• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Label-free photoelectrochemical sensor based on 2D/2D ZnIn2S4/g-C3N4 heterojunction for the efficient and sensitive detection of bisphenol A

    2022-06-18 03:00:50QiaoweiChenChenYuanChunyangZhai
    Chinese Chemical Letters 2022年2期

    Qiaowei Chen, Chen Yuan, Chunyang Zhai

    School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China

    ABSTRACT Photoelectrochemical (PEC) sensor is an emerging technology in analysis as the advantage of fast response, high sensitivity and uncomplicated operation.In this study, an effective label-free PEC sensor for bisphenol A (BPA) detecting is constructed, in which ZnIn2S4/g-C3N4 heterojunction is prepared via a simple hydrothermal method.The characterization outcomes display that the formation of p-n heterojunction helps for promoting the separation efficiency of photo-generated carrier.Under visible light irradiation,the ZnIn2S4/g-C3N4 modified electrode exhibits broader liner range from 0.05 mmol/L to 30 mmol/L and lower detection limit of 0.016 μmol/L (S/N=3) with remarkable stability and reproducibility of detection BPA under visible light irradiation.Furthermore, the constructed PEC sensor displays favorable potential for detection of BPA in practical applications.

    Keywords:Bisphenol A ZnIn2S4/g-C3N4 Heterojunction Photoelectrochemical sensor

    Bisphenol A (BPA, 2,2-bis(4-hydroxyphenyl)propane), an important organic chemical raw material, is always found in much food and drink packaging products [1].A small amount of BPA could release into food or drink water from food or drink containers due to its high temperature intolerance [2].However, as an estrogen mimic, BPA may cause imbalance in the endocrine system, immune system and nervous system even at a lower dose of exposure [3].So that, it is extremely urgent to establish rapid, reliable and simple analytical method to detect BPA in an aquatic environment.

    Recently, photoelectrochemical (PEC) sensors, due to the unique separation process of input (light source) and output (electrical)signals, which is given many advantages of almost inappreciable background signals, cheap devices and rapidly high sensitivity, have developed into an effective analytical technology to detect BPA [4–6].It is noteworthy that the reasoning design and synthesis of photoanode material is considered as a committed step in the process of PEC detecting BPA.Diverse types of photoactive materials, including carbon materials [7,8], noble metal nanoparticles [9,10] and semiconductor materials [11–13], have been used as photoanode in PEC sensor for determining BPA.Among them,semiconductor heterojunction has won great attention for its efficient photoelectron/hole pair migration, broadened light absorption range and excellent PEC performance, which shown charming potential in photocatalytic hydrogen generation [14–17], photocatalytic degradation of pollutants [18–22] and PEC detection[4,23,24].For instance, Zhanget al.[13] successfully designed a novel hierarchical hollow ZnCdS@MoS2 heterostructured cages and then used it as PEC aptasensor for lincomycin detection.The result displayed that the PEC aptasensor exhibited a wide liner work range response with a low detection limit for lincomycin detection,which attributed to the synergy between tailored hierarchical hollow structure and close contact heterojunction interface.

    Recently, as an important member of ternary chalcogenide,ZnIn2S4with two-dimensional (2D) flower-like structures has triggered wide attention in photocatalysis thanks to its excellent optical and electrical performance, perfect chemical stability and extremely high specific surface area.What is more, ZnIn2S4has an appropriate band gap, which not only endows it strong visible light harvesting ability, but also can make it match with g-C3N4.This is benefited to construct the binary ZnIn2S4/g-C3N4heterojunction to enhance the photogenerated electron/hole separation and migration efficiency [25–27].In recent reports, ZnIn2S4/g-C3N4heterojunction has been synthesized and applied to photocatalytic H2production [26] and photodegradation pollution [27].However,there were rarely reports that ZnIn2S4/g-C3N4heterojunction was used as PEC sensor.

    Herein, binary 2D/2D ZnIn2S4/g-C3N4heterojunction was easily obtainedviaa simple hydrothermal method.The scanning electronic microscopy (SEM), transmission electron microscopy (TEM)and high-resolution transmission electron microscopy (HRTEM)were offered to survey the morphology of ZnIn2S4and ZnIn2S4/g-C3N4.Fig.1A displays that pure ZnIn2S4exhibits globular flowerlike structure with multiple nanosheets and the TEM image of ZnIn2S4(Fig.1B) is in good agreement with it.Fig.1C shows the high-resolution (HR-TEM) image of ZnIn2S4, in which the lattice spacing (~0.32 nm) is ascribed to (102) crystal plane of ZnIn2S4.Fig.1D shows that ZnIn2S4/g-C3N4heterojunction inherits the flower-like structure of ZnIn2S4and g-C3N4nanosheets attach to the surface visually in addition.The TEM and HR-TEM (Figs.1E and F) further testify that ZnIn2S4and g-C3N4have been in sufficient contacted and formed an effective heterogeneous junction interface.

    Fig.1.SEM (A, D), TEM (B, E) and HRTEM (C, F) images of ZnIn2S4 (A-C) and ZnIn2S4/g-C3N4 (D-F).

    The crystal structure of samples was investigated by X-ray powder diffraction (XRD) as revealed in Fig.2A.One can see that the characteristic diffraction peaks in ZnIn2S4/g-C3N4are great correspondence relations with the hexagonal ZnIn2S4(JCPDS No.65-2023), implying that crystalline structure of ZnIn2S4is not be noticeably affected by the introduction of g-C3N4[28,29].However,the coincidence of (002) crystal plane of g-C3N4and (102) crystal plane of ZnIn2S4may render us uncertain whether g-C3N4has been correctly introduced.To deeply verify the presence of g-C3N4in ZnIn2S4/g-C3N4, Fourier transform infrared spectroscope (FT-IR)test was performed (Fig.2B).For pure ZnIn2S4, two adsorption peaks appear at 1398 cm-1and 1624 cm-1are associated with the physical absorption of water molecules and hydroxyl groups[30].For pure g-C3N4, several strong peaks found within the limit of 1200-1650 cm-1are ascribed to the typical stretching modes of g-C3N4heterocycles.The board band in 3000–3500 cm-1region is attributed to the stretching modes of NH heterocycles and the strong characteristic vibration mode derives from the triazine units results in the sharp peak at 810 cm-1[31,32].Compare with pure g-C3N4, all main adsorption peaks emerge in the FT-IR spectra of ZnIn2S4/g-C3N4, which verify that the successful preparation of the heterojunction.

    Fig.2.XRD patterns (A), FT-IR spectra (B) and UV-vis diffuse reflection spectra (C)of samples.Plot (D) of (αhv)2 vs.hv for the band gap energy of ZnIn2S4 and g-C3N4.

    The optical properties of the samples were characterized by the UV-Vis diffuse reflectance spectra (DRS) (Fig.2C).The absorption edge of pure g-C3N4is around 460 nm and pure ZnIn2S4shows about 550 nm.For ZnIn2S4/g-C3N4heterojunction, the absorption edge extends to 580 nm, guessing that the interaction of ZnIn2S4and g-C3N4made an essential contribution to broaden the absorption in the visible range [33].The bandgap energy (Eg) could be determined by the following equation:αhv=A(hv-Eg)n/2, in whichα, hv, A represent the absorption coefficient, light frequency and a constant, respectively.The indexnis decided by the type of semiconductor (n= 1 for direct transition andn= 4 for indirect transition) and ZnIn2S4and g-C3N4are both the direct-transition type in terms of previously reports [34].Combine the above-mentioned with Fig.2D, theEgof ZnIn2S4and g-C3N4is denoted as 2.5 eV and 2.8 eV, which is close to the literature value [35,36].Besides,the equations ofEVB=χ-Ee+ 0.5EgandECB=EVB-Egare used to calculate the valence band (VB) and conduction band (CB)energy levels of semiconductors, whereEVBandECBare the energy of VB and CB,Ee(~4.5 eV) is the energy of free electrons on the hydrogen scale,χis the geometric mean of the absolute electronegativity of the constituent atoms (4.86 eV for ZnIn2S4, 4.63 eV for g-C3N4) [37,38].Accordingly, theEVBof ZnIn2S4and g-C3N4is assigned to be + 1.61 eV and + 1.53 eV, and theECBof ZnIn2S4and g-C3N4was -0.89 eV and -1.27 eV, respectively.

    The X-ray photoelectron spectroscopy (XPS) analysis was conducted to probe the elemental valence state and composition of samples in depth.Fig.S1A (Supporting information) checks all characteristic peaks entailed by C, N, Zn, In, S elements, indicating ZnIn2S4and g-C3N4have already presented in the heterojunction.As shown in Fig.S1B (Supporting information), three peaks of the C 1s spectrum, which center at 288.4 eV and 284.9 eV, are attributed to N–C=N bonds and C-C bonds, and 285.9 eV is interpreted as defect-containing sp2-hybridized carbon in g-C3N4surface [39].For the N 1s spectrum (Fig.S1C in Supporting information), three peaks refer to C-N-H bonds (401.2 eV), N–C3bonds(400.1 eV) and C–N=C bonds (398.8 eV) [30,40].By contrast, the peaks negatively shift to 0.2 and 0.4 eV in the C 1s and N 1s spectrum of the binary systems respectively.Nevertheless, the Zn 2p,In 3d and S 2p spectrum underwent an opposite shift between ZnIn2S4and ZnIn2S4/g-C3N4.Figs.S1D-F (Supporting information)depicts that Zn 2p1/2(1021.5 eV) and Zn 2p3/2(1044.3 eV), In 3d3/2(452.3 eV) and In 3d5/2(444.5 eV), S 2p3/2(162.78 eV) and S 2p1/2(161.88 eV) in g-C3N4increase to Zn 2p1/2(1022.5 eV) and Zn 2p3/2(1045.6 eV), In 3d3/2(452.5 eV) and In 3d5/2(444.88 eV), S 2p3/2(162.96 eV) and S 2p1/2(161.92 eV) in ZnIn2S4/g-C3N4, respectively[41].Theoretically, the changes of binding energy are related to the gain and loss of electrons, which not only prove the successfully synthesis of target heterojunction, but also substantiate the existence of active surface electron transfer between the two materials[42,43].

    Electrochemical impedance spectroscopy (EIS) is the best appropriate method to study the electron transfer of different materials.In Nyquist diagram, the smaller the semicircle diameter, the smaller the impedance, implying the faster the electron transfer rate [44].Distinctly, the electron-transfer resistances (Rct)of the samples in owning of visible light are smallest (Fig.S2A in Supporting information), which is probably interpreted that the heterojunction interface can act as a connecting bridge to accelerate electron transfer rate, which accelerates the separation rate of photogenic electron/hole pairs with the assistance of visible light [45,46].Additionally, differential pulse voltammetry(DPV) determination was carried out in phosphate buffered solution (PBS) containing 50 mmol/L BPA to demonstrate the photoelectrocatalytic performance of the ZnIn2S4/g-C3N4modified electrode.Fig.S2B (Supporting information) displays that there has little difference in current density for pure ZnIn2S4, however, there exists a relatively large otherness of current density to ZnIn2S4/g-C3N4heterojunction with or without visible light.As shown in Fig.S2C, the peak current density of ZnIn2S4/g-C3N4(36.57 mA/cm2)with visible-light irradiation is 1.88 times more than that without visible-light.Moreover, the oxidation peak potential slightly shifts negatively, speculating that the formation of heterojunction works positively.

    For further understanding the electrocatalytic mechanism of BPA on ZnIn2S4/g-C3N4modified electrode, Cyclic Voltammetry(CV) was employed at different scan rates (40–240 mV/s).Figs.S3A-C (Supporting information) displays that the oxidation peak shifts gradually towards positive potential and the peak current(Ip) increases linearly with the scan rate (v) (R2= 0.99914), which demonstrates that the process is controlled by absorption [47].According to the Laviron’s equationwhereEθ,kθ,α,n,v,R,TandFmean formal redox potential, (standard rate constant of the reaction, transfer coefficient,electron transfer number, scan rate, gas constant, absolute temperature and Faraday’s constant, respectively), it can be calculated that n ≈2 (takingα= 0.5,T= 298 K,R= 8.314 J K-1mol-1, andF= 96480 C/mol).Thus, it can be speculated that the electrocatalytic oxidation of BPA might be a two-electron and two-proton process [48–50].

    The influence of PBS pH value was investigated in the range of 5.0-10.0.As illustrated in Figs.S3D-F (Supporting information),the current density shows a trend of increasing first and then decreasing, reaching the maximum value at 8.0.The pH of maximal current response is lower than the pKaof BPA (pKa= 9.73), indicating the undissociated BPA molecules could be adsorbed better than the dissociated ionic BPA on the ZnIn2S4/g-C3N4modified electrode surface [9].So that, the optimal pH value of 8.0 is chosen in the subsequent experiments.In addition, the linear relation of the oxidation potential (Ep) and pH is expressed as:Ep= – 0.06194pH + 0.97524 (R2= 0.99327) in Fig.S3F and by which, the obtained slope approximate to the theoretical value(57.6 mV per pH) [9,51].It indicates that the electron transfer was accompanied by an equal number of protons in electrode reaction, further certifying that the oxidation process would be a two-electron and two-proton process.As can be seen from Fig.S4A (Supporting information), the longer the deposition time, the greater the measured current, and the oxidation peak current density levels off after 240 s, meaning that the adsorbance tends to saturation at 240 s.Furthermore, in order to investigate the effect of current response of the coating amount of ZnIn2S4/g-C3N4on electrode, different amount of the samples are coated on the electrode surface.It is clearly shown that 5 mL is the optimum (Fig.S4B in Supporting information), which supposes that the appropriate accumulation of coating volume is responsible to improve the abilities of conductivity and adsorption, while excessive thickness of the electrode surface may impede the electron transfer rate,thus resulting in the dropping of current density.

    Fig.3.DPV (A) of ZnIn2S4/g-C3N4 modified electrode in PBS (pH 8.0) possessing different concentration of BPA (0.05, 0.06, 0.1, 0.4, 1, 2, 4, 8, 15, 30 mmol/L) with visible-light irradiation, insert: DPV of 0.05 and 0.06 mmol/L BPA concentration.The linear relationship (B) of various concentrations vs. current response.

    DPV determination was also seized to evaluate the analytical performance of ZnIn2S4/g-C3N4modified electrode under the optimal conditions (pH 8.0 of PBS, 240 s of deposition time, 5 mL of coating amount) and the concentration of BPA from 0.05 mmol/L to 30 mmol/L.Fig.3A displays that the oxidation peak current density is enhanced continuously with increasing the BPA concentration.Moreover, the oxidation potential shifts negatively with the advancing of concentration, indicating that the oxidation enhanced accordingly.As depicted in Fig.3B, the two regression curves could be received:I= 0.14514c+ 0.00544 (R2= 0.99333) in the range of 0.05 mmol/L to 2 mmol/L;I= 0.0514c+ 0.18823 (R2= 0.99717)in the range of 2 mmol/L to 30 mmol/L.On account of the signalto-noise ratio is equal to 3 (S/N = 3), the detection limit was estimated to be 0.016 mmol/L.As depicted in Table S1 (Supporting information), which demonstrates the desired results such as detection limits obtained by the proposed sensing system are superior or comparable with others.It also denotes that the ZnIn2S4/g-C3N4heterojunction has a bright application prospect in PEC detecting BPA.

    The reproducibility and stability of the ZnIn2S4/g-C3N4modified electrode (Figs.S5A and B in Supporting information) are investigated by DPV determination in PBS with 5 mmol/L BPA.Firstly,six individual electrodes are utilized to measure the reproducibility and the relative standard deviation (RSD) is 3.07%.Then, stability is estimated every two days.After two weeks, the result displays that the current responses of seven times stay over 90% and the RSD is 4.60%.Based on the above tests, the ZnIn2S4/g-C3N4modified electrode has well reproducibility and stability.It is indispensable to study the interference test due to the complexity of the real environment.Some possible interfering substances including inorganic ions (Cl-, Na+, Cu2+, SO42-) and organic compounds (glucose,p-acetamidophenol, catechol) were selected to examine in 5 mmol/L BPA-contained PBS.The validation results as described in Fig.S5C (Supporting information) reveals that both inorganic ions and organic compounds have slight influence on the BPA detection.For chasing the applicability and sensitivity of as-synthesized material in real sample, the ZnIn2S4/g-C3N4modified electrode was used to detect BPA in the real water samples.Table S2 (Supporting information) shows that the average recovery rates of BPA in real water samples including river water, tap water and seawater are in the scope of 92.6% to 104.7%, signifying that as a novel PEC sensor,the ZnIn2S4/g-C3N4modified electrode is feasible for the detection of BPA in real samples.

    The possible mechanism to use ZnIn2S4/g-C3N4modified electrode for photoelectrochemical detection of BPA is proposed and presented in Scheme 1.Thanks to the special flower-like structures of ZnIn2S4, large amounts of BPA are adsorbed on the surface of ZnIn2S4/g-C3N4heterojunction.As a typical electrochemical (EC) sensor of ZnIn2S4/g-C3N4, BPA is easily oxidized and loses two electrons through the DPV method, resulting in a corresponding current response.Under the visible-light irradiation, ZnIn2S4/g-C3N4is excited to generate electrons and holes in the conduction band and valence band, respectively.Due to theECBof g-C3N4being more negative than that of ZnIn2S4, the light-generated electrons could move from the conduction band of g-C3N4to ZnIn2S4on the action of ZnIn2S4/g-C3N4heterojunction.At the same time,because of the smallerEVBof g-C3N4, the photo-generated holes can transfer from the valence band of ZnIn2S4to g-C3N4.The above process can help to promote the separation efficiency of light-generated electrons/hole pairs.More importantly, the photogenerated holes with strong oxidation ability can directly oxidize H2O/OH-to·OH.Both·OH and photo-generated holes can oxidize the BPA adsorbing on the surface of ZnIn2S4/g-C3N4heterojunction, which further enhances the corresponding current response signal during electrochemical detection.

    Scheme 1.The mechanism of photoelectrochemical detection for BPA on the ZnIn2S4/g-C3N4 modified electrode.

    In summary, a binary PEC sensor has been prepared to detect BPA on the basis of ZnIn2S4/g-C3N4heterojunction.The PEC conversion efficiency improved remarkably because of the matched band structures of ZnIn2S4and g-C3N4and the photoelectric synergistic effect, leading to an obviously amplified photocurrent response signal of BPA detection when ZnIn2S4/g-C3N4modified electrode was used as a sensor.In other words, the PEC sensor displayed an appreciable detection sensitivity, remarkable stability and reproducibility, low detection limit, and wide liner range for the determination of BPA.These results provide a novel facile strategy for the establishment of sensitive BPA photoelectrochemical sensors.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    The present study was supported by the Key Laboratory of Resource Chemistry, Ministry of Education (No.KLRC_ME2002).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.07.047.

    午夜福利视频精品| 久久亚洲精品不卡| 女人被躁到高潮嗷嗷叫费观| 午夜免费成人在线视频| 人妻 亚洲 视频| 99re6热这里在线精品视频| 成人永久免费在线观看视频 | 欧美另类亚洲清纯唯美| 一区二区三区国产精品乱码| 岛国在线观看网站| 999久久久精品免费观看国产| 亚洲 欧美一区二区三区| 精品国产国语对白av| svipshipincom国产片| 久久影院123| 免费高清在线观看日韩| 麻豆av在线久日| aaaaa片日本免费| www.熟女人妻精品国产| 成人精品一区二区免费| 日韩一卡2卡3卡4卡2021年| 2018国产大陆天天弄谢| 在线观看免费高清a一片| 美女福利国产在线| 亚洲精品在线美女| 80岁老熟妇乱子伦牲交| 99国产综合亚洲精品| 国产黄色免费在线视频| 十八禁人妻一区二区| 久久久久久久久久久久大奶| 露出奶头的视频| 亚洲黑人精品在线| 久久久久精品人妻al黑| 亚洲av美国av| 国产男女超爽视频在线观看| 一区在线观看完整版| 91麻豆av在线| 久久 成人 亚洲| 国产精品一区二区精品视频观看| 亚洲一区中文字幕在线| 乱人伦中国视频| 欧美激情 高清一区二区三区| www.999成人在线观看| 老鸭窝网址在线观看| 黄色片一级片一级黄色片| av天堂久久9| av不卡在线播放| 欧美 日韩 精品 国产| av视频免费观看在线观看| 国产有黄有色有爽视频| 亚洲人成电影免费在线| 日日摸夜夜添夜夜添小说| 国产老妇伦熟女老妇高清| 香蕉国产在线看| 1024视频免费在线观看| 精品久久蜜臀av无| 97在线人人人人妻| 在线观看www视频免费| 亚洲伊人色综图| 国产野战对白在线观看| 女性生殖器流出的白浆| 免费人妻精品一区二区三区视频| 777米奇影视久久| 日日爽夜夜爽网站| 老司机在亚洲福利影院| 欧美av亚洲av综合av国产av| 久久中文字幕人妻熟女| 一夜夜www| 美女主播在线视频| 国产一区二区 视频在线| 午夜91福利影院| 水蜜桃什么品种好| 国产一区有黄有色的免费视频| 亚洲精品美女久久久久99蜜臀| 99国产综合亚洲精品| 日本av免费视频播放| 中文字幕色久视频| 久久精品国产综合久久久| 国产成人精品久久二区二区免费| 日本黄色视频三级网站网址 | 热re99久久精品国产66热6| 免费看a级黄色片| 国产欧美日韩一区二区三| 精品国产一区二区三区久久久樱花| 午夜福利在线观看吧| 国产精品秋霞免费鲁丝片| 国产人伦9x9x在线观看| 午夜91福利影院| 亚洲一区中文字幕在线| 91字幕亚洲| 在线永久观看黄色视频| 久久精品国产亚洲av高清一级| 欧美日韩一级在线毛片| 日本wwww免费看| 高清av免费在线| 精品高清国产在线一区| 动漫黄色视频在线观看| 另类精品久久| 少妇被粗大的猛进出69影院| 交换朋友夫妻互换小说| 日韩中文字幕视频在线看片| 一级毛片精品| 美女视频免费永久观看网站| 国产不卡av网站在线观看| 日韩欧美免费精品| 亚洲人成电影免费在线| 欧美国产精品一级二级三级| 亚洲一区中文字幕在线| 免费黄频网站在线观看国产| 国产精品二区激情视频| 肉色欧美久久久久久久蜜桃| 国产黄色免费在线视频| 国产精品 欧美亚洲| 午夜日韩欧美国产| 欧美+亚洲+日韩+国产| 人妻一区二区av| 亚洲av第一区精品v没综合| 一区在线观看完整版| 国产精品成人在线| av又黄又爽大尺度在线免费看| 最新在线观看一区二区三区| 嫁个100分男人电影在线观看| 性高湖久久久久久久久免费观看| 国产精品香港三级国产av潘金莲| 免费高清在线观看日韩| 国内毛片毛片毛片毛片毛片| 亚洲成人免费av在线播放| 亚洲欧美色中文字幕在线| 丰满饥渴人妻一区二区三| 亚洲三区欧美一区| 美女视频免费永久观看网站| 搡老乐熟女国产| av福利片在线| 欧美亚洲 丝袜 人妻 在线| 丝袜美腿诱惑在线| 国产有黄有色有爽视频| av有码第一页| 国产男女超爽视频在线观看| 后天国语完整版免费观看| 高清av免费在线| 免费一级毛片在线播放高清视频 | 男人舔女人的私密视频| 久久中文字幕人妻熟女| 免费观看a级毛片全部| 久久久久精品国产欧美久久久| 中文字幕精品免费在线观看视频| av免费在线观看网站| 成人av一区二区三区在线看| 99久久人妻综合| 国产高清激情床上av| 国产精品自产拍在线观看55亚洲 | 国产在线免费精品| 日本wwww免费看| 在线十欧美十亚洲十日本专区| 另类亚洲欧美激情| av片东京热男人的天堂| 欧美日韩av久久| 亚洲一卡2卡3卡4卡5卡精品中文| 伦理电影免费视频| 老熟女久久久| 久久久久久久久久久久大奶| 精品少妇内射三级| 国产一卡二卡三卡精品| 欧美乱妇无乱码| 亚洲欧美一区二区三区久久| 国产一卡二卡三卡精品| 一本色道久久久久久精品综合| 久热爱精品视频在线9| 日韩三级视频一区二区三区| 一级片'在线观看视频| 激情视频va一区二区三区| 午夜福利在线免费观看网站| 最近最新中文字幕大全电影3 | 人人妻,人人澡人人爽秒播| 交换朋友夫妻互换小说| 一级毛片女人18水好多| 国产高清激情床上av| 久9热在线精品视频| 又黄又粗又硬又大视频| 天堂动漫精品| 午夜久久久在线观看| 丝袜在线中文字幕| 最近最新免费中文字幕在线| 亚洲欧美一区二区三区久久| 中文字幕人妻丝袜一区二区| 狂野欧美激情性xxxx| 日韩一区二区三区影片| 亚洲国产精品一区二区三区在线| 国产99久久九九免费精品| 波多野结衣av一区二区av| 十八禁人妻一区二区| 王馨瑶露胸无遮挡在线观看| 99精品欧美一区二区三区四区| 亚洲伊人久久精品综合| 老汉色∧v一级毛片| 免费女性裸体啪啪无遮挡网站| 久久午夜综合久久蜜桃| 99re在线观看精品视频| bbb黄色大片| 亚洲色图av天堂| 美女高潮到喷水免费观看| 熟女少妇亚洲综合色aaa.| 亚洲国产欧美日韩在线播放| 亚洲一区二区三区欧美精品| 午夜福利影视在线免费观看| 亚洲精品粉嫩美女一区| 制服人妻中文乱码| 精品国产一区二区三区四区第35| 日本wwww免费看| 国产精品98久久久久久宅男小说| 免费观看人在逋| 黄片播放在线免费| 两个人免费观看高清视频| 热99re8久久精品国产| 国产精品一区二区精品视频观看| 国产一区二区激情短视频| 国产精品久久电影中文字幕 | 午夜福利欧美成人| av片东京热男人的天堂| 久久婷婷成人综合色麻豆| 在线看a的网站| 窝窝影院91人妻| 日韩精品免费视频一区二区三区| 国产麻豆69| 亚洲专区国产一区二区| 久久99一区二区三区| 亚洲精品av麻豆狂野| 精品一区二区三卡| 最新在线观看一区二区三区| 18禁观看日本| 亚洲人成电影观看| 成年人午夜在线观看视频| a级片在线免费高清观看视频| 久久久久久亚洲精品国产蜜桃av| 欧美日韩亚洲高清精品| 最近最新免费中文字幕在线| 一本久久精品| 黄色视频不卡| 天堂8中文在线网| 啦啦啦免费观看视频1| 精品熟女少妇八av免费久了| 在线 av 中文字幕| 日韩视频一区二区在线观看| 丁香六月欧美| 亚洲av美国av| 777米奇影视久久| 天天躁夜夜躁狠狠躁躁| 波多野结衣一区麻豆| 亚洲色图av天堂| 大陆偷拍与自拍| 黄色a级毛片大全视频| 精品国产一区二区三区四区第35| 国产麻豆69| 动漫黄色视频在线观看| 又大又爽又粗| 国产精品98久久久久久宅男小说| 狠狠婷婷综合久久久久久88av| 精品国内亚洲2022精品成人 | 久久久久精品人妻al黑| 两个人看的免费小视频| 亚洲视频免费观看视频| 国产亚洲午夜精品一区二区久久| 亚洲中文字幕日韩| 亚洲精品粉嫩美女一区| 国产成人精品在线电影| 新久久久久国产一级毛片| 美女高潮喷水抽搐中文字幕| 国产国语露脸激情在线看| 久久精品亚洲熟妇少妇任你| 久久精品aⅴ一区二区三区四区| 亚洲性夜色夜夜综合| 性少妇av在线| 丰满少妇做爰视频| 91成人精品电影| 别揉我奶头~嗯~啊~动态视频| 变态另类成人亚洲欧美熟女 | 一区二区三区国产精品乱码| 啦啦啦 在线观看视频| 国产片内射在线| 国产又爽黄色视频| 免费不卡黄色视频| 在线亚洲精品国产二区图片欧美| 亚洲天堂av无毛| 一级a爱视频在线免费观看| 免费观看人在逋| 99国产精品99久久久久| 亚洲精品美女久久av网站| 男女高潮啪啪啪动态图| 久热这里只有精品99| 国产成人欧美在线观看 | 免费高清在线观看日韩| 亚洲中文日韩欧美视频| 日韩熟女老妇一区二区性免费视频| av天堂久久9| 精品视频人人做人人爽| 人妻久久中文字幕网| 91成人精品电影| 18禁黄网站禁片午夜丰满| 动漫黄色视频在线观看| 日韩大码丰满熟妇| 一边摸一边做爽爽视频免费| 最新的欧美精品一区二区| 激情在线观看视频在线高清 | 精品欧美一区二区三区在线| 丁香欧美五月| 亚洲第一欧美日韩一区二区三区 | 麻豆国产av国片精品| 国产亚洲av高清不卡| 国产精品久久久久久人妻精品电影 | 久久国产精品男人的天堂亚洲| 国产一区二区在线观看av| 欧美日韩成人在线一区二区| 天天躁日日躁夜夜躁夜夜| 久久久水蜜桃国产精品网| 两个人看的免费小视频| 高清视频免费观看一区二区| 黄片播放在线免费| 日韩欧美一区二区三区在线观看 | 亚洲欧美日韩高清在线视频 | 精品国产国语对白av| 一本一本久久a久久精品综合妖精| 高清在线国产一区| 蜜桃在线观看..| √禁漫天堂资源中文www| 免费少妇av软件| 久久久久久亚洲精品国产蜜桃av| 久久精品国产a三级三级三级| 欧美日韩福利视频一区二区| 午夜视频精品福利| 女警被强在线播放| 老熟女久久久| 亚洲国产av影院在线观看| 亚洲国产成人一精品久久久| 一进一出抽搐动态| 久久精品国产a三级三级三级| 国产欧美日韩综合在线一区二区| 亚洲国产欧美日韩在线播放| 中文字幕人妻熟女乱码| 亚洲全国av大片| 精品熟女少妇八av免费久了| 成人av一区二区三区在线看| 国产精品美女特级片免费视频播放器 | 纵有疾风起免费观看全集完整版| 成年版毛片免费区| 色精品久久人妻99蜜桃| 变态另类成人亚洲欧美熟女 | 亚洲国产成人一精品久久久| 久久久国产成人免费| 亚洲精品中文字幕在线视频| 中文字幕人妻熟女乱码| 热re99久久精品国产66热6| 嫁个100分男人电影在线观看| 久久国产精品影院| 高清毛片免费观看视频网站 | 91大片在线观看| 欧美午夜高清在线| 青青草视频在线视频观看| 人妻一区二区av| 精品第一国产精品| 久久久久精品人妻al黑| 91精品国产国语对白视频| av有码第一页| 午夜91福利影院| 亚洲性夜色夜夜综合| 久久精品国产综合久久久| 天天添夜夜摸| 亚洲va日本ⅴa欧美va伊人久久| 性色av乱码一区二区三区2| 免费在线观看视频国产中文字幕亚洲| 一夜夜www| 欧美精品啪啪一区二区三区| 国产精品 国内视频| 国产精品免费视频内射| 大香蕉久久成人网| 少妇粗大呻吟视频| 久久这里只有精品19| 亚洲伊人色综图| av片东京热男人的天堂| 久久国产精品男人的天堂亚洲| 精品午夜福利视频在线观看一区 | 操美女的视频在线观看| 天天影视国产精品| 黑人猛操日本美女一级片| 午夜福利乱码中文字幕| 最近最新中文字幕大全电影3 | 国产av精品麻豆| 午夜福利影视在线免费观看| 最近最新中文字幕大全免费视频| 午夜激情av网站| 中国美女看黄片| 亚洲熟女毛片儿| 国产色视频综合| 国产成人欧美| 国产一区二区在线观看av| 国产亚洲精品第一综合不卡| 人妻久久中文字幕网| 在线观看免费视频网站a站| 免费av中文字幕在线| 1024香蕉在线观看| 99精品在免费线老司机午夜| 大陆偷拍与自拍| 高清欧美精品videossex| 满18在线观看网站| 国产精品亚洲一级av第二区| 久久久国产成人免费| 91字幕亚洲| 亚洲伊人久久精品综合| 国产在线观看jvid| 黑人猛操日本美女一级片| 亚洲成人国产一区在线观看| 亚洲精品av麻豆狂野| 国产精品一区二区在线观看99| 亚洲国产欧美网| 国产亚洲精品久久久久5区| 国产精品国产高清国产av | 搡老乐熟女国产| 天堂动漫精品| 9191精品国产免费久久| 国产福利在线免费观看视频| 久久国产精品影院| 69精品国产乱码久久久| 新久久久久国产一级毛片| 大码成人一级视频| 亚洲视频免费观看视频| 国产av国产精品国产| 国产一区二区三区在线臀色熟女 | 亚洲中文日韩欧美视频| 亚洲欧美一区二区三区黑人| 亚洲精品一卡2卡三卡4卡5卡| 亚洲一区二区三区欧美精品| 飞空精品影院首页| 亚洲人成伊人成综合网2020| 国产又色又爽无遮挡免费看| 国产精品一区二区在线不卡| 五月开心婷婷网| av电影中文网址| cao死你这个sao货| 日韩中文字幕欧美一区二区| 无人区码免费观看不卡 | 久久人妻av系列| 啦啦啦 在线观看视频| 9191精品国产免费久久| 欧美精品一区二区大全| 国产无遮挡羞羞视频在线观看| 香蕉国产在线看| 午夜福利在线在线| 亚洲男人的天堂狠狠| 在线免费观看的www视频| 国内精品久久久久精免费| 一个人免费在线观看的高清视频| 日本熟妇午夜| 禁无遮挡网站| 午夜免费成人在线视频| 欧洲精品卡2卡3卡4卡5卡区| 人人妻人人澡欧美一区二区| 校园春色视频在线观看| 99精品欧美一区二区三区四区| 麻豆一二三区av精品| 国产伦人伦偷精品视频| 国产亚洲精品久久久久久毛片| 国产真实乱freesex| 2021天堂中文幕一二区在线观| 欧美另类亚洲清纯唯美| 中文字幕人妻丝袜一区二区| 国产熟女xx| 夜夜爽天天搞| 1000部很黄的大片| 又爽又黄无遮挡网站| 国产精品久久久人人做人人爽| 日韩大尺度精品在线看网址| 91av网站免费观看| 久久香蕉精品热| 一进一出抽搐动态| 亚洲国产看品久久| 真实男女啪啪啪动态图| 成在线人永久免费视频| 亚洲欧美精品综合一区二区三区| 一级作爱视频免费观看| 一级a爱片免费观看的视频| 亚洲天堂国产精品一区在线| a级毛片a级免费在线| 日韩精品中文字幕看吧| 精品欧美国产一区二区三| 男人舔奶头视频| 欧美极品一区二区三区四区| 免费高清视频大片| 超碰成人久久| 黄片大片在线免费观看| 国产男靠女视频免费网站| 美女扒开内裤让男人捅视频| 99在线人妻在线中文字幕| 又黄又粗又硬又大视频| 黄片大片在线免费观看| 女人高潮潮喷娇喘18禁视频| av黄色大香蕉| 亚洲av电影在线进入| 性欧美人与动物交配| 在线永久观看黄色视频| 久久久久久久久中文| 免费搜索国产男女视频| 久久久久久九九精品二区国产| 老司机午夜福利在线观看视频| 黄片小视频在线播放| 欧美日本视频| www.www免费av| 999久久久国产精品视频| 成熟少妇高潮喷水视频| 长腿黑丝高跟| 成人高潮视频无遮挡免费网站| 两性夫妻黄色片| 亚洲美女黄片视频| xxx96com| 日本免费a在线| 一区二区三区激情视频| 日本黄色片子视频| 97超视频在线观看视频| 欧美乱色亚洲激情| 亚洲成av人片免费观看| 91av网一区二区| 天堂网av新在线| 性色av乱码一区二区三区2| 亚洲电影在线观看av| 最新在线观看一区二区三区| 黄片小视频在线播放| 好看av亚洲va欧美ⅴa在| a在线观看视频网站| 国产av在哪里看| 中文字幕最新亚洲高清| 俄罗斯特黄特色一大片| 亚洲 欧美 日韩 在线 免费| 首页视频小说图片口味搜索| 国产精品,欧美在线| 脱女人内裤的视频| 亚洲aⅴ乱码一区二区在线播放| 国产高潮美女av| 校园春色视频在线观看| 国产精品日韩av在线免费观看| 欧美日韩精品网址| 亚洲精品久久国产高清桃花| 日本黄色视频三级网站网址| 久久久色成人| 国产三级中文精品| 久久精品国产99精品国产亚洲性色| 少妇丰满av| 中文字幕最新亚洲高清| 床上黄色一级片| 激情在线观看视频在线高清| 18禁黄网站禁片午夜丰满| 久久精品国产亚洲av香蕉五月| 亚洲中文日韩欧美视频| 中亚洲国语对白在线视频| 神马国产精品三级电影在线观看| 国产v大片淫在线免费观看| АⅤ资源中文在线天堂| 老司机在亚洲福利影院| 中文字幕精品亚洲无线码一区| 热99在线观看视频| 99久久99久久久精品蜜桃| 18禁裸乳无遮挡免费网站照片| 国产野战对白在线观看| 欧美一级a爱片免费观看看| av视频在线观看入口| 午夜福利高清视频| 高清在线国产一区| 亚洲狠狠婷婷综合久久图片| 亚洲电影在线观看av| 女人被狂操c到高潮| 1024香蕉在线观看| 欧美绝顶高潮抽搐喷水| 久久久色成人| 国内揄拍国产精品人妻在线| 99国产精品99久久久久| 免费搜索国产男女视频| 国产乱人视频| 欧美大码av| 日本a在线网址| 免费在线观看影片大全网站| 法律面前人人平等表现在哪些方面| 露出奶头的视频| 日本黄色视频三级网站网址| 亚洲欧美精品综合久久99| 国产三级黄色录像| 国产视频一区二区在线看| www国产在线视频色| 国产成人福利小说| 久久国产精品影院| 久久精品国产99精品国产亚洲性色| 九色成人免费人妻av| av天堂中文字幕网| 又爽又黄无遮挡网站| 19禁男女啪啪无遮挡网站| 国产精品1区2区在线观看.| av片东京热男人的天堂| 亚洲精品美女久久久久99蜜臀| 精品福利观看| 亚洲成人久久爱视频| 亚洲激情在线av| 天天一区二区日本电影三级| 99久久国产精品久久久| 欧美黄色片欧美黄色片| 欧美不卡视频在线免费观看| 99久久精品国产亚洲精品| 免费高清视频大片| av福利片在线观看| 少妇的丰满在线观看| 久久久久久久午夜电影| 亚洲电影在线观看av| 99热这里只有精品一区 | 中文字幕久久专区| 国产精品久久视频播放| 日韩成人在线观看一区二区三区| 国产伦精品一区二区三区四那| 桃红色精品国产亚洲av| 在线观看一区二区三区| 久久久久免费精品人妻一区二区|