• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction of high stability indium gallium zinc oxide transistor biosensors for reliable detection of bladder cancer-associated microRNA

    2022-06-18 03:00:50JingGuoRuihenShenXuejieShenBoZengNinjunYngHugengLingYnbingYngQunYun
    Chinese Chemical Letters 2022年2期

    Jing Guo, Ruihen Shen, Xuejie Shen, Bo Zeng, Ninjun Yng, Hugeng Ling,Ynbing Yng,*, Qun Yun,,*

    a Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, China

    b Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

    c Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

    d Institute of Materials Engineering, University of Siegen, Siegen 57076, Germany

    ABSTRACT Bladder cancer is the most common malignant tumours with high morbidity, mortality and recurrence.However, currently developed detection methods for bladder cancer-associated urine biomarkers are hindered by their extremely low abundance.Hence, the exploration of a highly sensitive and selective approach for the detection of trace bladder cancer-associated biomarkers in human urine is of vital importance for the diagnosis of bladder cancer.Herein, we developed a highly reliable indium gallium zinc oxide field effect transistor (IGZO FET) biosensor for the detection of bladder cancer-related biomarker microRNA.The single-stranded DNA-functionalized IGZO FET biosensors exhibit high sensing reproducibility and stability with an ultralow detection limit of 19.8 amol/L.The device could also be used for quantitative detection of trace microRNA in human urine samples and can effectively distinguish bladder cancer patients from healthy donors.The development of high performance IGZO FET biosensors presents new opportunities for the achievement of early-stage diagnosis of bladder cancer.

    Keywords:Bladder cancer Field-effect transistors IGZO miRNA Urine

    Bladder cancer is one of the most common malignant tumours in the urinary system with a high and rising trend of mortality[1–3].Timely diagnosis of early-stage bladder cancer remains the contributing bottleneck due to its complex pathological types and nonspecific symptoms [4,5].Urine, as the metabolic microenvironment of bladder tumour cells, contains abundant bladder cancer biomarkers, providing an alternative strategy for non-invasive diagnosis of bladder cancer [6,7].Currently, researchers have identified numerous types of bladder cancer biomarkers in urine including DNA [8], RNA [9], proteins [10,11], tumour cells [12] and metabolites [13].Particularly, microRNA (miRNA) plays a crucial role in cell metastasis, development, proliferation, apoptosis and carcinogenesis, and it was immediately excreted into urineviathe metabolism of bladder tumour cells in case of bladder carcinogenesis [14–16].Therefore, the quantitative detection of bladder cancer-associated miRNA in human urine is an effective strategy to achieve noninvasive diagnosis of early-stage bladder cancer.However, currently developed bladder cancer urine biomarkers diagnosis methods are hindered by low detection reliability due to extremely low abundance of bladder cancer-related miRNA in complex urine environments [17,18].Consequently, the exploration of a highly reliable approach for the detection of trace miRNA in human urine is of vital importance for the diagnosis and postoperative of bladder cancer.

    Scheme 1.Schematic illustration of ssDNA-IGZO biosensors for miRNA detection.

    Nano-biosensors constructed by nanomaterials have been comprehensively employed for the detection of disease-relevant biomarkers [19–21].As a type of nano-biosensors, field effect transistors (FETs) exhibit prominent electrical performance, ease to be miniaturized and integrated [22,23].Owing to its intrinsic amplification feature, FET biosensors could generate a significant electrical signal response under a tiny local microenvironment change,therefore demonstrating tremendous potential in highly sensitive detection of disease-relevant biomarkers.In the FET biosensors,semiconductor channel nanomaterials play a central role in the determination of device performance.Currently, zero-dimensional nanoparticles [24,25], one-dimensional nanowires [26], and twodimensional nanosheets [27–29] have been utilized as semiconductor channel nanomaterials of FET biosensors.Among which, twodimensional indium gallium zinc oxide (IGZO) shows the advantages of ease to be scalable and high stability, promising its potential as channel nanomaterial of FET biosensors [30,31].To this end, the development of a highly sensitive and selective IGZO FET biosensor is expected to achieve highly sensitive detection of bladder tumour-associated biomarkers and realize early diagnosis of bladder cancer.

    Herein, we report the fabrication of a highly sensitive and selective IGZO FET biosensor for the detection of bladder cancer nucleic acid biomarker in human urine (Scheme 1).Considering the uniform and smooth structure of IGZO with excellent electrical performance, the single-stranded DNA-functionalized IGZO(ssDNA-IGZO) FET exhibits high sensitivity, specificity and sensing reproducibility in the detection of microRNA-21 (miRNA-21),with an ultralow detection limit of 19.8 amol/L.With the ability to detect trace miRNA-21 in human urine, the IGZO FET biosensors could be employed to effectively differentiate urine samples between bladder cancer patients and healthy donors.Our designed IGZO FET biosensors provide a powerful tool for the development of a nanotechnology platform to achieve early diagnosis of bladder cancer, as well as demonstrate great potential in personal health management.

    The fabrication route of IGZO biosensors is schematically illustrated in Fig.S1 (Supporting information).In brief, the source (S)and drain (D) electrodes are fabricated by ultra-violet lithography and thermal evaporation to form patterned metallic electrodes on a 4 in.wafer (Fig.S2 in Supporting information).Then, the IGZO channel was directly deposited on patterned metallic electrodes by a radio frequency sputtering systemviaa shadow mask.The crosssection scanning electron microscopy (SEM) image of the IGZO channel clearly shows a smooth surface and the thickness of IGZO layer is about 20 nm (Fig.1a), which is consistent with the thickness measured by atomic force microscopy (AFM) (Fig.1b).After that, the surface of IGZO is passivated with polymethyl methacrylate to minimize gate current leakage, side electrochemical reaction, and work-function modulation.The IGZO sensing area was exposed by electron beam lithography, and further covalently decorated with single-stranded DNA probes to achieve ssDNA-IGZO biosensors.

    Fig.1.(a) Cross-section SEM image and (b) AFM image of IGZO channel.Inset of(b), Corresponding quantitative height profile of IGZO channel.(c) Transfer characteristics and transconductance of IGZO FET at Vd = 2 V.(d) Performance stability of eight IGZO FETs at Vd = 2 V.Inset: Photograph of a IGZO FET.

    To identify whether the IGZO biosensors could be used for detecting biomarkers, the fundamental electrical performance of IGZO FET was investigated (Fig.1, Figs.S3 and S4 in Supporting information).TheId-Vgtransfer characteristic of back-gated IGZO FET presents n-type transistor behavior with a field-effect mobility(μFE) of 8.3 cm2V–1s–1and a current on/off ratio of 107(Fig.1c).It is worth mentioning that theμFEof IGZO is relevant to the thickness of the deposited IGZO channel obtained with different sputtering times, and theμFEof the IGZO channel prepared by 20 min sputtering time reaches the highestμFE(Figs.S3 and S4).TheId-Vdoutput characteristic of the IGZO FET suggests that theμFEis effectively controlled byVg(Fig.S5 in Supporting information).To explore the stability of our designed IGZO FETs, eight IGZO FET devices were prepared on a same substrate and the transfer characteristics were recorded (Fig.1d).It can be seen that theId-Vgcurves of eight IGZO FETs are highly consistent, indicating that the IGZO FETs exhibit high reliability and performance uniformity.Since bladder cancer biomarkers are presented in body fluid, the electrical performance of IGZO FET in solution environment was investigated.It can be seen that the on-state current and on/off ratio remain almost the same with those of back-gated IGZO FETs(Fig.S6 in Supporting information).The above results demonstrate that the excellent electrical performance of IGZO FET was well maintained, promising their application in highly sensitive and reliable biosensing.

    The IGZO FET with outstanding stability and high on/off ratio was designed to construct ultrasensitive biosensors for the detection of bladder cancer associated miRNA-21.To achieve selective detection of bladder cancer biomarkers, the surface of IGZO was covalently modified with single-stranded DNA (ssDNA) that is specific for miRNA-21 with the assistance of linker molecules(Scheme 1, Table S1 in Supporting information), forming ssDNAIGZO.In order to confirm the feasibility of surface functionalization, we used AFM to analysis the morphology of IGZO FET biosensors before and after probe DNA modification (Figs.2a and b).It can be seen that the surface of unmodified IGZO is smooth, while the surface roughness of ssDNA-IGZO increased dramatically, indicating that ssDNA probes were successfully fixed on the IGZO surface.In addition, the appearance of characteristic peak of S 2p in the X-ray photoelectron spectroscopy (XPS) curve also proves the successful immobilization of ssDNA probes onto IGZO (Fig.S7 in Supporting information).The successful immobilization of ssDNA probes can be further validated by an obviousIddrop of IGZO FETs that is originated from the negative gate effect of negatively charged ssDNA molecules (Fig.2c).The stability of ssDNA-IGZO FET biosensors was investigated by exposing the device in air for a period of time.As shown in Fig.S8 (Supporting information), theIdof the biosensors almost remains unchanged with prolonged time,demonstrating that the ssDNA-IGZO FET biosensors exhibit longterm stability.

    Fig.2.Detection of miRNA-21 using ssDNA-IGZO FET biosensors.AFM images and schematic diagram of IGZO FETs (a) before and (b) after probe ssDNA modification.(c)Transfer characteristic curves of solution-gated ssDNA-IGZO FET biosensors in response to miRNA-21 with concentrations increase from 10–16 mol/L to 10–9 mol/L. Vd = 0.1 V.(d) The relationship and (inset of d) the linear curve between the current response of ssDNA-IGZO FET biosensors and the log concentration of miRNA-21 ranging from 10–16 to 10–7 mol/L. Vg = 0.5 V and Vd = 0.1 V.(e) Selectivity of ssDNA-IGZO FET biosensors toward miRNA-21 (10 pmol/L) and 1 nmol/L of single-mismatched miRNA-21(denoted as SM-miRNA-21), double-mismatched miRNA-21 (denoted as DM-miRNA-21), miRNA-15 and miRNA-16, respectively.(f) Real-time response of ssDNA-IGZO FET biosensors to different concentrations of miRNA-21.All the error bars represent the standard deviations of three measurements.

    Fig.3.Detection of human urine samples with ssDNA-IGZO FET biosensors.(a) Transfer characteristics of ssDNA-IGZO FET biosensors in response to miRNA-21 in human urine samples of bladder cancer patients and healthy donors at Vd = 0.1 V.(b) Evaluation of miRNA-21 expression quantity in 6 bladder cancer patients (denoted as B1,B2, B3, B4, B5, B6) and 6 healthy donors (denoted as H1, H2, H3, H4, H5, H6) with ssDNA-IGZO FET biosensors.The error bars represent the standard deviations of three measurements.(c) Statistical analysis of miRNA-21 quantity to differentiate bladder cancer patients and healthy donors.

    Before performing biosensing investigations, the modification parameters of ssDNA including immobilization time and usage amount of ssDNA were investigated (Fig.S9 in Supporting information).As indicated in Fig.S9, the optimized ssDNA modification concentration and the immobilization time is 1μmol/L and 10 h.Then, theId-Vgcurves were recorded after incubating the devices with different concentrations of target miRNA-21 for 30 min.As indicated in Fig.2c, ssDNA-IGZO FET biosensor exhibits a drain current decrease of 7.8 μA upon hybridizing miRNA-21 with a concentration of 10–16mol/L and then shows a consistent decrease inIdas the concentration of miRNA-21 increases from 10–16mol/L to 10–9mol/L.The decreased drain current can be originated from the accumulation of negative surface charge in n-type IGZO channel upon the binding of negatively charged miRNA-21 chains.In this regard, the binding of negatively charged miRNA-21 is equivalent to negative charge gating of ssDNA-IGZO, resulting in the decrease ofId.The response of ssDNA-IGZO FET biosensors to miRNA-21 is defined asΔI/Io, whereΔIrepresents the change ofIdbefore and after miRNA-21 hybridization, andIois the initial current of ssDNA-IGZO FET biosensors.Fig.2d plots the relationship between current response and the logarithm concentrations of miRNA-21.It can be seen thatΔI/Ioexhibits a linear increase as the concentration of miRNA-21 increases from 10–16mol/L to 10–12mol/L and then gradually reaches saturation above 10–12mol/L (Fig.2d).According to 3s/σcriterion (s, standard deviation of 8 blank samples;σ, slope of linear work curve), the detection limit of ssDNAIGZO FET biosensors is calculated to be 19.8 amol/L, which is much lower than previously reported miRNA detection methods such as fluorescence and electrochemical methods (Table S2 in Supporting information).Furthermore, control experiments were performed to determine the selectivity of ssDNA-IGZO FET biosensors.As shown in Fig.2e, the current response of ssDNA-IGZO FET biosensor towards an extremely low concentration (10 pmol/L) of miRNA-21 chain is as high as 59.1%.In contrast, the current variation of ssDNA-IGZO FET biosensor is extremely low even when the device was exposed to mismatched miRNA with a high concentration of 1 nmol/L (Table S1).These results indicate that the fabricated ssDNAIGZO FET biosensors exhibit high selectivity toward target miRNA-21 over mismatched RNA chains.

    The real-time detection was also performed to determine the sensitivity of ssDNA-IGZO FET biosensors (Fig.2f).Specifically, a series of miRNA-21 with different concentrations was injected onto the surface of ssDNA-IGZO FET biosensors at a fixed rate of 0.1 mL/min.TheIdgradually decreases with continuously injecting of miRNA-21.Particularly, when the solution containing 10–16mol/L miRNA-21 was initially injected, the current decreased by 7.2 μA, which is in highly agreement with the current variation depicted in Fig.2c.With the increase of the concentration of miRNA-21, the current response decreases due to gradually saturation of hybridized miRNA-21.The fast response speed and high sensitivity of the ssDNA-IGZO FET biosensors provide the possibility for its application in real-time biomarker analysis.The biosensing experiments clearly demonstrate that the ssDNA-IGZO FET with excellent electronic performance could be utilized as high sensitivity and selectivity biosensors for the detection of bladder cancer biomarkers in complex body fluid environment.

    To investigate the applicability of IGZO FET biosensors in real urine environments, we first investigated the recovery of spiked miRNA-21 in human urine samples.As shown in Table S3 in Supporting information, the recovery of ssDNA-IGZO FET biosensors ranges from 96.5% to 106.8% when the added miRNA concentration ranges from 10–15mol/L to 10–13mol/L.These results suggest that our IGZO-FET biosensors can be employed to evaluate miRNA-21 molecules in human urine samples.Subsequently, we detected miRNA-21 that is extracted from human urine samples (Fig.S10 in Supporting information).As depicted in Fig.3a, the current variation of bladder cancer patient samples is significantly higher than that of healthy donors.In order to give a clear comparison, we tested urine samples from different individuals (6 bladder cancer patients and 6 healthy donors, respectively) and then calculated the quantity of miRNA-21 based on the linear curve ofΔI/IoversusmiRNA 21 concentration (Figs.3b and c).From the calculated results, it can be concluded that the expression level of miRNA-21 in bladder cancer patient samples is much higher than that of healthy donors, which is in accordance with upregulated expression theory reported in literature [32].These results also clearly indicate that the device could effectively differentiate urine samples between bladder cancer patients and healthy donors.Additionally, the ssDNA-IGZO FET biosensors exhibit excellent reproducibility in eight parallel detections of a same urine sample (Fig.S11 in Supporting information).With the ability to detect low abundance miRNA-21 in human urine samples, the IGZO FET biosensors are expected to detect various kinds of biomolecules or cells in complex environment by functionalizing the corresponding probe molecules on the biosensors.

    In conclusion, we developed IGZO FET biosensors with high sensitivity and selectivity to detect trace miRNA in human urine samples.The excellent electrical properties of IGZO FET and the uniform IGZO over large-area enable the high sensitivity and reproducibility of IGZO biosensors.Functionalized modification of specific ssDNA probes endows IGZO FET biosensors with high selectivity for real-time quantification of miRNA-21 with a detection limit of 19.8 amol/L.Particularly, our designed ssDNA-IGZO FET biosensors realize the ultra-sensitive detection of miRNA-21 extracted from human urine and could effectively differentiate urine samples between bladder cancer patients and healthy donors.The development of high stability IGZO FET biosensors opens new opportunities for reliable and efficient diagnosis of early-stage bladder cancer.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was supported by the National Key Research and Development Program of China (No.2017YFA0208000), and the Natural Science Foundation of China (Nos.21904100, 21904033).Yanbing Yang thanks initiatory financial support from Wuhan University.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.07.048.

    日韩av在线大香蕉| 国产午夜精品论理片| 黄色视频,在线免费观看| 伊人久久精品亚洲午夜| 国产亚洲av嫩草精品影院| 精品国产三级普通话版| 又黄又爽又刺激的免费视频.| 亚洲av一区综合| 午夜福利在线在线| aaaaa片日本免费| 亚洲av成人av| 不卡一级毛片| 精品一区二区三区av网在线观看| 一级毛片久久久久久久久女| 成人国产一区最新在线观看| 国产探花在线观看一区二区| 中国美女看黄片| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久视频播放| 最好的美女福利视频网| 日本黄色片子视频| 噜噜噜噜噜久久久久久91| 亚洲国产精品成人综合色| 动漫黄色视频在线观看| 日本a在线网址| 国产精品久久久久久亚洲av鲁大| 麻豆成人午夜福利视频| 免费在线观看影片大全网站| 亚洲天堂国产精品一区在线| 欧美+亚洲+日韩+国产| 国产精品嫩草影院av在线观看 | 午夜亚洲福利在线播放| 深夜a级毛片| 亚洲国产日韩欧美精品在线观看| av视频在线观看入口| 亚洲,欧美,日韩| 免费在线观看亚洲国产| 午夜亚洲福利在线播放| 草草在线视频免费看| 999久久久精品免费观看国产| 91在线观看av| 国产在视频线在精品| 男人的好看免费观看在线视频| 国产精品三级大全| 一区福利在线观看| 日本免费一区二区三区高清不卡| 亚洲色图av天堂| 免费在线观看日本一区| 欧美黄色淫秽网站| 色精品久久人妻99蜜桃| 免费大片18禁| 他把我摸到了高潮在线观看| 国产三级中文精品| 欧美最新免费一区二区三区 | 两人在一起打扑克的视频| 99国产综合亚洲精品| 欧美日本亚洲视频在线播放| 欧美日本视频| 欧美国产日韩亚洲一区| 可以在线观看的亚洲视频| 女人十人毛片免费观看3o分钟| 久久久久久久久久黄片| av在线观看视频网站免费| 欧美日韩瑟瑟在线播放| 十八禁国产超污无遮挡网站| av女优亚洲男人天堂| 欧美zozozo另类| 哪里可以看免费的av片| 精品国产亚洲在线| av黄色大香蕉| 久99久视频精品免费| 亚洲无线在线观看| 热99在线观看视频| 久久国产精品影院| 人人妻人人看人人澡| 欧美3d第一页| 亚洲精品影视一区二区三区av| 日韩中字成人| 不卡一级毛片| 色5月婷婷丁香| 别揉我奶头 嗯啊视频| 亚洲五月天丁香| 我的女老师完整版在线观看| 一级黄色大片毛片| 亚洲不卡免费看| 亚洲精品在线观看二区| 国产不卡一卡二| 欧美乱色亚洲激情| 在线观看66精品国产| 精品一区二区三区视频在线| 日韩欧美一区二区三区在线观看| 日本熟妇午夜| 亚洲精华国产精华精| 精品久久久久久,| 内射极品少妇av片p| 丰满人妻熟妇乱又伦精品不卡| bbb黄色大片| 亚洲精品成人久久久久久| 看十八女毛片水多多多| 国产精品电影一区二区三区| 免费看日本二区| 免费大片18禁| 亚洲自偷自拍三级| 午夜免费成人在线视频| 欧美日韩综合久久久久久 | 婷婷色综合大香蕉| 成年女人看的毛片在线观看| 天堂av国产一区二区熟女人妻| 午夜久久久久精精品| 国产av一区在线观看免费| 18禁裸乳无遮挡免费网站照片| 欧美精品国产亚洲| 亚洲第一区二区三区不卡| 中文字幕高清在线视频| 特大巨黑吊av在线直播| 性插视频无遮挡在线免费观看| 国产伦精品一区二区三区视频9| 亚洲av二区三区四区| 看免费av毛片| 免费黄网站久久成人精品 | 欧美激情国产日韩精品一区| av专区在线播放| 99热这里只有精品一区| 两人在一起打扑克的视频| a在线观看视频网站| 欧美一区二区亚洲| 丰满乱子伦码专区| 91麻豆精品激情在线观看国产| 日韩欧美 国产精品| 在线观看免费视频日本深夜| 色综合婷婷激情| 亚洲三级黄色毛片| 又爽又黄a免费视频| 国产精品伦人一区二区| 国产日本99.免费观看| 老司机午夜十八禁免费视频| 日韩 亚洲 欧美在线| 国产亚洲av嫩草精品影院| 毛片一级片免费看久久久久 | 夜夜躁狠狠躁天天躁| 91麻豆av在线| 欧美中文日本在线观看视频| 一进一出抽搐动态| 麻豆成人午夜福利视频| 高清毛片免费观看视频网站| 日韩高清综合在线| a在线观看视频网站| 俺也久久电影网| 久久久久久久精品吃奶| 免费大片18禁| 嫩草影院精品99| 精品久久久久久久久av| 国产精品av视频在线免费观看| 久久国产乱子免费精品| 男人舔女人下体高潮全视频| 精华霜和精华液先用哪个| av在线蜜桃| 成人毛片a级毛片在线播放| 白带黄色成豆腐渣| 可以在线观看毛片的网站| 国产大屁股一区二区在线视频| 亚洲天堂国产精品一区在线| 人妻久久中文字幕网| 蜜桃亚洲精品一区二区三区| 色视频www国产| 麻豆国产av国片精品| 亚洲精品影视一区二区三区av| 国产高清有码在线观看视频| 国产黄色小视频在线观看| 俄罗斯特黄特色一大片| 久久久精品欧美日韩精品| 国产av不卡久久| 国产一区二区亚洲精品在线观看| 一级a做视频免费观看| 亚洲国产欧美在线一区| 夫妻午夜视频| 亚洲国产欧美在线一区| 久久影院123| av女优亚洲男人天堂| 免费人成在线观看视频色| 人人妻人人澡人人爽人人夜夜| 中文资源天堂在线| av在线老鸭窝| 特大巨黑吊av在线直播| 一本久久精品| 日韩av免费高清视频| 亚洲av免费在线观看| 亚洲av.av天堂| 18禁裸乳无遮挡动漫免费视频 | 国产乱来视频区| 久久99热6这里只有精品| 国产欧美日韩一区二区三区在线 | 午夜福利视频1000在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲最大成人手机在线| 老司机影院成人| 午夜激情福利司机影院| 国产精品久久久久久精品古装| 免费黄网站久久成人精品| 老女人水多毛片| 97超碰精品成人国产| 一级爰片在线观看| 国产高清三级在线| 内射极品少妇av片p| 亚洲精品亚洲一区二区| 久久99精品国语久久久| 成人亚洲欧美一区二区av| 欧美日韩一区二区视频在线观看视频在线 | 国产亚洲午夜精品一区二区久久 | 伊人久久国产一区二区| 成人美女网站在线观看视频| 亚洲人成网站高清观看| 80岁老熟妇乱子伦牲交| 久久久久久久久久成人| 亚洲av二区三区四区| 你懂的网址亚洲精品在线观看| 国产熟女欧美一区二区| 国产高潮美女av| freevideosex欧美| 欧美亚洲 丝袜 人妻 在线| 中文欧美无线码| 欧美日韩在线观看h| 日本色播在线视频| 国产成人免费观看mmmm| 精品久久久久久久久av| 一区二区三区四区激情视频| 成人无遮挡网站| 国产美女午夜福利| 亚洲成人一二三区av| 国产乱人偷精品视频| 欧美变态另类bdsm刘玥| 亚洲三级黄色毛片| 人妻制服诱惑在线中文字幕| 国产成人精品福利久久| 欧美三级亚洲精品| 国产黄频视频在线观看| 久久99热这里只有精品18| 久久精品综合一区二区三区| 日本爱情动作片www.在线观看| 日韩欧美精品免费久久| 日韩亚洲欧美综合| 97精品久久久久久久久久精品| 晚上一个人看的免费电影| 联通29元200g的流量卡| 国产精品人妻久久久久久| 人人妻人人澡人人爽人人夜夜| 交换朋友夫妻互换小说| 久久精品国产自在天天线| 九九久久精品国产亚洲av麻豆| www.色视频.com| 国产黄a三级三级三级人| 观看美女的网站| 国产在视频线精品| 久久久久国产精品人妻一区二区| 日本三级黄在线观看| 国产一区有黄有色的免费视频| 亚洲精品一二三| 黄色一级大片看看| 精品国产一区二区三区久久久樱花 | 男女边摸边吃奶| 欧美日韩视频精品一区| 国产欧美另类精品又又久久亚洲欧美| 国产高清国产精品国产三级 | 爱豆传媒免费全集在线观看| 高清av免费在线| 久久精品久久精品一区二区三区| 一区二区三区乱码不卡18| 韩国高清视频一区二区三区| 国产成人精品一,二区| 久久精品国产亚洲av涩爱| 欧美日韩一区二区视频在线观看视频在线 | 国产精品99久久久久久久久| 亚洲色图av天堂| 黄片无遮挡物在线观看| 麻豆国产97在线/欧美| 国产在视频线精品| 中文字幕制服av| 国产精品人妻久久久久久| 美女脱内裤让男人舔精品视频| 2021天堂中文幕一二区在线观| 少妇的逼好多水| 天美传媒精品一区二区| 王馨瑶露胸无遮挡在线观看| 色播亚洲综合网| 国产 精品1| 高清在线视频一区二区三区| 国产午夜精品一二区理论片| 亚洲国产高清在线一区二区三| 日韩欧美精品v在线| 一级片'在线观看视频| 日韩免费高清中文字幕av| 亚洲美女搞黄在线观看| 色5月婷婷丁香| 肉色欧美久久久久久久蜜桃 | 国产美女午夜福利| av在线app专区| 黄色配什么色好看| 中文字幕av成人在线电影| 久久久成人免费电影| 国产成人福利小说| 我的老师免费观看完整版| 视频中文字幕在线观看| 亚洲成人中文字幕在线播放| 97超视频在线观看视频| 蜜臀久久99精品久久宅男| 久久久亚洲精品成人影院| 国产精品一二三区在线看| 亚洲四区av| 亚洲人成网站在线播| 欧美激情国产日韩精品一区| 在线观看av片永久免费下载| 色吧在线观看| 丝袜美腿在线中文| 欧美3d第一页| 另类亚洲欧美激情| 寂寞人妻少妇视频99o| 欧美日韩在线观看h| 日本猛色少妇xxxxx猛交久久| 亚洲,一卡二卡三卡| 青春草国产在线视频| 一级爰片在线观看| 99视频精品全部免费 在线| 26uuu在线亚洲综合色| 美女xxoo啪啪120秒动态图| 久久久久网色| 伊人久久国产一区二区| 久久精品国产亚洲av涩爱| 22中文网久久字幕| 我的女老师完整版在线观看| 欧美激情在线99| 成年免费大片在线观看| 日韩电影二区| 最近中文字幕2019免费版| 国产精品无大码| 免费观看的影片在线观看| 人妻一区二区av| 99久久中文字幕三级久久日本| 性插视频无遮挡在线免费观看| 美女视频免费永久观看网站| 国产成人午夜福利电影在线观看| 午夜福利高清视频| 男女边吃奶边做爰视频| 王馨瑶露胸无遮挡在线观看| 如何舔出高潮| 国产精品国产av在线观看| 身体一侧抽搐| 日韩大片免费观看网站| 免费观看无遮挡的男女| 免费看日本二区| 不卡视频在线观看欧美| 国产精品成人在线| 嫩草影院精品99| 国产精品一二三区在线看| 国产精品人妻久久久久久| 在线观看av片永久免费下载| 欧美国产精品一级二级三级 | 人妻一区二区av| 国产女主播在线喷水免费视频网站| 七月丁香在线播放| 插阴视频在线观看视频| 欧美极品一区二区三区四区| 国产精品不卡视频一区二区| 男的添女的下面高潮视频| 又粗又硬又长又爽又黄的视频| 久久久久网色| 97在线人人人人妻| 亚洲第一区二区三区不卡| 五月玫瑰六月丁香| av女优亚洲男人天堂| 午夜视频国产福利| 国产极品天堂在线| 一级a做视频免费观看| 狂野欧美白嫩少妇大欣赏| 亚洲av成人精品一区久久| 国产精品一区二区在线观看99| 国产精品av视频在线免费观看| 91精品伊人久久大香线蕉| 亚洲成人久久爱视频| 亚洲国产日韩一区二区| 91aial.com中文字幕在线观看| 校园人妻丝袜中文字幕| 免费在线观看成人毛片| 免费av观看视频| 欧美日韩在线观看h| 丝袜美腿在线中文| 又爽又黄a免费视频| 亚洲成人av在线免费| 五月玫瑰六月丁香| 水蜜桃什么品种好| 亚洲欧美成人精品一区二区| 精品人妻视频免费看| 欧美一区二区亚洲| 久久久久性生活片| 熟妇人妻不卡中文字幕| 欧美老熟妇乱子伦牲交| 夜夜看夜夜爽夜夜摸| 久久精品国产自在天天线| av国产久精品久网站免费入址| 真实男女啪啪啪动态图| 亚洲精品aⅴ在线观看| 狂野欧美激情性xxxx在线观看| 欧美xxxx性猛交bbbb| 国产午夜福利久久久久久| 99久久精品热视频| 最近手机中文字幕大全| 联通29元200g的流量卡| 亚洲精品日韩在线中文字幕| 午夜免费鲁丝| 蜜桃亚洲精品一区二区三区| 99久久九九国产精品国产免费| 最近最新中文字幕免费大全7| 精品久久久精品久久久| 免费人成在线观看视频色| freevideosex欧美| 久久99热这里只频精品6学生| 欧美极品一区二区三区四区| 国产熟女欧美一区二区| 国产亚洲午夜精品一区二区久久 | 久久久欧美国产精品| 两个人的视频大全免费| 激情五月婷婷亚洲| 久久久久性生活片| 亚洲欧美日韩东京热| 亚洲美女视频黄频| 亚洲va在线va天堂va国产| 中文资源天堂在线| 亚洲怡红院男人天堂| 男的添女的下面高潮视频| 嫩草影院精品99| 亚洲国产精品成人久久小说| 久久久欧美国产精品| 精品久久久久久久久亚洲| 91久久精品国产一区二区成人| 内地一区二区视频在线| 久久久亚洲精品成人影院| 久久午夜福利片| 成人高潮视频无遮挡免费网站| av国产免费在线观看| 好男人视频免费观看在线| 亚洲人成网站在线播| 欧美日韩一区二区视频在线观看视频在线 | 国内少妇人妻偷人精品xxx网站| 在线观看国产h片| 特大巨黑吊av在线直播| 永久网站在线| 国产精品一及| 国产精品久久久久久精品电影小说 | 日韩欧美精品免费久久| 老师上课跳d突然被开到最大视频| 久久久久精品久久久久真实原创| 免费看日本二区| 2021天堂中文幕一二区在线观| av国产免费在线观看| 大话2 男鬼变身卡| 一区二区三区乱码不卡18| 国产精品99久久久久久久久| 日本爱情动作片www.在线观看| 不卡视频在线观看欧美| 色视频在线一区二区三区| 一个人看视频在线观看www免费| 欧美日韩视频高清一区二区三区二| 色5月婷婷丁香| 国产精品精品国产色婷婷| 国产精品不卡视频一区二区| 亚洲精品国产色婷婷电影| 免费黄频网站在线观看国产| 最新中文字幕久久久久| 麻豆乱淫一区二区| 国产亚洲av嫩草精品影院| 男女无遮挡免费网站观看| 91aial.com中文字幕在线观看| 一本久久精品| 亚洲性久久影院| av又黄又爽大尺度在线免费看| 午夜激情福利司机影院| 熟女电影av网| 精品少妇久久久久久888优播| 午夜精品一区二区三区免费看| 国产一区二区三区av在线| 国内精品宾馆在线| 国产欧美亚洲国产| 色哟哟·www| 尤物成人国产欧美一区二区三区| 欧美亚洲 丝袜 人妻 在线| 王馨瑶露胸无遮挡在线观看| 国产成人午夜福利电影在线观看| 亚洲伊人久久精品综合| 久久精品久久久久久久性| 永久网站在线| 国产av国产精品国产| 小蜜桃在线观看免费完整版高清| 亚洲国产精品专区欧美| 国产成人aa在线观看| .国产精品久久| 噜噜噜噜噜久久久久久91| 国产精品蜜桃在线观看| 22中文网久久字幕| 能在线免费看毛片的网站| 日本熟妇午夜| 成人特级av手机在线观看| 国产精品麻豆人妻色哟哟久久| 国产精品成人在线| 久久久久网色| 欧美区成人在线视频| 免费观看性生交大片5| 午夜免费男女啪啪视频观看| 丰满人妻一区二区三区视频av| 欧美3d第一页| 国产乱人视频| 日本欧美国产在线视频| 国产白丝娇喘喷水9色精品| 一级毛片电影观看| 丝袜喷水一区| 最新中文字幕久久久久| 国产乱来视频区| 我的老师免费观看完整版| 毛片一级片免费看久久久久| 人妻一区二区av| 中国国产av一级| 国产伦精品一区二区三区四那| 免费电影在线观看免费观看| 亚洲精品国产av蜜桃| 91aial.com中文字幕在线观看| 熟女人妻精品中文字幕| 在线天堂最新版资源| 毛片一级片免费看久久久久| 日本熟妇午夜| 搡老乐熟女国产| 国产淫语在线视频| 免费电影在线观看免费观看| 成年av动漫网址| 91aial.com中文字幕在线观看| 少妇熟女欧美另类| 91午夜精品亚洲一区二区三区| 亚洲四区av| 99视频精品全部免费 在线| 狂野欧美激情性xxxx在线观看| 啦啦啦啦在线视频资源| 纵有疾风起免费观看全集完整版| 亚洲综合精品二区| 国产成人精品福利久久| 欧美一区二区亚洲| 久久韩国三级中文字幕| 国产大屁股一区二区在线视频| 久久99热这里只有精品18| 国产精品久久久久久久久免| 2022亚洲国产成人精品| 亚洲人与动物交配视频| 永久免费av网站大全| 美女cb高潮喷水在线观看| 夫妻性生交免费视频一级片| 欧美zozozo另类| 亚洲性久久影院| 亚洲最大成人av| 亚洲人成网站在线观看播放| 国产国拍精品亚洲av在线观看| 国产色爽女视频免费观看| 菩萨蛮人人尽说江南好唐韦庄| 九九爱精品视频在线观看| 精华霜和精华液先用哪个| 99热这里只有是精品在线观看| 欧美精品人与动牲交sv欧美| 热99国产精品久久久久久7| 熟女电影av网| 97热精品久久久久久| 老司机影院毛片| 一本一本综合久久| 人体艺术视频欧美日本| 最后的刺客免费高清国语| 99视频精品全部免费 在线| av国产久精品久网站免费入址| 色网站视频免费| 高清欧美精品videossex| 在线天堂最新版资源| 国产在视频线精品| 身体一侧抽搐| 国产中年淑女户外野战色| 国产精品国产三级专区第一集| 欧美丝袜亚洲另类| 1000部很黄的大片| 亚洲精品日本国产第一区| 久久久久久九九精品二区国产| 亚洲欧美一区二区三区国产| 男女边摸边吃奶| 免费黄色在线免费观看| 神马国产精品三级电影在线观看| 一级黄片播放器| 免费高清在线观看视频在线观看| 成年免费大片在线观看| 中文欧美无线码| 欧美成人精品欧美一级黄| 美女主播在线视频| 91精品国产九色| 男女下面进入的视频免费午夜| 99热这里只有精品一区| 草草在线视频免费看| 国产乱人偷精品视频| 免费电影在线观看免费观看| 精品久久久噜噜| 国产精品三级大全| 国产午夜精品一二区理论片| 中国国产av一级| 人人妻人人爽人人添夜夜欢视频 | 国产在视频线精品| 欧美最新免费一区二区三区| 嫩草影院新地址| 女人久久www免费人成看片| 97热精品久久久久久| 欧美xxⅹ黑人| 国产精品99久久99久久久不卡 | 精品一区二区三区视频在线| 久久久久久九九精品二区国产| 在线免费观看不下载黄p国产| 亚洲精品日韩在线中文字幕| 建设人人有责人人尽责人人享有的 |