduction reaction (NRR),showing high NH3 yield rate (4.81 × 10–10 mol/s cm–2) and Faraday efficiency (14.9%) at –0.35 V vs. RHE.

    Keywords:Vacancy engineering Pt nanoparticles TiO2–x nanofibers Nanofibrous aerogel Electrocatalysis Nitrogen reduction

    Energy, which vitally relates to human life from manufacturing to transportation, is essential for modern economies.With the growth of global population, the increase of energy demand and intensification of global climate change, developing sustainable pathways with fossils to produce fuels and chemicals is crucial to energy security [1].Electrocatalysis, which can utilize renewable power (solar, wind and hydro) as the driving force to convert atmospheric molecules (e.g., N2, CO2and H2O) to products with higher values (e.g., NH3, C2H4and H2), is a good choice [2–4].During the conversion process, catalysts for improving the reaction rate, efficiency and selectivity play a key role.Hence, developing advanced catalysts with high performance is imperative.

    In recent years, supported metal catalysts have been widely concerned in electrocatalysis benefiting from the strong metal–support interaction (SMSI), which is very important to tune the stability and selectivity of catalysts [5].Currently, two approaches are mainly adopted to improve the SMSI: reducing the size of the loaded metal particles and constructing vacancies (e.g., by heteroatom doping or amorphization) on the support [6,7].Decreasing the particle size to nanoscale, especially to single atoms (SAs), can ensure the maximum exposure of active sites and improve the catalyst performance, since the processes of reactants adsorption and products desorption take place on the active sites [8].However,the unachievable high-loading and difficulty in large-scale production of SAs greatly limit their practical applications [9].Loading ultrasmall-size nanoparticles (NPs) on the support still dominates current research.

    Vacancy engineering of the support is another approach to enhance the SMSI by changing the chemical structure of the support and improving the charge transfer [7,10].However, the present vacancy engineering strategies are either time-consuming with multiple steps or energy-consuming with harsh synthesis conditions[11–13].Although the introduction of doping ions is a simple method to construct vacancies in the support, one more process is needed to load metal NPs [14].Besides, carbon fiber paper is usually used as the matrix to load the catalyst by polymer binder,which makes most active sites unable to contact the reactants in electrocatalysis [15].Under these circumstances, developing a new method for metal NPs loading and vacancy engineering simultaneously is imperative.

    Fig.1.(a) Illustration of the preparation procedure of Pt/TiO2–x NA.(b) Digital image showing the ultralight feature of Pt/TiO2–x NA (2 mg/cm3).FESEM images showing (c)the ordered lamellar structure, (d) the interlaminar cellular structure and (e) the lamellar wall of Pt/TiO2–x NA.(f) Low- and (g) high-magnification TEM images of Pt/TiO2–x NF and the inset in (g) presents the size distribution of Pt NPs.(h) HRTEM image and (i) HAADF image and the corresponding EDX maps of Pt/TiO2–x NF.

    Herein, the formation of Pt NPs and the vacancy engineering of TiO2–xNFs are implemented simultaneously through a simple NaBH4reduction.By pouring NaBH4solution (80 °C) into the dispersion with H2PtCl6and TiO2NFs without other harsh conditions,the Pt4+is reduced and loaded on the TiO2NFs immediately, and the TiO2NFs are reduced by NaBH4in 5 min to form TiO2–xNFs with abundant oxygen vacancies (OVs).Furthermore, the Pt/TiO2–xNFs are prepared into a Pt/TiO2–xNA with good mechanical properties by a freeze-drying process.As an application presentation, the Pt/TiO2–xNA is used as a self-supporting catalyst for the N2reduction reaction (NRR) and the optimum NH3yield rate and Faraday efficiency (FE) are at –0.35 Vvs.RHE, being 4.81 × 10–10mol s–1cm–2and 14.9%, respectively.

    The illustration for the preparation of Pt/TiO2–xNA is shown in Fig.1a.Firstly, 0.5 g of flexible TiO2nanofibrous membrane, whose average fiber diameter was 184 nm (Fig.S1 in Supporting information), was cut into small pieces and dispersed in 20 mL of water to prepare a TiO2NFs dispersion.Then, a small amount of H2PtCl6solution was dropped into the dispersion.After being sonicated for 1 h and stirred for another 2 h, the dispersion was transferred to a screw bottle.Subsequently, 180 mL of hot water (80 °C) with NaBH4was poured into the screw bottle under vigorous stirring.The dispersion was changed from yellow to gray immediately and the TiO2NFs were reduced in 5 min in the presence of NaBH4[16].After being cooled naturally to ambient temperature, the dispersion was centrifuged and washed several times alternately with 0.1 mol/L HCl and water to obtain 47.5 mL of Pt/TiO2–xNFs dispersion.After that, 2.5 mL of SiO2sol working as the binder was dropped into the dispersion and stirred for 2 h [13].The color of the dispersion remained unchanged during this process, showing the stability of the Pt/TiO2–xNFs (Fig.S2 in Supporting information).Finally, the dispersion was poured into a homemade mold, directionally frozen by a cold plate, and freeze-dried to obtain a Pt/TiO2–xNA.For comparison, TiO2–xNA and TiO2NA were also prepared (Fig.S3 in Supporting information).Benefiting from its ultralight feature, the Pt/TiO2–xNA can stand on the tip of a flower (Fig.1b).An ordered cellular architecture of Pt/TiO2–xNA can be seen in Figs.1c and d, the field emission scanning electron microscopy (FESEM) images, which is caused by the fiber selfassembly with oriented growth of ice crystals during the directional freezing progress [13,17].The bonding structure caused by the SiO2sol wrapping around the TiO2NFs in Fig.1e can maintain the stability of the Pt/TiO2–xNA [18].Under the transmission electron microscopy (TEM) observation in Figs.1f–h, it can be seen the successful loading of Pt NPs (3.9 nm) on the surface of TiO2NFs.The energy dispersive X-ray (EDX) mapping spectra of a Pt/TiO2–xnanofiber in Fig.1i further prove the uniform distribution of Pt NPs.The loading amount of Pt NPs is 4.9 wt%, as tested by inductively coupled plasma optical emission spectrometer (ICP–OES).Moreover, the Pt/TiO2–xNA has a large Brunauer-Emmett-Teller(BET) surface area of 70.99 m2/g (Fig.S4 in Supporting information), which is a vital factor to the electrocatalytic reaction.

    Fig.2.(a) Digital images showing the compression and resilience process at a large compressive strain (ε = 40%).(b) Compressive stress–strain plots of Pt/TiO2–x NA under different maximum strains.(c) Selected compressive stress–strain plots of Pt/TiO2–x NA over 100 cycles compression (ε = 25%).(d) Dynamic mechanical property of Pt/TiO2–x NA at an oscillatory ε = 1%.(e) In-situ FESEM images showing the microstructure evolution of Pt/TiO2–x NA during the compression and resilience process (compressive ε = 40%).

    Good mechanical properties are the prerequisite for selfsupporting catalysts.Benefiting from the excellent mechanical properties of TiO2NFs (Fig.S5 in Supporting information) and the resilient bonding among the TiO2NFs caused by the elastic Si-O-Si bonds, the Pt/TiO2–xNA (10 mg/cm3, bulk density)can bear a compression strain up to 40% (Fig.2a) [13,19].From the quantitative characterization of the mechanical properties, the Pt/TiO2–xNA has a plastic deformation about 16.9% at a compression strain up to 40% during the first stress–strain cycle under different maximum compression (Fig.2b).Furthermore, the stability of the mechanical properties was measured through a compression–resilience cycle test at 25% compression strain in Fig.2c and more than 12% plastic deformation occurs after 100 compressions.The viscoelastic properties of the Pt/TiO2–xNA were also demonstrated in Fig.2d, and the stability of modulus and damping ratio from the frequency-dependent tests (0.1–1 Hz) indicates the dynamic mechanical response of the Pt/TiO2–xNA is good [19].Unmissably, the mechanical properties and viscoelastic properties of the Pt/TiO2–xNA are not so good as those of the TiO2NA in our previous work because of the poor mechanical properties of TiO2nanofibrous membrane (Fig.S5) and the shorter average fiber length (Fig.S6 in Supporting information)in the Pt/TiO2–xNA, which is not conducive to enhance the interaction among fibers through entanglement [13,20,21].To provide insight into the elasticity mechanism,in-situFESEM observations at a maximum compression strain of 40% were performed in Fig.2e.During the compression process, the compression work was transformed into elastic potential energy by the bending of nanofiber bundles among the ordered cellular architecture (Fig.S7 in Supporting information).The elastic potential energy was released with the stress decreasing during the resilience process [15].However, when the bending degree exceeded the bearing limit, the fiber bundles would be broken, as marked by the yellow circles in Fig.2e and caused the plastic deformation of the Pt/TiO2–xNA.

    The X-ray diffraction (XRD) patterns of the TiO2NA, TiO2–xNA and Pt/TiO2–xNA are shown in Fig.3a, revealing that the crystalline structures of TiO2remain unchanged after NaBH4reduction.The diffraction peaks of Pt (JCPDS #04–0802) can be observed, in consistent with the above TEM results [22].The TiO2NA displays the typical Raman active modes of anatase TiO2with the characteristic peaks at 143.9, 197.2 and 639.8 cm–1(Eg), 397.3 cm–1(B1g), and 515.6 cm–1(A1g) in Fig.3b [23].Compared to the TiO2NA, the strongest band coming from external vibration of the Ti–O bond at 143.9 cm–1shifts to higher wavenumbers in the TiO2–xNA and Pt/TiO2–xNA by 5.01 cm–1and 2.92 cm–1, respectively (Fig.3b, inset), demonstrating the existence of oxygen vacancies caused by the decrease of oxygen species [24].Because of the charge balance, the formation of each OV will, in turn, produce a pair of Ti3+,which can be confirmed by the electron paramagnetic resonance(EPR) and X-ray photoelectron spectroscopy (XPS) measurements[25].The distinct signal at g = 2.003 and g = 1.96 corresponding to OVs and Ti3+, respectively, can be found in Fig.3c [26].Notably,the instability of surface Ti3+makes it easy to be oxidized in aerobic environment (air or water) [27].So the obvious Ti3+EPR signals in Fig.3c indicate the presence of bulk Ti3+, accounting for its high stability during the NA preparation process, which is inevitably illuminated in air or water.In the high-resolution Ti 2p XPS spectrum of TiO2NA (Fig.3d), two peaks assigned to Ti4+at 457.5 and 464.3 eV can be observed, corresponding to Ti 2p3/2and Ti 2p1/2, respectively.After reduction, these peaks shift to lower binding energies in the TiO2–xNA and Pt/TiO2–xNA, demonstrating that electrons are withdrawn from deficient oxygen atoms [28].The O 1s XPS spectra (Fig.3e) for the three samples contain two peaks which are associated with lattice oxygen (529.9 eV) and OVs (531.8 eV) [12].The increased peak area of OVs in the TiO2–xNA and Pt/TiO2–xNA indicates that more surface defects were produced after NaBH4reduction.The Pt 4f XPS spectrum in Fig.3f provides further evidence for the presence of metallic Pt in Pt/TiO2xNA from the peaks of Pt0at 71.2 and 74.5 eV [29].Considering that H2PtCl6(Pt4+) was chosen as the Pt source, some metallic Pt species should be reduced by the surface OVs of TiO2–xwith charge transfer from OVs to Pt NPs, causing the peak intensity or shift degree of the Pt/TiO2–xNA lower than that of the TiO2–xNA in Figs.3b–e [30].

    An H-type cell (three-electrode system), separated by a Nafion 212 membrane, was used for the NRR performance.According to the linear sweep voltammetry (LSV) curves (Fig.4a), the current density in N2-saturated 0.1 mol/L Na2SO4electrolyte is much higher than that in Ar-saturated 0.1 mol/L Na2SO4electrolyte between –0.8 V to –0.2 Vvs.RHE, implying the effective N2reduction performance of the Pt/TiO2–xNA [31].From Fig.4b, the chronoamperometric curves, no obvious fluctuation in the current can be observed at different potentials, indicating good stability during the electrocatalytic process [32,33].In order to quantify the NH3yield of the Pt/TiO2–xNA at different potentials, indophenol blue method was employed.According to the standard curves and UVvis absorption spectra of electrolyte, which were dyed by indophenol blue, after 2 h reaction in Fig.S8 (Supporting information),the NH3yield rate and FE could be further calculated.As plotted in Fig.4c, the optimum NH3yield rate occurred at –0.35 Vvs.RHE for the Pt/TiO2–xNA, which were 4.81 × 10–10mol s–1cm–2and 14.9%, respectively.These values rank our Pt/TiO2–xNA as an advanced catalyst towards electrocatalytic NRR, as compared with other noble metal/TiO2or TiO2-based catalysts (Table S1 in Supporting information).As a comparison, the NRR performance for TiO2NA, TiO2–xNA and Pt/TiO2–xNA at –0.35 Vvs.RHE were also measured in Fig.4d.The Pt/TiO2–xNA shows the best performance,proving that the higher vacancy concentration and the interaction between Pt and TiO2–xis beneficial to improve the catalytic activity in electrocatalytic NRR.It is also proved by the N2temperatureprogrammed desorption (N2–TPD) spectra in Fig.S9 (Supporting information) that the Pt/TiO2–xNA has the highest desorption temperature, meaning that the presence of Pt NPs and OVs effectively enhance the N2chemisorption, which is favorable for the improvement of NRR performance [34].Considering the stability of catalysts is a critical parameter in practical applications, cycling tests and a longtime electrolysis for the Pt/TiO2–xNA at –0.35 Vvs.RHE were assessed.As observed in Fig.4e, the NH3yield rate and FE do not significantly change during 5 successive tests, showing the excellent recyclability for N2reduction.Besides, no obvious fluctuation of current density and FE after 12 h electrolysis in Fig.4f suggests that the Pt/TiO2–xNA has good electrochemical durability.The possible byproduct hydrazine was not detected after 12 h electrolysis by the Watt and Chrisp method (Fig.S10 in Supporting information).

    Fig.3.(a) XRD patterns of TiO2 NA, TiO2–x NA and Pt/TiO2–x NA.(b) Raman spectra of TiO2 NA, TiO2–x NA and Pt/TiO2–x NA and inset is the magnification of Eg peak.(c) EPR spectra of TiO2 NA, TiO2–x NA and Pt/TiO2–x NA.(d) Ti 2p and (e) O 1s XPS spectra of TiO2 NA, TiO2–x NA and Pt/TiO2–x NA.(f) Pt 4f XPS spectrum for Pt/TiO2–x NA.

    Fig.4.(a) LSV curves of Pt/TiO2–x NA in N2- and Ar-saturated 0.1 mol/L Na2SO4 electrolytes.(b) Chronoamperometric curves and (c) NH3 yield rates and FE for Pt/TiO2–x NA at different potentials (V vs. RHE).(d) The comparison of NH3 yield rates and FE at optimum potential for TiO2 NA, TiO2–x NA and Pt/TiO2–x NA at –0.35 V vs. RHE.(e) Cycling tests and (f) a longtime electrolysis for Pt/TiO2–x NA at –0.35 V vs. RHE.

    In conclusion, we utilize a convenient strategy to achieve the Pt NPs formation and the vacancy engineering of TiO2–xNFs simultaneously.Under the function of NaBH4, the whole reduction process can be completed in 5 min.Benefiting from the high stability of OVs in the Pt/TiO2–xNFs in air and water, the Pt/TiO2–xNA can be prepared after a freeze-drying process.The nanofiber bundles among the ordered cellular architecture, induced by the oriented growth of ice crystals,endow the Pt/TiO2–xNA with excellent mechanical properties to work as a self-supporting electrode for electrocatalysis,achieving high NH3yield rate (4.81 × 10–10mol s–1cm–2)and FE (14.9%) at –0.35 Vvs.RHE with excellent stability for electrocatalytic NRR.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.52173055, 21961132024 and 51925302), the Natural Science Foundation of Shanghai(No.19ZR1401100), the Innovation Program of Shanghai Municipal Education Commission (No.2017-01-07-00-03-E00024), the Fundamental Research Funds for the Central Universities (No.CUSF-DH-D-2019028), and the DHU Distinguished Young Professor Program (No.LZA2020001).D.Fang and A.Greiner acknowledge financial support from DFG (No.431073172).

    Supplementary materials

    Supplementary data associated with this article can be found,in the online version, at 10.1016/j.cclet.2021.08.069.

    av网站免费在线观看视频| 欧美3d第一页| 在线观看免费视频网站a站| 国产av精品麻豆| 精华霜和精华液先用哪个| 亚洲av福利一区| 美女福利国产在线 | 欧美最新免费一区二区三区| 亚洲国产av新网站| 最后的刺客免费高清国语| 三级国产精品片| 久久婷婷青草| 亚洲精品日韩在线中文字幕| 丰满乱子伦码专区| 一本久久精品| 最近手机中文字幕大全| 成人美女网站在线观看视频| 成人毛片a级毛片在线播放| 精品国产三级普通话版| 美女福利国产在线 | 国产免费福利视频在线观看| 久久久成人免费电影| 激情 狠狠 欧美| 亚洲欧美一区二区三区国产| 久久毛片免费看一区二区三区| 亚洲国产高清在线一区二区三| 男女下面进入的视频免费午夜| 成人18禁高潮啪啪吃奶动态图 | 久久人人爽人人爽人人片va| 亚洲精品第二区| 成人一区二区视频在线观看| 亚洲精品aⅴ在线观看| 简卡轻食公司| 成人午夜精彩视频在线观看| 日韩av不卡免费在线播放| 97超碰精品成人国产| 三级国产精品欧美在线观看| 美女国产视频在线观看| 日韩亚洲欧美综合| 大又大粗又爽又黄少妇毛片口| 看十八女毛片水多多多| 国产成人免费观看mmmm| 国产av国产精品国产| 美女高潮的动态| 99久久人妻综合| 久久久久久久久久久免费av| 亚洲国产av新网站| 国模一区二区三区四区视频| 久久久久久人妻| 精品酒店卫生间| 3wmmmm亚洲av在线观看| 在线观看国产h片| 亚洲欧美一区二区三区国产| 人人妻人人爽人人添夜夜欢视频 | 亚洲熟女精品中文字幕| 毛片一级片免费看久久久久| 免费黄频网站在线观看国产| 日韩欧美 国产精品| 只有这里有精品99| 亚洲aⅴ乱码一区二区在线播放| 一本一本综合久久| 午夜老司机福利剧场| 深夜a级毛片| 在线观看一区二区三区| 最近中文字幕高清免费大全6| 啦啦啦在线观看免费高清www| 插阴视频在线观看视频| 国产精品麻豆人妻色哟哟久久| 99久久精品一区二区三区| 日本vs欧美在线观看视频 | 人妻一区二区av| 欧美三级亚洲精品| 男女边摸边吃奶| 国产一区二区在线观看日韩| 欧美国产精品一级二级三级 | 亚洲精品乱久久久久久| 亚洲精品国产色婷婷电影| 97热精品久久久久久| 99热6这里只有精品| 亚洲欧美一区二区三区国产| 麻豆精品久久久久久蜜桃| 日本欧美视频一区| 日本黄色日本黄色录像| 免费人妻精品一区二区三区视频| 亚洲av男天堂| 91精品国产国语对白视频| 亚洲欧美日韩另类电影网站 | 一个人免费看片子| 亚洲人成网站在线观看播放| 日本午夜av视频| 日日摸夜夜添夜夜爱| 99热这里只有精品一区| 全区人妻精品视频| 亚洲国产欧美在线一区| 国产亚洲一区二区精品| 夫妻性生交免费视频一级片| 精品久久国产蜜桃| 18禁动态无遮挡网站| .国产精品久久| 中国三级夫妇交换| 韩国av在线不卡| 人人妻人人爽人人添夜夜欢视频 | 久久久久久久久大av| 18禁在线无遮挡免费观看视频| 亚洲av在线观看美女高潮| 精品国产一区二区三区久久久樱花 | 国产亚洲午夜精品一区二区久久| 国产精品国产三级国产专区5o| 亚洲精品一二三| 成人亚洲精品一区在线观看 | 久久精品久久久久久噜噜老黄| 美女国产视频在线观看| 黑人高潮一二区| 黑人猛操日本美女一级片| 久久 成人 亚洲| 国产黄色视频一区二区在线观看| 香蕉精品网在线| h视频一区二区三区| 久久精品国产亚洲av涩爱| 永久免费av网站大全| 少妇人妻一区二区三区视频| 草草在线视频免费看| 国产精品一区二区在线不卡| 亚洲四区av| 超碰97精品在线观看| 欧美97在线视频| 男女边摸边吃奶| 国产综合精华液| 狠狠精品人妻久久久久久综合| 国产成人精品福利久久| 一级片'在线观看视频| 久久人人爽人人片av| 人妻制服诱惑在线中文字幕| 五月玫瑰六月丁香| 色视频www国产| 欧美激情国产日韩精品一区| 国产精品秋霞免费鲁丝片| 亚洲欧美日韩卡通动漫| 一级毛片 在线播放| 久久久精品免费免费高清| 肉色欧美久久久久久久蜜桃| 丰满人妻一区二区三区视频av| 欧美成人一区二区免费高清观看| 国产精品蜜桃在线观看| 精品一品国产午夜福利视频| h日本视频在线播放| 国产精品偷伦视频观看了| 亚洲国产精品一区三区| 免费看日本二区| 尾随美女入室| 国产成人精品久久久久久| 久久精品国产自在天天线| 成人漫画全彩无遮挡| 色婷婷久久久亚洲欧美| 国产91av在线免费观看| 亚洲精品一二三| 国产乱人视频| 在线观看一区二区三区| 一边亲一边摸免费视频| 日韩亚洲欧美综合| 99热这里只有是精品50| 亚洲国产日韩一区二区| 午夜福利在线在线| 亚洲精品日韩av片在线观看| 精品久久国产蜜桃| 国产欧美日韩一区二区三区在线 | 国产黄片视频在线免费观看| 大又大粗又爽又黄少妇毛片口| 一级毛片久久久久久久久女| 国产精品无大码| 国产亚洲欧美精品永久| 日韩欧美精品免费久久| 成年av动漫网址| 成人高潮视频无遮挡免费网站| 在线观看av片永久免费下载| 国产欧美另类精品又又久久亚洲欧美| 六月丁香七月| 国产精品久久久久久久久免| 国产精品不卡视频一区二区| 国产永久视频网站| 大片电影免费在线观看免费| 99久久精品国产国产毛片| 亚洲图色成人| 大香蕉久久网| av免费观看日本| 丰满迷人的少妇在线观看| 亚洲精品第二区| 国产伦精品一区二区三区四那| 免费观看在线日韩| 亚洲av.av天堂| 国模一区二区三区四区视频| 纯流量卡能插随身wifi吗| 国产成人精品福利久久| 日韩中字成人| 一二三四中文在线观看免费高清| 老熟女久久久| 精品熟女少妇av免费看| 777米奇影视久久| 国产老妇伦熟女老妇高清| 国产精品不卡视频一区二区| 免费不卡的大黄色大毛片视频在线观看| 国产成人aa在线观看| 99re6热这里在线精品视频| 七月丁香在线播放| 欧美日韩亚洲高清精品| 2022亚洲国产成人精品| 国内精品宾馆在线| 亚洲色图av天堂| 亚洲内射少妇av| 妹子高潮喷水视频| 久久精品人妻少妇| 日韩欧美精品免费久久| 欧美激情极品国产一区二区三区 | 久久久久久久久久久丰满| 亚洲精品自拍成人| 春色校园在线视频观看| 欧美激情极品国产一区二区三区 | 日日摸夜夜添夜夜添av毛片| 亚洲内射少妇av| 国产一级毛片在线| 亚洲精品自拍成人| 亚洲精品日本国产第一区| 免费大片黄手机在线观看| 免费久久久久久久精品成人欧美视频 | 久久久欧美国产精品| 菩萨蛮人人尽说江南好唐韦庄| 精品人妻熟女av久视频| 国产av精品麻豆| 欧美一区二区亚洲| 国产91av在线免费观看| 久久99蜜桃精品久久| 亚洲四区av| 黄色配什么色好看| 美女xxoo啪啪120秒动态图| 精品亚洲成国产av| 欧美bdsm另类| 51国产日韩欧美| 黄色配什么色好看| 深爱激情五月婷婷| 久久久a久久爽久久v久久| 少妇人妻一区二区三区视频| 简卡轻食公司| 精品久久久久久久末码| 国产精品不卡视频一区二区| 国产一区亚洲一区在线观看| 免费黄网站久久成人精品| 日韩av在线免费看完整版不卡| 免费观看无遮挡的男女| 国产精品人妻久久久久久| 国产精品国产三级国产av玫瑰| 三级国产精品片| 欧美xxⅹ黑人| 一本久久精品| 国产男女超爽视频在线观看| 久久97久久精品| 成人午夜精彩视频在线观看| 午夜激情久久久久久久| 国产大屁股一区二区在线视频| 亚洲精品亚洲一区二区| 亚洲国产最新在线播放| 看免费成人av毛片| 校园人妻丝袜中文字幕| 亚洲精品一二三| 国产男人的电影天堂91| 精品亚洲成a人片在线观看 | 国产日韩欧美在线精品| 99热网站在线观看| 欧美成人午夜免费资源| 国产一区二区在线观看日韩| 超碰97精品在线观看| 国产女主播在线喷水免费视频网站| 一区二区三区四区激情视频| 亚洲无线观看免费| 一边亲一边摸免费视频| 欧美一级a爱片免费观看看| 美女主播在线视频| 干丝袜人妻中文字幕| 中文天堂在线官网| 亚洲av免费高清在线观看| 亚洲欧美日韩东京热| 免费久久久久久久精品成人欧美视频 | 亚洲欧美成人精品一区二区| 一级片'在线观看视频| 伊人久久国产一区二区| 久久99热这里只有精品18| 99热这里只有是精品在线观看| 欧美三级亚洲精品| 久久国产亚洲av麻豆专区| 中文资源天堂在线| av又黄又爽大尺度在线免费看| 国产在视频线精品| 国产在线免费精品| 国产视频首页在线观看| 国产深夜福利视频在线观看| 日韩av在线免费看完整版不卡| 一级毛片我不卡| 久久鲁丝午夜福利片| 亚洲精品国产色婷婷电影| 大又大粗又爽又黄少妇毛片口| 国内揄拍国产精品人妻在线| 成人二区视频| 精品人妻视频免费看| 久久久色成人| 日本免费在线观看一区| 久久6这里有精品| 18+在线观看网站| 爱豆传媒免费全集在线观看| 国产高清三级在线| 日日撸夜夜添| 国产日韩欧美亚洲二区| 日日撸夜夜添| 国产 一区 欧美 日韩| 少妇人妻一区二区三区视频| a 毛片基地| av.在线天堂| 美女内射精品一级片tv| 国产黄片美女视频| 欧美一区二区亚洲| 亚洲精华国产精华液的使用体验| 大片电影免费在线观看免费| 联通29元200g的流量卡| 国产成人精品婷婷| 日日撸夜夜添| 日日啪夜夜爽| 日本vs欧美在线观看视频 | 久久毛片免费看一区二区三区| 中国三级夫妇交换| 亚洲国产毛片av蜜桃av| av又黄又爽大尺度在线免费看| 中文字幕制服av| 蜜臀久久99精品久久宅男| 亚洲欧美一区二区三区国产| 中文字幕av成人在线电影| 久久国内精品自在自线图片| 寂寞人妻少妇视频99o| 国产在视频线精品| 国产成人精品久久久久久| 日韩免费高清中文字幕av| 黑丝袜美女国产一区| 日日摸夜夜添夜夜爱| 日韩,欧美,国产一区二区三区| 国产精品爽爽va在线观看网站| 日本欧美视频一区| 九色成人免费人妻av| 涩涩av久久男人的天堂| 97超视频在线观看视频| 久久久久久久大尺度免费视频| 免费高清在线观看视频在线观看| av不卡在线播放| 国产熟女欧美一区二区| 久久国内精品自在自线图片| 午夜福利网站1000一区二区三区| 国产精品嫩草影院av在线观看| 国产av精品麻豆| 亚洲国产最新在线播放| 肉色欧美久久久久久久蜜桃| 五月天丁香电影| 国产免费福利视频在线观看| 国内精品宾馆在线| 中文天堂在线官网| 秋霞在线观看毛片| 免费人妻精品一区二区三区视频| 久久精品国产亚洲网站| 国产黄频视频在线观看| 美女视频免费永久观看网站| 26uuu在线亚洲综合色| 纯流量卡能插随身wifi吗| 看非洲黑人一级黄片| 国产欧美日韩一区二区三区在线 | 日韩一本色道免费dvd| 欧美精品亚洲一区二区| 午夜福利在线在线| 久久精品国产亚洲网站| 国产 一区精品| 五月玫瑰六月丁香| 国产精品久久久久久精品古装| 日韩欧美 国产精品| 欧美xxxx黑人xx丫x性爽| 免费大片黄手机在线观看| 国产综合精华液| 欧美老熟妇乱子伦牲交| 777米奇影视久久| 男人狂女人下面高潮的视频| av专区在线播放| 亚洲av综合色区一区| 久久久久国产网址| 我的女老师完整版在线观看| 日本一二三区视频观看| 一个人免费看片子| 国产亚洲5aaaaa淫片| 好男人视频免费观看在线| 欧美变态另类bdsm刘玥| 欧美日韩视频精品一区| 性色avwww在线观看| 欧美97在线视频| 久久国产乱子免费精品| 插阴视频在线观看视频| 日韩在线高清观看一区二区三区| 国产精品偷伦视频观看了| 97热精品久久久久久| 亚洲精华国产精华液的使用体验| 亚洲欧美日韩无卡精品| av不卡在线播放| 国产伦在线观看视频一区| 亚洲成人中文字幕在线播放| 国产成人a∨麻豆精品| 国产在线男女| 久久久久视频综合| 99久久人妻综合| 日本av免费视频播放| 中文乱码字字幕精品一区二区三区| 80岁老熟妇乱子伦牲交| 日本wwww免费看| 啦啦啦啦在线视频资源| 国产精品久久久久久久电影| 青青草视频在线视频观看| 在线观看一区二区三区激情| 少妇被粗大猛烈的视频| 51国产日韩欧美| 亚洲成色77777| 超碰av人人做人人爽久久| a级一级毛片免费在线观看| 黄片wwwwww| 天堂俺去俺来也www色官网| 国产爱豆传媒在线观看| 精品久久久久久久末码| 人妻一区二区av| 一级毛片电影观看| 成人美女网站在线观看视频| 国产伦精品一区二区三区视频9| 麻豆成人午夜福利视频| 亚洲欧美成人精品一区二区| 国产亚洲欧美精品永久| 免费黄频网站在线观看国产| 日本wwww免费看| 久久久久久久大尺度免费视频| 日韩av在线免费看完整版不卡| 女人十人毛片免费观看3o分钟| 日韩一区二区视频免费看| av免费在线看不卡| 中文字幕制服av| 亚洲av欧美aⅴ国产| 2021少妇久久久久久久久久久| 国产又色又爽无遮挡免| 色哟哟·www| 日韩视频在线欧美| 自拍欧美九色日韩亚洲蝌蚪91 | 十八禁网站网址无遮挡 | 久久国内精品自在自线图片| 亚洲激情五月婷婷啪啪| 国产一级毛片在线| av免费在线看不卡| 亚洲人成网站在线观看播放| 久久久久久久精品精品| 亚洲成人av在线免费| 国产在视频线精品| 午夜福利高清视频| 久久久久性生活片| 免费高清在线观看视频在线观看| 一区在线观看完整版| 美女高潮的动态| 欧美日韩视频精品一区| 久久久久久久久久久丰满| 国产精品国产三级国产av玫瑰| 国产欧美日韩一区二区三区在线 | 99热这里只有精品一区| 一级黄片播放器| 麻豆成人av视频| 欧美另类一区| 久久久久久久亚洲中文字幕| 少妇人妻久久综合中文| a级毛色黄片| 婷婷色麻豆天堂久久| 一级黄片播放器| 日本免费在线观看一区| 欧美xxxx黑人xx丫x性爽| 成人高潮视频无遮挡免费网站| 久久影院123| 亚洲人成网站在线观看播放| 午夜激情久久久久久久| 老熟女久久久| 日本av免费视频播放| 黄色视频在线播放观看不卡| 寂寞人妻少妇视频99o| 丰满少妇做爰视频| 国产精品一区二区三区四区免费观看| a级毛片免费高清观看在线播放| 99热这里只有是精品50| 免费播放大片免费观看视频在线观看| 免费在线观看成人毛片| 国产免费福利视频在线观看| 美女cb高潮喷水在线观看| 亚洲成色77777| 91精品伊人久久大香线蕉| 九草在线视频观看| 天美传媒精品一区二区| 国产又色又爽无遮挡免| 男女边吃奶边做爰视频| 久久精品熟女亚洲av麻豆精品| 一级毛片 在线播放| 国产乱人偷精品视频| 亚洲怡红院男人天堂| 夜夜爽夜夜爽视频| 天堂8中文在线网| 一级毛片黄色毛片免费观看视频| 亚洲人与动物交配视频| 精华霜和精华液先用哪个| 久久精品国产鲁丝片午夜精品| 亚洲综合色惰| 国产精品人妻久久久久久| av卡一久久| 边亲边吃奶的免费视频| 女的被弄到高潮叫床怎么办| 大码成人一级视频| 亚洲在久久综合| 久久国内精品自在自线图片| 黄片无遮挡物在线观看| 又黄又爽又刺激的免费视频.| 国产亚洲午夜精品一区二区久久| 十八禁网站网址无遮挡 | 最近的中文字幕免费完整| 最新中文字幕久久久久| 成人美女网站在线观看视频| 色视频在线一区二区三区| av.在线天堂| 美女高潮的动态| 99久久精品热视频| 精品视频人人做人人爽| 国产成人免费无遮挡视频| 亚洲av日韩在线播放| 久热久热在线精品观看| 啦啦啦在线观看免费高清www| 国产伦理片在线播放av一区| 夜夜骑夜夜射夜夜干| av在线观看视频网站免费| 亚洲国产精品国产精品| 91久久精品国产一区二区三区| 亚洲国产日韩一区二区| 下体分泌物呈黄色| 99热国产这里只有精品6| 秋霞伦理黄片| 18禁在线无遮挡免费观看视频| 午夜福利网站1000一区二区三区| 婷婷色av中文字幕| 啦啦啦在线观看免费高清www| 人妻一区二区av| 久久国内精品自在自线图片| 久久国产乱子免费精品| 精品视频人人做人人爽| 美女福利国产在线 | 日韩欧美 国产精品| 国产无遮挡羞羞视频在线观看| 亚洲怡红院男人天堂| 国产精品人妻久久久久久| 最后的刺客免费高清国语| 亚洲精品视频女| 久久精品国产a三级三级三级| 麻豆国产97在线/欧美| 久久久久国产网址| 欧美精品亚洲一区二区| 亚洲伊人久久精品综合| 91精品一卡2卡3卡4卡| 精品久久久精品久久久| 久久99蜜桃精品久久| 精品久久久噜噜| 国产成人免费无遮挡视频| 日韩av在线免费看完整版不卡| 欧美高清性xxxxhd video| 噜噜噜噜噜久久久久久91| 国产黄片美女视频| 日韩 亚洲 欧美在线| 色婷婷av一区二区三区视频| 人人妻人人爽人人添夜夜欢视频 | 国产乱来视频区| 亚州av有码| 欧美激情极品国产一区二区三区 | 亚洲一区二区三区欧美精品| av在线app专区| 色视频在线一区二区三区| 午夜福利网站1000一区二区三区| 极品教师在线视频| 国产精品三级大全| 性高湖久久久久久久久免费观看| 黄色视频在线播放观看不卡| 又大又黄又爽视频免费| 国产精品人妻久久久久久| 日本一二三区视频观看| 亚洲欧美日韩无卡精品| 在线观看免费视频网站a站| av国产久精品久网站免费入址| 这个男人来自地球电影免费观看 | 欧美成人精品欧美一级黄| 国产精品免费大片| 最近中文字幕2019免费版| 亚洲精品456在线播放app| 麻豆国产97在线/欧美| 三级经典国产精品| 韩国高清视频一区二区三区| 国产亚洲欧美精品永久| 国产高清不卡午夜福利| 欧美丝袜亚洲另类| 亚洲国产欧美在线一区| 亚洲经典国产精华液单| 美女高潮的动态| 777米奇影视久久| 国产精品一区二区在线观看99| 少妇熟女欧美另类| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲国产av新网站| 国产精品99久久久久久久久| 国产老妇伦熟女老妇高清| 精品一区二区免费观看| 亚洲,欧美,日韩| 乱系列少妇在线播放| 中国三级夫妇交换|