• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Label-free photoelectrochemical sensor based on 2D/2D ZnIn2S4/g-C3N4 heterojunction for the efficient and sensitive detection of bisphenol A

    2022-06-18 03:00:50QiaoweiChenChenYuanChunyangZhai
    Chinese Chemical Letters 2022年2期

    Qiaowei Chen, Chen Yuan, Chunyang Zhai

    School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China

    ABSTRACT Photoelectrochemical (PEC) sensor is an emerging technology in analysis as the advantage of fast response, high sensitivity and uncomplicated operation.In this study, an effective label-free PEC sensor for bisphenol A (BPA) detecting is constructed, in which ZnIn2S4/g-C3N4 heterojunction is prepared via a simple hydrothermal method.The characterization outcomes display that the formation of p-n heterojunction helps for promoting the separation efficiency of photo-generated carrier.Under visible light irradiation,the ZnIn2S4/g-C3N4 modified electrode exhibits broader liner range from 0.05 mmol/L to 30 mmol/L and lower detection limit of 0.016 μmol/L (S/N=3) with remarkable stability and reproducibility of detection BPA under visible light irradiation.Furthermore, the constructed PEC sensor displays favorable potential for detection of BPA in practical applications.

    Keywords:Bisphenol A ZnIn2S4/g-C3N4 Heterojunction Photoelectrochemical sensor

    Bisphenol A (BPA, 2,2-bis(4-hydroxyphenyl)propane), an important organic chemical raw material, is always found in much food and drink packaging products [1].A small amount of BPA could release into food or drink water from food or drink containers due to its high temperature intolerance [2].However, as an estrogen mimic, BPA may cause imbalance in the endocrine system, immune system and nervous system even at a lower dose of exposure [3].So that, it is extremely urgent to establish rapid, reliable and simple analytical method to detect BPA in an aquatic environment.

    Recently, photoelectrochemical (PEC) sensors, due to the unique separation process of input (light source) and output (electrical)signals, which is given many advantages of almost inappreciable background signals, cheap devices and rapidly high sensitivity, have developed into an effective analytical technology to detect BPA [4–6].It is noteworthy that the reasoning design and synthesis of photoanode material is considered as a committed step in the process of PEC detecting BPA.Diverse types of photoactive materials, including carbon materials [7,8], noble metal nanoparticles [9,10] and semiconductor materials [11–13], have been used as photoanode in PEC sensor for determining BPA.Among them,semiconductor heterojunction has won great attention for its efficient photoelectron/hole pair migration, broadened light absorption range and excellent PEC performance, which shown charming potential in photocatalytic hydrogen generation [14–17], photocatalytic degradation of pollutants [18–22] and PEC detection[4,23,24].For instance, Zhanget al.[13] successfully designed a novel hierarchical hollow ZnCdS@MoS2 heterostructured cages and then used it as PEC aptasensor for lincomycin detection.The result displayed that the PEC aptasensor exhibited a wide liner work range response with a low detection limit for lincomycin detection,which attributed to the synergy between tailored hierarchical hollow structure and close contact heterojunction interface.

    Recently, as an important member of ternary chalcogenide,ZnIn2S4with two-dimensional (2D) flower-like structures has triggered wide attention in photocatalysis thanks to its excellent optical and electrical performance, perfect chemical stability and extremely high specific surface area.What is more, ZnIn2S4has an appropriate band gap, which not only endows it strong visible light harvesting ability, but also can make it match with g-C3N4.This is benefited to construct the binary ZnIn2S4/g-C3N4heterojunction to enhance the photogenerated electron/hole separation and migration efficiency [25–27].In recent reports, ZnIn2S4/g-C3N4heterojunction has been synthesized and applied to photocatalytic H2production [26] and photodegradation pollution [27].However,there were rarely reports that ZnIn2S4/g-C3N4heterojunction was used as PEC sensor.

    Herein, binary 2D/2D ZnIn2S4/g-C3N4heterojunction was easily obtainedviaa simple hydrothermal method.The scanning electronic microscopy (SEM), transmission electron microscopy (TEM)and high-resolution transmission electron microscopy (HRTEM)were offered to survey the morphology of ZnIn2S4and ZnIn2S4/g-C3N4.Fig.1A displays that pure ZnIn2S4exhibits globular flowerlike structure with multiple nanosheets and the TEM image of ZnIn2S4(Fig.1B) is in good agreement with it.Fig.1C shows the high-resolution (HR-TEM) image of ZnIn2S4, in which the lattice spacing (~0.32 nm) is ascribed to (102) crystal plane of ZnIn2S4.Fig.1D shows that ZnIn2S4/g-C3N4heterojunction inherits the flower-like structure of ZnIn2S4and g-C3N4nanosheets attach to the surface visually in addition.The TEM and HR-TEM (Figs.1E and F) further testify that ZnIn2S4and g-C3N4have been in sufficient contacted and formed an effective heterogeneous junction interface.

    Fig.1.SEM (A, D), TEM (B, E) and HRTEM (C, F) images of ZnIn2S4 (A-C) and ZnIn2S4/g-C3N4 (D-F).

    The crystal structure of samples was investigated by X-ray powder diffraction (XRD) as revealed in Fig.2A.One can see that the characteristic diffraction peaks in ZnIn2S4/g-C3N4are great correspondence relations with the hexagonal ZnIn2S4(JCPDS No.65-2023), implying that crystalline structure of ZnIn2S4is not be noticeably affected by the introduction of g-C3N4[28,29].However,the coincidence of (002) crystal plane of g-C3N4and (102) crystal plane of ZnIn2S4may render us uncertain whether g-C3N4has been correctly introduced.To deeply verify the presence of g-C3N4in ZnIn2S4/g-C3N4, Fourier transform infrared spectroscope (FT-IR)test was performed (Fig.2B).For pure ZnIn2S4, two adsorption peaks appear at 1398 cm-1and 1624 cm-1are associated with the physical absorption of water molecules and hydroxyl groups[30].For pure g-C3N4, several strong peaks found within the limit of 1200-1650 cm-1are ascribed to the typical stretching modes of g-C3N4heterocycles.The board band in 3000–3500 cm-1region is attributed to the stretching modes of NH heterocycles and the strong characteristic vibration mode derives from the triazine units results in the sharp peak at 810 cm-1[31,32].Compare with pure g-C3N4, all main adsorption peaks emerge in the FT-IR spectra of ZnIn2S4/g-C3N4, which verify that the successful preparation of the heterojunction.

    Fig.2.XRD patterns (A), FT-IR spectra (B) and UV-vis diffuse reflection spectra (C)of samples.Plot (D) of (αhv)2 vs.hv for the band gap energy of ZnIn2S4 and g-C3N4.

    The optical properties of the samples were characterized by the UV-Vis diffuse reflectance spectra (DRS) (Fig.2C).The absorption edge of pure g-C3N4is around 460 nm and pure ZnIn2S4shows about 550 nm.For ZnIn2S4/g-C3N4heterojunction, the absorption edge extends to 580 nm, guessing that the interaction of ZnIn2S4and g-C3N4made an essential contribution to broaden the absorption in the visible range [33].The bandgap energy (Eg) could be determined by the following equation:αhv=A(hv-Eg)n/2, in whichα, hv, A represent the absorption coefficient, light frequency and a constant, respectively.The indexnis decided by the type of semiconductor (n= 1 for direct transition andn= 4 for indirect transition) and ZnIn2S4and g-C3N4are both the direct-transition type in terms of previously reports [34].Combine the above-mentioned with Fig.2D, theEgof ZnIn2S4and g-C3N4is denoted as 2.5 eV and 2.8 eV, which is close to the literature value [35,36].Besides,the equations ofEVB=χ-Ee+ 0.5EgandECB=EVB-Egare used to calculate the valence band (VB) and conduction band (CB)energy levels of semiconductors, whereEVBandECBare the energy of VB and CB,Ee(~4.5 eV) is the energy of free electrons on the hydrogen scale,χis the geometric mean of the absolute electronegativity of the constituent atoms (4.86 eV for ZnIn2S4, 4.63 eV for g-C3N4) [37,38].Accordingly, theEVBof ZnIn2S4and g-C3N4is assigned to be + 1.61 eV and + 1.53 eV, and theECBof ZnIn2S4and g-C3N4was -0.89 eV and -1.27 eV, respectively.

    The X-ray photoelectron spectroscopy (XPS) analysis was conducted to probe the elemental valence state and composition of samples in depth.Fig.S1A (Supporting information) checks all characteristic peaks entailed by C, N, Zn, In, S elements, indicating ZnIn2S4and g-C3N4have already presented in the heterojunction.As shown in Fig.S1B (Supporting information), three peaks of the C 1s spectrum, which center at 288.4 eV and 284.9 eV, are attributed to N–C=N bonds and C-C bonds, and 285.9 eV is interpreted as defect-containing sp2-hybridized carbon in g-C3N4surface [39].For the N 1s spectrum (Fig.S1C in Supporting information), three peaks refer to C-N-H bonds (401.2 eV), N–C3bonds(400.1 eV) and C–N=C bonds (398.8 eV) [30,40].By contrast, the peaks negatively shift to 0.2 and 0.4 eV in the C 1s and N 1s spectrum of the binary systems respectively.Nevertheless, the Zn 2p,In 3d and S 2p spectrum underwent an opposite shift between ZnIn2S4and ZnIn2S4/g-C3N4.Figs.S1D-F (Supporting information)depicts that Zn 2p1/2(1021.5 eV) and Zn 2p3/2(1044.3 eV), In 3d3/2(452.3 eV) and In 3d5/2(444.5 eV), S 2p3/2(162.78 eV) and S 2p1/2(161.88 eV) in g-C3N4increase to Zn 2p1/2(1022.5 eV) and Zn 2p3/2(1045.6 eV), In 3d3/2(452.5 eV) and In 3d5/2(444.88 eV), S 2p3/2(162.96 eV) and S 2p1/2(161.92 eV) in ZnIn2S4/g-C3N4, respectively[41].Theoretically, the changes of binding energy are related to the gain and loss of electrons, which not only prove the successfully synthesis of target heterojunction, but also substantiate the existence of active surface electron transfer between the two materials[42,43].

    Electrochemical impedance spectroscopy (EIS) is the best appropriate method to study the electron transfer of different materials.In Nyquist diagram, the smaller the semicircle diameter, the smaller the impedance, implying the faster the electron transfer rate [44].Distinctly, the electron-transfer resistances (Rct)of the samples in owning of visible light are smallest (Fig.S2A in Supporting information), which is probably interpreted that the heterojunction interface can act as a connecting bridge to accelerate electron transfer rate, which accelerates the separation rate of photogenic electron/hole pairs with the assistance of visible light [45,46].Additionally, differential pulse voltammetry(DPV) determination was carried out in phosphate buffered solution (PBS) containing 50 mmol/L BPA to demonstrate the photoelectrocatalytic performance of the ZnIn2S4/g-C3N4modified electrode.Fig.S2B (Supporting information) displays that there has little difference in current density for pure ZnIn2S4, however, there exists a relatively large otherness of current density to ZnIn2S4/g-C3N4heterojunction with or without visible light.As shown in Fig.S2C, the peak current density of ZnIn2S4/g-C3N4(36.57 mA/cm2)with visible-light irradiation is 1.88 times more than that without visible-light.Moreover, the oxidation peak potential slightly shifts negatively, speculating that the formation of heterojunction works positively.

    For further understanding the electrocatalytic mechanism of BPA on ZnIn2S4/g-C3N4modified electrode, Cyclic Voltammetry(CV) was employed at different scan rates (40–240 mV/s).Figs.S3A-C (Supporting information) displays that the oxidation peak shifts gradually towards positive potential and the peak current(Ip) increases linearly with the scan rate (v) (R2= 0.99914), which demonstrates that the process is controlled by absorption [47].According to the Laviron’s equationwhereEθ,kθ,α,n,v,R,TandFmean formal redox potential, (standard rate constant of the reaction, transfer coefficient,electron transfer number, scan rate, gas constant, absolute temperature and Faraday’s constant, respectively), it can be calculated that n ≈2 (takingα= 0.5,T= 298 K,R= 8.314 J K-1mol-1, andF= 96480 C/mol).Thus, it can be speculated that the electrocatalytic oxidation of BPA might be a two-electron and two-proton process [48–50].

    The influence of PBS pH value was investigated in the range of 5.0-10.0.As illustrated in Figs.S3D-F (Supporting information),the current density shows a trend of increasing first and then decreasing, reaching the maximum value at 8.0.The pH of maximal current response is lower than the pKaof BPA (pKa= 9.73), indicating the undissociated BPA molecules could be adsorbed better than the dissociated ionic BPA on the ZnIn2S4/g-C3N4modified electrode surface [9].So that, the optimal pH value of 8.0 is chosen in the subsequent experiments.In addition, the linear relation of the oxidation potential (Ep) and pH is expressed as:Ep= – 0.06194pH + 0.97524 (R2= 0.99327) in Fig.S3F and by which, the obtained slope approximate to the theoretical value(57.6 mV per pH) [9,51].It indicates that the electron transfer was accompanied by an equal number of protons in electrode reaction, further certifying that the oxidation process would be a two-electron and two-proton process.As can be seen from Fig.S4A (Supporting information), the longer the deposition time, the greater the measured current, and the oxidation peak current density levels off after 240 s, meaning that the adsorbance tends to saturation at 240 s.Furthermore, in order to investigate the effect of current response of the coating amount of ZnIn2S4/g-C3N4on electrode, different amount of the samples are coated on the electrode surface.It is clearly shown that 5 mL is the optimum (Fig.S4B in Supporting information), which supposes that the appropriate accumulation of coating volume is responsible to improve the abilities of conductivity and adsorption, while excessive thickness of the electrode surface may impede the electron transfer rate,thus resulting in the dropping of current density.

    Fig.3.DPV (A) of ZnIn2S4/g-C3N4 modified electrode in PBS (pH 8.0) possessing different concentration of BPA (0.05, 0.06, 0.1, 0.4, 1, 2, 4, 8, 15, 30 mmol/L) with visible-light irradiation, insert: DPV of 0.05 and 0.06 mmol/L BPA concentration.The linear relationship (B) of various concentrations vs. current response.

    DPV determination was also seized to evaluate the analytical performance of ZnIn2S4/g-C3N4modified electrode under the optimal conditions (pH 8.0 of PBS, 240 s of deposition time, 5 mL of coating amount) and the concentration of BPA from 0.05 mmol/L to 30 mmol/L.Fig.3A displays that the oxidation peak current density is enhanced continuously with increasing the BPA concentration.Moreover, the oxidation potential shifts negatively with the advancing of concentration, indicating that the oxidation enhanced accordingly.As depicted in Fig.3B, the two regression curves could be received:I= 0.14514c+ 0.00544 (R2= 0.99333) in the range of 0.05 mmol/L to 2 mmol/L;I= 0.0514c+ 0.18823 (R2= 0.99717)in the range of 2 mmol/L to 30 mmol/L.On account of the signalto-noise ratio is equal to 3 (S/N = 3), the detection limit was estimated to be 0.016 mmol/L.As depicted in Table S1 (Supporting information), which demonstrates the desired results such as detection limits obtained by the proposed sensing system are superior or comparable with others.It also denotes that the ZnIn2S4/g-C3N4heterojunction has a bright application prospect in PEC detecting BPA.

    The reproducibility and stability of the ZnIn2S4/g-C3N4modified electrode (Figs.S5A and B in Supporting information) are investigated by DPV determination in PBS with 5 mmol/L BPA.Firstly,six individual electrodes are utilized to measure the reproducibility and the relative standard deviation (RSD) is 3.07%.Then, stability is estimated every two days.After two weeks, the result displays that the current responses of seven times stay over 90% and the RSD is 4.60%.Based on the above tests, the ZnIn2S4/g-C3N4modified electrode has well reproducibility and stability.It is indispensable to study the interference test due to the complexity of the real environment.Some possible interfering substances including inorganic ions (Cl-, Na+, Cu2+, SO42-) and organic compounds (glucose,p-acetamidophenol, catechol) were selected to examine in 5 mmol/L BPA-contained PBS.The validation results as described in Fig.S5C (Supporting information) reveals that both inorganic ions and organic compounds have slight influence on the BPA detection.For chasing the applicability and sensitivity of as-synthesized material in real sample, the ZnIn2S4/g-C3N4modified electrode was used to detect BPA in the real water samples.Table S2 (Supporting information) shows that the average recovery rates of BPA in real water samples including river water, tap water and seawater are in the scope of 92.6% to 104.7%, signifying that as a novel PEC sensor,the ZnIn2S4/g-C3N4modified electrode is feasible for the detection of BPA in real samples.

    The possible mechanism to use ZnIn2S4/g-C3N4modified electrode for photoelectrochemical detection of BPA is proposed and presented in Scheme 1.Thanks to the special flower-like structures of ZnIn2S4, large amounts of BPA are adsorbed on the surface of ZnIn2S4/g-C3N4heterojunction.As a typical electrochemical (EC) sensor of ZnIn2S4/g-C3N4, BPA is easily oxidized and loses two electrons through the DPV method, resulting in a corresponding current response.Under the visible-light irradiation, ZnIn2S4/g-C3N4is excited to generate electrons and holes in the conduction band and valence band, respectively.Due to theECBof g-C3N4being more negative than that of ZnIn2S4, the light-generated electrons could move from the conduction band of g-C3N4to ZnIn2S4on the action of ZnIn2S4/g-C3N4heterojunction.At the same time,because of the smallerEVBof g-C3N4, the photo-generated holes can transfer from the valence band of ZnIn2S4to g-C3N4.The above process can help to promote the separation efficiency of light-generated electrons/hole pairs.More importantly, the photogenerated holes with strong oxidation ability can directly oxidize H2O/OH-to·OH.Both·OH and photo-generated holes can oxidize the BPA adsorbing on the surface of ZnIn2S4/g-C3N4heterojunction, which further enhances the corresponding current response signal during electrochemical detection.

    Scheme 1.The mechanism of photoelectrochemical detection for BPA on the ZnIn2S4/g-C3N4 modified electrode.

    In summary, a binary PEC sensor has been prepared to detect BPA on the basis of ZnIn2S4/g-C3N4heterojunction.The PEC conversion efficiency improved remarkably because of the matched band structures of ZnIn2S4and g-C3N4and the photoelectric synergistic effect, leading to an obviously amplified photocurrent response signal of BPA detection when ZnIn2S4/g-C3N4modified electrode was used as a sensor.In other words, the PEC sensor displayed an appreciable detection sensitivity, remarkable stability and reproducibility, low detection limit, and wide liner range for the determination of BPA.These results provide a novel facile strategy for the establishment of sensitive BPA photoelectrochemical sensors.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    The present study was supported by the Key Laboratory of Resource Chemistry, Ministry of Education (No.KLRC_ME2002).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.07.047.

    99香蕉大伊视频| 久久久久久人人人人人| av欧美777| av有码第一页| av福利片在线| 熟女少妇亚洲综合色aaa.| 一级毛片女人18水好多| 在线观看免费视频日本深夜| 久久久精品免费免费高清| 午夜福利在线免费观看网站| 黄色片一级片一级黄色片| 亚洲精品国产色婷婷电影| 欧美乱码精品一区二区三区| 婷婷成人精品国产| 1024香蕉在线观看| 亚洲精品自拍成人| 国产精品欧美亚洲77777| 91九色精品人成在线观看| 国产成人欧美| 一本一本久久a久久精品综合妖精| 精品福利永久在线观看| 高清av免费在线| netflix在线观看网站| 国产一区二区三区视频了| 国产又色又爽无遮挡免费看| 日本a在线网址| 国产麻豆69| 人人妻人人添人人爽欧美一区卜| 久久久精品区二区三区| 一本一本久久a久久精品综合妖精| 老鸭窝网址在线观看| 国产97色在线日韩免费| 美国免费a级毛片| 大型黄色视频在线免费观看| 国产午夜精品久久久久久| 欧美亚洲 丝袜 人妻 在线| 国产精品免费大片| 国产乱人伦免费视频| 村上凉子中文字幕在线| 久久中文字幕人妻熟女| 无人区码免费观看不卡| 国精品久久久久久国模美| 国产亚洲精品久久久久久毛片 | 国产国语露脸激情在线看| 成人18禁高潮啪啪吃奶动态图| 欧美激情久久久久久爽电影 | 日韩中文字幕欧美一区二区| 宅男免费午夜| 成人手机av| 高清在线国产一区| 午夜两性在线视频| 午夜福利,免费看| a级毛片在线看网站| 亚洲第一欧美日韩一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 一区二区三区激情视频| 高清视频免费观看一区二区| 国产欧美日韩一区二区精品| 99精品在免费线老司机午夜| 亚洲专区中文字幕在线| 成人亚洲精品一区在线观看| 两人在一起打扑克的视频| 中文字幕高清在线视频| 亚洲精品在线观看二区| 中文字幕人妻丝袜制服| 一级片'在线观看视频| 欧美人与性动交α欧美软件| 一级a爱片免费观看的视频| 亚洲性夜色夜夜综合| 人人妻人人澡人人看| 欧美最黄视频在线播放免费 | 新久久久久国产一级毛片| 五月开心婷婷网| 久9热在线精品视频| 黑人欧美特级aaaaaa片| 久久婷婷成人综合色麻豆| 精品乱码久久久久久99久播| 欧美人与性动交α欧美精品济南到| 国产精品一区二区免费欧美| 12—13女人毛片做爰片一| 人妻一区二区av| 中国美女看黄片| svipshipincom国产片| 激情在线观看视频在线高清 | 国产成人av激情在线播放| 亚洲精品在线美女| 成人免费观看视频高清| 首页视频小说图片口味搜索| 亚洲午夜精品一区,二区,三区| 国产xxxxx性猛交| 天堂中文最新版在线下载| 亚洲成国产人片在线观看| 日韩免费高清中文字幕av| 精品人妻1区二区| 久久国产精品大桥未久av| 99国产精品免费福利视频| 一区二区三区精品91| 黑人欧美特级aaaaaa片| 嫩草影视91久久| 成人免费观看视频高清| 狂野欧美激情性xxxx| 国产精品乱码一区二三区的特点 | 午夜精品国产一区二区电影| 国产av精品麻豆| 99久久精品国产亚洲精品| 在线观看免费高清a一片| 久久人人97超碰香蕉20202| 久久久国产精品麻豆| 很黄的视频免费| 色综合婷婷激情| 日韩成人在线观看一区二区三区| 老鸭窝网址在线观看| 久久影院123| 欧美日韩亚洲高清精品| 中文字幕另类日韩欧美亚洲嫩草| 久久久国产一区二区| 亚洲五月色婷婷综合| 深夜精品福利| 欧美黄色淫秽网站| 9热在线视频观看99| 国产欧美日韩一区二区三| 91国产中文字幕| 日日爽夜夜爽网站| 在线观看一区二区三区激情| 国产精品久久久久久人妻精品电影| 亚洲欧洲精品一区二区精品久久久| 久久香蕉精品热| 久久精品熟女亚洲av麻豆精品| 国产高清激情床上av| 精品卡一卡二卡四卡免费| 两个人看的免费小视频| 午夜日韩欧美国产| 一二三四在线观看免费中文在| 亚洲专区中文字幕在线| 91麻豆精品激情在线观看国产 | 精品人妻熟女毛片av久久网站| 男女免费视频国产| 女人精品久久久久毛片| 国精品久久久久久国模美| 国产亚洲av高清不卡| 精品一区二区三卡| 亚洲av电影在线进入| 两性夫妻黄色片| 高清av免费在线| 日韩免费高清中文字幕av| 999久久久国产精品视频| 亚洲视频免费观看视频| 很黄的视频免费| 成年人午夜在线观看视频| 亚洲成人国产一区在线观看| 国产区一区二久久| 侵犯人妻中文字幕一二三四区| 深夜精品福利| 最新在线观看一区二区三区| 不卡一级毛片| 亚洲七黄色美女视频| 久久ye,这里只有精品| 三上悠亚av全集在线观看| 亚洲九九香蕉| 久久人人爽av亚洲精品天堂| 欧美精品高潮呻吟av久久| 亚洲精品自拍成人| 女人爽到高潮嗷嗷叫在线视频| 亚洲片人在线观看| 极品人妻少妇av视频| 亚洲国产精品合色在线| 久久香蕉国产精品| 国产精品欧美亚洲77777| 久久久久久人人人人人| 一级,二级,三级黄色视频| 国产99久久九九免费精品| 91成人精品电影| 亚洲国产欧美一区二区综合| 国产精品电影一区二区三区 | 制服人妻中文乱码| 久久精品国产a三级三级三级| 高清黄色对白视频在线免费看| 久久午夜综合久久蜜桃| videos熟女内射| 最近最新免费中文字幕在线| 亚洲欧美日韩高清在线视频| 午夜影院日韩av| 18禁裸乳无遮挡免费网站照片 | 99精品欧美一区二区三区四区| 精品一区二区三区四区五区乱码| 建设人人有责人人尽责人人享有的| 天天添夜夜摸| 国产精品永久免费网站| 免费黄频网站在线观看国产| 久久香蕉激情| 久久国产精品影院| 欧美日韩乱码在线| 亚洲在线自拍视频| 人妻 亚洲 视频| av福利片在线| 亚洲中文字幕日韩| 亚洲精品中文字幕一二三四区| xxx96com| 国产高清激情床上av| 国产精品美女特级片免费视频播放器 | 国产国语露脸激情在线看| 色老头精品视频在线观看| 91精品三级在线观看| 亚洲免费av在线视频| 亚洲熟女毛片儿| 黑丝袜美女国产一区| 多毛熟女@视频| 18禁观看日本| 嫁个100分男人电影在线观看| 中文字幕高清在线视频| 亚洲成av片中文字幕在线观看| 国产97色在线日韩免费| 一进一出抽搐gif免费好疼 | 久久影院123| 男女午夜视频在线观看| 亚洲五月婷婷丁香| 美女国产高潮福利片在线看| 大陆偷拍与自拍| 久久国产精品人妻蜜桃| 久久狼人影院| 久久久精品国产亚洲av高清涩受| 日本黄色视频三级网站网址 | 日本黄色视频三级网站网址 | 成人特级黄色片久久久久久久| 极品教师在线免费播放| 真人做人爱边吃奶动态| 久热这里只有精品99| x7x7x7水蜜桃| 亚洲精品在线美女| 久久久久久久久久久久大奶| av不卡在线播放| 亚洲熟妇熟女久久| av网站在线播放免费| 日本wwww免费看| 亚洲精品一卡2卡三卡4卡5卡| 成人免费观看视频高清| 亚洲欧美日韩高清在线视频| 国产不卡av网站在线观看| 最新在线观看一区二区三区| 91字幕亚洲| 最近最新免费中文字幕在线| 亚洲国产精品合色在线| 日韩欧美免费精品| 看片在线看免费视频| 久热这里只有精品99| av片东京热男人的天堂| 久久人人97超碰香蕉20202| 国产精品久久视频播放| 757午夜福利合集在线观看| 亚洲熟妇熟女久久| 人人澡人人妻人| 国产在线观看jvid| 在线观看免费午夜福利视频| 日韩中文字幕欧美一区二区| 日韩人妻精品一区2区三区| 99久久99久久久精品蜜桃| 亚洲av美国av| 国产高清国产精品国产三级| 精品一区二区三卡| 亚洲一区高清亚洲精品| av线在线观看网站| 桃红色精品国产亚洲av| 在线观看66精品国产| 99国产综合亚洲精品| 黄色a级毛片大全视频| 成年动漫av网址| aaaaa片日本免费| 精品国产超薄肉色丝袜足j| 亚洲七黄色美女视频| 少妇猛男粗大的猛烈进出视频| 午夜免费观看网址| 国产精品 欧美亚洲| 午夜影院日韩av| 99香蕉大伊视频| 在线观看免费视频日本深夜| 久久久久久久久久久久大奶| 国产精品国产高清国产av | 国产精品国产高清国产av | 一二三四在线观看免费中文在| 久久人妻福利社区极品人妻图片| 黄色毛片三级朝国网站| 亚洲成av片中文字幕在线观看| √禁漫天堂资源中文www| 国产野战对白在线观看| 国产麻豆69| 亚洲精品国产区一区二| 久久九九热精品免费| 欧美精品亚洲一区二区| 久久久久久久精品吃奶| 欧美人与性动交α欧美软件| 日韩欧美免费精品| 亚洲一区二区三区不卡视频| 免费高清在线观看日韩| 一级毛片高清免费大全| 国产精品九九99| 丰满迷人的少妇在线观看| 国产真人三级小视频在线观看| 极品人妻少妇av视频| 欧美 日韩 精品 国产| 国产精品久久视频播放| 亚洲精品一卡2卡三卡4卡5卡| 国产伦人伦偷精品视频| 午夜福利影视在线免费观看| 亚洲九九香蕉| 午夜福利影视在线免费观看| 久久人妻福利社区极品人妻图片| 精品久久久精品久久久| 国产av精品麻豆| 在线观看免费高清a一片| 天堂动漫精品| 黑人欧美特级aaaaaa片| 国产精品国产av在线观看| 大码成人一级视频| tube8黄色片| 色婷婷av一区二区三区视频| 亚洲少妇的诱惑av| 夜夜夜夜夜久久久久| 伊人久久大香线蕉亚洲五| 亚洲色图 男人天堂 中文字幕| 国产精品一区二区精品视频观看| 啪啪无遮挡十八禁网站| 成年版毛片免费区| 亚洲av欧美aⅴ国产| 欧美国产精品va在线观看不卡| 一个人免费在线观看的高清视频| 美女福利国产在线| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日本中文国产一区发布| 欧美最黄视频在线播放免费 | 黄色视频,在线免费观看| 99精品在免费线老司机午夜| 国产精品九九99| 免费在线观看日本一区| 一本一本久久a久久精品综合妖精| 国产高清videossex| 精品一品国产午夜福利视频| 夫妻午夜视频| 国产精品国产av在线观看| 亚洲国产中文字幕在线视频| 久久精品aⅴ一区二区三区四区| 精品午夜福利视频在线观看一区| 国产精华一区二区三区| 国产亚洲精品久久久久久毛片 | 欧美日韩亚洲高清精品| 99热国产这里只有精品6| 亚洲精品国产区一区二| 欧美成狂野欧美在线观看| 女同久久另类99精品国产91| 黄片大片在线免费观看| 999久久久精品免费观看国产| 久久久久国内视频| 777久久人妻少妇嫩草av网站| 最近最新中文字幕大全免费视频| 久久精品亚洲熟妇少妇任你| 满18在线观看网站| 777久久人妻少妇嫩草av网站| 亚洲aⅴ乱码一区二区在线播放 | 久热这里只有精品99| 大片电影免费在线观看免费| av欧美777| 亚洲精品国产一区二区精华液| 国产真人三级小视频在线观看| 久久久久国产一级毛片高清牌| 国产日韩欧美亚洲二区| 最新在线观看一区二区三区| 午夜影院日韩av| 女人精品久久久久毛片| 国产在线观看jvid| 国产精品久久电影中文字幕 | 日韩一卡2卡3卡4卡2021年| 亚洲av成人不卡在线观看播放网| 99热网站在线观看| 搡老岳熟女国产| 婷婷丁香在线五月| avwww免费| 午夜久久久在线观看| 午夜福利欧美成人| 国产精品 欧美亚洲| 久久精品国产亚洲av香蕉五月 | 美女高潮到喷水免费观看| 国精品久久久久久国模美| a级片在线免费高清观看视频| 99久久精品国产亚洲精品| 日本vs欧美在线观看视频| 国产单亲对白刺激| 欧美日韩瑟瑟在线播放| 国产免费av片在线观看野外av| 国产精品偷伦视频观看了| 人人澡人人妻人| 国产一区在线观看成人免费| 亚洲欧美一区二区三区黑人| 久久国产亚洲av麻豆专区| 精品人妻熟女毛片av久久网站| 亚洲精品国产色婷婷电影| 91精品三级在线观看| 亚洲成国产人片在线观看| 好男人电影高清在线观看| 国产色视频综合| 下体分泌物呈黄色| 一夜夜www| 91九色精品人成在线观看| 露出奶头的视频| 成人精品一区二区免费| 一区福利在线观看| 成年人黄色毛片网站| xxxhd国产人妻xxx| 亚洲国产看品久久| 热99re8久久精品国产| 侵犯人妻中文字幕一二三四区| 亚洲av电影在线进入| 50天的宝宝边吃奶边哭怎么回事| 亚洲第一av免费看| 日本a在线网址| 国产成人av激情在线播放| 丁香欧美五月| 男女免费视频国产| 国产精品电影一区二区三区 | 亚洲人成电影免费在线| 国产视频一区二区在线看| 性色av乱码一区二区三区2| 在线观看免费高清a一片| 精品乱码久久久久久99久播| 亚洲avbb在线观看| 999精品在线视频| 久99久视频精品免费| 午夜免费成人在线视频| 777米奇影视久久| 精品一区二区三卡| 久久人妻av系列| 精品国产美女av久久久久小说| e午夜精品久久久久久久| 757午夜福利合集在线观看| 国产1区2区3区精品| 又紧又爽又黄一区二区| 99国产精品一区二区蜜桃av | 午夜福利乱码中文字幕| 久久久精品国产亚洲av高清涩受| 精品一区二区三区视频在线观看免费 | 国产亚洲一区二区精品| 亚洲国产欧美一区二区综合| 老司机深夜福利视频在线观看| 黑人欧美特级aaaaaa片| 女人高潮潮喷娇喘18禁视频| 欧美人与性动交α欧美精品济南到| 久久国产精品影院| 亚洲一码二码三码区别大吗| 久久精品国产综合久久久| 捣出白浆h1v1| 成人影院久久| 80岁老熟妇乱子伦牲交| 精品欧美一区二区三区在线| 99国产极品粉嫩在线观看| 99香蕉大伊视频| 欧美日韩黄片免| 欧美日韩成人在线一区二区| 久久久久久久国产电影| 亚洲一区高清亚洲精品| 他把我摸到了高潮在线观看| av国产精品久久久久影院| 精品久久久久久久毛片微露脸| 国产精品乱码一区二三区的特点 | 香蕉丝袜av| 岛国在线观看网站| 成年人黄色毛片网站| av线在线观看网站| 国产精品久久电影中文字幕 | 欧美中文综合在线视频| 99国产精品免费福利视频| 亚洲国产欧美网| 狠狠狠狠99中文字幕| 麻豆成人av在线观看| 欧美日韩视频精品一区| 亚洲美女黄片视频| av天堂久久9| 久久久久久久午夜电影 | 丁香欧美五月| 亚洲情色 制服丝袜| 国产成人精品在线电影| 美女国产高潮福利片在线看| 后天国语完整版免费观看| 99久久人妻综合| 国产亚洲欧美精品永久| 十八禁网站免费在线| 在线观看舔阴道视频| 国产精品 国内视频| 亚洲国产欧美日韩在线播放| 欧美黄色淫秽网站| 亚洲成人国产一区在线观看| 亚洲国产欧美网| 啪啪无遮挡十八禁网站| 久久久久久人人人人人| 亚洲综合色网址| 亚洲成人国产一区在线观看| 亚洲av片天天在线观看| 一级,二级,三级黄色视频| 久久久久久人人人人人| 色综合欧美亚洲国产小说| 人人妻人人爽人人添夜夜欢视频| 91九色精品人成在线观看| 亚洲五月天丁香| 久久婷婷成人综合色麻豆| 首页视频小说图片口味搜索| 亚洲视频免费观看视频| 王馨瑶露胸无遮挡在线观看| 亚洲国产欧美一区二区综合| 亚洲专区中文字幕在线| 国产精品免费大片| 欧美日本中文国产一区发布| 热99国产精品久久久久久7| 桃红色精品国产亚洲av| 国产日韩欧美亚洲二区| 搡老乐熟女国产| 日韩熟女老妇一区二区性免费视频| 欧美精品啪啪一区二区三区| 麻豆国产av国片精品| 丁香欧美五月| 精品少妇久久久久久888优播| 国产精品自产拍在线观看55亚洲 | 免费在线观看黄色视频的| 啦啦啦免费观看视频1| 夜夜躁狠狠躁天天躁| 精品国产乱码久久久久久男人| 国产精品1区2区在线观看. | 一级毛片女人18水好多| 亚洲熟妇中文字幕五十中出 | 国产成人av激情在线播放| 亚洲久久久国产精品| 9色porny在线观看| www.999成人在线观看| 啦啦啦视频在线资源免费观看| 午夜福利免费观看在线| 丝袜美足系列| 国产精品一区二区在线观看99| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品亚洲av国产电影网| 亚洲美女黄片视频| 精品久久久久久久久久免费视频 | 国产成人影院久久av| 久久精品国产a三级三级三级| 高清在线国产一区| 久久国产精品大桥未久av| 黑人巨大精品欧美一区二区mp4| 精品无人区乱码1区二区| 另类亚洲欧美激情| 亚洲欧美一区二区三区久久| 黄片大片在线免费观看| tube8黄色片| 人人妻人人添人人爽欧美一区卜| 男女免费视频国产| 国产欧美日韩一区二区三区在线| 法律面前人人平等表现在哪些方面| 成人免费观看视频高清| 久久国产精品影院| 国产成人免费观看mmmm| 99热只有精品国产| 久久精品亚洲熟妇少妇任你| 别揉我奶头~嗯~啊~动态视频| 国产淫语在线视频| 亚洲中文日韩欧美视频| 国产成人影院久久av| 午夜福利视频在线观看免费| 黄色a级毛片大全视频| 亚洲国产精品一区二区三区在线| 国产亚洲一区二区精品| 大码成人一级视频| 大香蕉久久网| 亚洲欧美精品综合一区二区三区| 性少妇av在线| a级片在线免费高清观看视频| 又黄又粗又硬又大视频| 69精品国产乱码久久久| 日韩欧美一区视频在线观看| 亚洲精品一二三| 又黄又粗又硬又大视频| 别揉我奶头~嗯~啊~动态视频| 亚洲精品久久成人aⅴ小说| 亚洲av片天天在线观看| 嫁个100分男人电影在线观看| 国产一区有黄有色的免费视频| av国产精品久久久久影院| 日韩人妻精品一区2区三区| av天堂在线播放| 人人澡人人妻人| cao死你这个sao货| 人人妻,人人澡人人爽秒播| 最近最新中文字幕大全电影3 | 亚洲在线自拍视频| а√天堂www在线а√下载 | 熟女少妇亚洲综合色aaa.| 国产免费现黄频在线看| 午夜日韩欧美国产| 91国产中文字幕| 久久狼人影院| 亚洲午夜理论影院| 欧美乱妇无乱码| 日韩精品免费视频一区二区三区| 精品高清国产在线一区| 这个男人来自地球电影免费观看| 欧美av亚洲av综合av国产av| 亚洲精品av麻豆狂野| 国产黄色免费在线视频| 老熟女久久久| 国产成人av激情在线播放| 欧美精品人与动牲交sv欧美| 免费看a级黄色片| 精品一区二区三区av网在线观看| 人成视频在线观看免费观看| 十八禁高潮呻吟视频| 免费观看精品视频网站| 1024视频免费在线观看| 精品亚洲成国产av| 啦啦啦在线免费观看视频4| 久久天躁狠狠躁夜夜2o2o| 在线视频色国产色| 窝窝影院91人妻|