• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A topotactic tailored synthesis of waxberry-like mixed-phase TiO2 hollow spheres for dye-sensitized solar cells

    2022-06-18 03:00:48YngHongWuKiYnYunYnHeHengWuLiJioGngWngXioDongQioBingXinLeiZhenFnSunZhoQingLiu
    Chinese Chemical Letters 2022年2期

    Yng-Hong Wu, Ki-Yn Yun, Yn-E He, Heng Wu, Li-Jio M, Gng Wng,Xio-Dong Qio, Bing-Xin Lei,*, Zhen-Fn Sun, Zho-Qing Liu

    a School of Chemistry and Chemical Engineering, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Hainan Normal University, Haikou 571158, China

    b School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center, Guangzhou University, Guangzhou 510006, China

    ABSTRACT The waxberry-like mixed-phase TiO2 hollow microstructures (WMTHMs) are controllably prepared via a topotactic synthetic method, involving the synthesis of monodispersed CaTiO3 precursors by a solvothermal method and subsequently transforming them into TiO2 through a Na2EDTA-assisted ion-exchange process.The ratio of anatase-rutile is adjustable, and the two phases are connected well with each other.WMTHMs are composed of radially aligned nanorods, speeding up the electron transport.The optimum WMTHMs sample shows a specific surface area of 68.05 m2/g and exhibits an excellent light scattering capacity.The cell based on WMTHMs light scattering layer obtained an optimal efficiency of 9.12%.The improvement of cell efficiency is mainly attributed to the high specific surface area, the efficient light scattering, the appropriate ratio of anatase-rutile, the staggered bandgap structure, and the convenient one-dimensional electron transport channel.

    Keywords:Titanium dioxide Phase composition Topotactic methodology Hollow sphere Dye-sensitized solar cell

    Since the pioneer work of O’Regan and Gr?tzel in 1991, the dyesensitized solar cell (DSSC) has been a competitive photovoltaic device due to its advantages of low cost, easy of manufacture and remarkable energy conversion efficiency (η) [1,2].To boost the total performance of DSSCs, many researchers have optimized components, such as photoanodes [3], electrolytes [4,5], sensitizers [6,7],and counter electrodes [8,9].As one of the core components, the photoanode undertakes dye loading and charge transport.Among these studied photoanode materials, TiO2nanoparticle photoanode has attracted widespread attention due to its eco-friendliness, high chemical stability, and high specific surface area [10].However,this kind of photoanode film reveals lower light scattering ability due to its smaller particle size [11].Furthermore, TiO2nanoparticle photoanode has disordered electron transport channels, thereby affecting the charge transfer and collection efficiency.

    As is well known, TiO2hollow structures are more effective to improve light scattering ability and facilitate the electrolyte diffusion than solid ones, which result in a better DSSCs performance[12,13].The tailoring of TiO2hollow structures is a crucial means to improve the efficiency of DSSCs.Up to present, TiO2hollow structures with tailored textural properties are prepared through a variety of methods [14].The most adopted method for the tailoring synthesis of hollow structure is a template method, including hard templates (mono-dispersed silica [15,16] or polystyrene beads[17,18]) or soft templates (surfactant micelles/vesicles [19], emulsion droplets [20] or gas bubbles [21]).For CaTiO3templates, Ca2+is easily exchanged from the perovskite Ti-O frameworks in an acidic medium [22].CaTiO3is chosen to act as self-template for the formation of TiO2via a topotactic synthetic method, which is in favor of tailoring desirable morphology.Due to the well-matched lattice spacings between CaTiO3and TiO2, TiO2can perfectly inherit the CaTiO3morphology, guaranteeing a strong mechanical stability of TiO2structure.

    In addition, the anatase/rutile-mixed phase TiO2is an effective photoanode material.The tailoring of the ratio of anataserutile is very important to enhance the performance of DSSCs.For the preparation of anatase/rutile-mixed phase TiO2, two kinds of preparation methods are popular.One of the preparation methods is a mechanical mixing method, which cannot guarantee that the two phases are in close contact and the electron-hole pair separates effectively.The annealing treatment is another preparation method, which easily leads to particle aggregation.Therefore, for the tailoring of TiO2hollow structures, it is crucial to adopt a suitable preparation method concentrating various functions.

    In this work, the waxberry-like mixed-phase TiO2hollow microstructures (WMTHMs) were fabricated via a topotactic synthetic method.WMTHMs are composed of radial TiO2nanorods.The ratio of rutile-anatase can be changed by adding FeCl3.The optimized DSSCs of the assembled double-layer P25 + WMTHMs photoanode obtained an excellentηof 9.12%, which was superior to the DSSC of the pure P25 photoanode (8.12%).

    Fig.1 shows the FESEM, EDS mapping and TEM images of the as-prepared CaTiO3-Fenprecursors.As shown in Figs.1a-c,the as-prepared CaTiO3-Fenprecursors are nearly spherical structure in shape and their surfaces are rather smooth.The individual spheres are mutually separated without aggregation.As the amount of FeCl3increases, the shape of the CaTiO3-Fenspheres is not changed, but the diameter of CaTiO3-Fenvaries from 120 to 160 and 270 nm.The EDS mapping of CaTiO3-Fe0(Fig.1d) clearly reveals that the three elements (Ca, Ti, and O) are evenly distributed throughout the sample.The EDS mappings of CaTiO3-Fe1(Fig.1e) and CaTiO3-Fe2(Fig.1f) indicate that the four elements(Ca, Ti, O and Fe) are distributed over the entire samples.TEM results (Figs.1g-i) confirm that all CaTiO3-Fenprecursors display a solid structure.

    Fig.1.FESEM, EDS mapping and TEM images of CaTiO3-Fen precursors: (a, d and g) CaTiO3-Fe0, (b, e and h) CaTiO3-Fe1 and (c, f and i) CaTiO3-Fe2.The inset is highresolution FESEM images.

    XRD patterns of the as-prepared CaTiO3-Fenprecursors are shown in Fig.S1a (Supporting information).XRD patterns of CaTiO3-Fe1and CaTiO3-Fe2are similar to that of CaTiO3-Fe0.The diffraction peaks (2θ= 23.2°, 33.1°, 38.9°, 40.7°, 47.5°, 53.3°, 59.3°,69.5° and 79.1°) correspond to the (101), (121), (211), (220), (202),(301), (042), (242) and (323) planes of perovskite-type CaTiO3(JCPDS No.42-0423).Nevertheless, the Fe-containing species are not detected by XRD, which may be attributed to the low content in CaTiO3-Fe1and CaTiO3-Fe2.Fig.S1b (Supporting information) shows the enlarged XRD curves of CaTiO3-Fenin the range of 31-35°.With increasing Fe content, the (121) diffraction peak gradually shifts to a larger angle, verifying the distortion of CaTiO3crystal lattice by Fe dopant.It is well known that Ti4+(0.75) and Fe3+(0.79) have similar ionic radius, which may lead to the exchange of Ti4+and Fe3+in CaTiO3for the formation of new species[23].Fe may also exist in Fe2O3from the reaction of FeCl3during a solvothermal process.For CaTiO3-Fe1and CaTiO3-Fe2, Fe may exist in Fe2O3or the formation of new species.

    The surface chemical states of CaTiO3-Fe1and CaTiO3-Fe2are characterized by XPS (Fig.S2 in Supporting information).Fig.S2a shows the survey spectra of CaTiO3-Fe1.For the XPS spectra of Ca 2p (Fig.S2b), the major peaks at 349.8 eV and 346.3 eV correspond to the binding energies of Ca 2p1/2and Ca 2p3/2, respectively.For the XPS spectra of Ti 2p (Fig.S2c), the two major peaks, centered at around 458.1 eV and 463.8 eV, are ascribed to Ti 2p3/2and Ti 2p1/2of the Ti4+states, respectively.For the XPS spectra of O 1s(Fig.S2d), the major peak centered at 529.5 eV can be attributed to the Ti-O band, which corresponds to the O2-state in the lattice of CaTiO3-Fe1.For the XPS spectra of Fe 2p (Fig.S2e), the Fe 2p3/2peak at 710.2 eV corresponds to Fe3+state [24].In XPS spectra,there is no significant difference between CaTiO3-Fe1(Figs.S2a-e)and CaTiO3-Fe2(Figs.S2f-j).The results demonstrate that the Fecontaining species exists in CaTiO3-Fe1and CaTiO3-Fe2.

    Fig.2.FESEM, EDS mapping, TEM and HRTEM images of WMTHMs: (a, d, g and j)WMTHMs-0, (b, e, h and k) WMTHMs-1 and (c, f, i and l) WMTHMs-2.

    Fig.2 shows the FESEM, EDS mapping and TEM images of the as-prepared WMTHMs-n samples.As shown in Fig.2a, the WMTHMs-0 is composed of a large quantity of uniform, rough spheres with a diameter of around 0.95-1.10 μm.The highresolution FESEM (inset of Fig.2a) displays a waxberry-like TiO2hollow sphere.Observingly, WMTHMs-0 consists of tiny short rods with dense state.With increasing the Fe content in the precursor,the diameter of WMTHMs-1 (Fig.2b) increases to 1-1.30 μm, and the external structure of spheres has changed.The high-resolution FESEM (inset of Fig.2b) displays the WMTHMs-1 is composed of nanorods with a diameter of about 70-80 nm, and the growth direction of these nanorods is nearly radially on the external surface of sphere.Moreover, the hollow interior is clearly observed from some broken spheres, which is favorable for enhancing the light scattering ability.With further increasing the Fe content in the precursor, as shown in Fig.2c, WMTHMs-2 shows the same external structure as WMTHMs-1.WMTHMs-2 with a diameter of 1-1.20 μm is also composed of nanorods with a diameter of about 45-55 nm.The EDS mapping images (Figs.2d-f) indicate that Ti and O elements are distributed homogeneously in three kinds of WMTHMs.The as-prepared WMTHMs-n samples are further characterized by TEM.In Fig.2g, WMTHMs-0 consists of tiny nanorods and displays a hollow structure.In the case of little amount of FeCl3added,WMTHMs-1 (Fig.2h) and WMTHMs-2 (Fig.2i) samples are composed of radially arranged nanorods and display a hollow structure.Ca2+ions are exchanged with H+ions in the presence of Na2EDTA.The out-diffusion rate of Ca2+ions is much faster than the in-diffusion rate of H+ions, which results in the formation of hollow structure [25].TiO2evolves from CaTiO3by a dissolutionrecrystallization process.Meanwhile, Fe-containing species are removed with the assistance of Na2EDTA.For WMTHMs-n, Figs.2j-l demonstrate that the lattice spacings of 0.32 nm and 0.35 nm correspond to the (110) plane of rutile and the (101) plane of anatase TiO2, respectively.

    Fig.3.(a) XRD patterns, (b) N2 adsorption-desorption isotherms and (c) pore size distribution curves of WMTHMs-0, WMTHMs-1 and WMTHMs-2.

    The composition of WMTHMs-n is confirmed by XRD (Fig.3a).The diffraction peaks at 2θ= 37.9° and 48.2° are indexed to the(004), (200) crystal planes of anatase TiO2(JCPDS No.73-1764).Other peaks at 2θ= 36.1°, 41.2°, 54.3°, 56.6°, 62.8°, 69.8° and 72.4°, are indexed to the (101), (111), (211), (220), (002), (112) and(311) crystal planes of rutile TiO2(JCPDS No.78-2485).For all the as-prepared WMTHMs-n, the coexisting anatase and rutile phases are in agreement with TEM.As expected, the anatase/rutile mixed TiO2has excellent charge separation efficiency [26,27].The ratio of rutile-anatase can be calculated by the following Eqs.1 and 2 [28]:

    here,Wr, Wa, AaandArrepresent the rutile content, the anatase content, the integrated intensity of anatase (101) peak, and the integrated intensity of rutile (110) peak, respectively.The ratio of anatase-rutile is listed in Table S1 (Supporting information).The result indicates that the ratio of anatase-rutile is affected by the Fe content of the precursor.With the increase of Fe content in the precursor, the rutile content increases.That is to say, the ratio of anatase-rutile in WMTHMs-n can be successfully controlled by simply adjusting the amount of FeCl3.XRD patterns of the WMTHMs-1 and WMTHMs-2 show no traces of other phases like Fe2O3or FexTiOy.It is believed that the ion-exchange reaction may occur between Fe-containing species and H+with the assistance of Na2EDTA.

    As we know, both Ti4+ion (0.75) and Fe3+ion (0.79) have similar ion radius, which indicates that Fe3+ions may enter CaTiO3lattice to replace Ti4+sites [23].Based on simple charge compensation grounds, the formation of oxygen vacancies would generate due to the substitutional incorporation of Fe3+, which can offer space for the atomic arrangement [29].Besides, the oxygen vacancies increase with increasing Fe content, so the mass fraction of rutile phase increases with increasing Fe content [29].During transformation CaTiO3-Fe into TiO2through a Na2EDTA-assisted ionexchange process, Fe content can affect the ratio of anatase-rutile in WMTHMs.

    The co-existence of anatase and rutile phases in the WMTHMs-1 and WMTHMs-2 is further characterized by Raman spectroscopy(Fig.S3 in Supporting information).The peaks appeared at 147 cm-1(Eg), 397 cm-1(B1g), 512 cm-1(A1g) and 639 cm-1(Eg) are well matched with the anatase TiO2modes.The three peaks of rutile centered at 239, 445 and 614 cm-1are attributed to multiproton process, Egand A1gof the rutile modes [30].It clearly indicates that both WMTHMs-1 and WMTHMs-2 are made of anatase and rutile phases, without other phases like Fe2O3or FexTiOy,which is also in agreement with XRD results.

    The surface characterization of WMTHMs-1 and WMTHMs-2 are performed by XPS.As shown in Fig.S4a (Supporting information), the XPS survey spectra of WMTHMs-1 show the existence of Ti and O elements and the absence of Fe3+.In Fig.S4b (Supporting information), the two peaks, presented at around 463.8 eV and 458.1 eV, are attributed to Ti 2p1/2and Ti 2p3/2of the dominant Ti4+state, respectively [31].In Fig.S4c (Supporting information),the peak at 529.4 eV is ascribed to the lattice oxygen in TiO2, indicating the presence of an oxygen environment.In XPS spectra,there is no significant difference between WMTHMs-2 (Figs.S4df in Supporting information) and WMTHMs-1 (Figs.S4a-c in Supporting information).

    The BET specific surface area and pore size distribution of WMTHMs-n samples are investigated by N2adsorption-desorption measurement.In Fig.3b, all N2adsorption-desorption isotherms show typical IV-type isotherms with an H2 hysteresis loop according to IUPAC classification, which are characteristic of mesoporous materials [32,33].The WMTHMs-0 and WMTHMs-1 samples exhibit ideal specific surface area of 64.76 m2/g and 68.05 m2/g, respectively, which are higher than WMTHMs-2 (43.41 m2/g)and the commercial P25 (~50 m2/g).Therefore, the WMTHMs-0 and WMTHMs-1 samples can facilitate the dye adsorption of DSSCs.Fig.3c reveals the corresponding pore size distribution of WMTHMs-n samples.With the increase of Fe content in the precursor, the pore diameter has a decrease.The pore size of the asprepared WMTHMs-0, WMTHMs-1 and WMTHMs-2 are 19.2, 15.2,and 12.6 nm, respectively.The relatively wide pore size distributions are beneficial to electrolyte diffusion.This result indicates the Fe content of the precursor exerts a great effect on the textural structure.

    Fig.4.(a) J-V curves, (b) diffuse reflectance spectra, (c) UV-vis absorption spectra, (d) EQE spectra, (e) dark J-V and (f) EIS curves of DSSCs based on different photoanode films.

    Table 1 Detailed photovoltaic parameters of DSSCs based on different photoanode films.

    TheJ-Vcurves are displayed in Fig.4a and their corresponding photovoltaic characteristics (Jsc: short-circuit current density,Voc: open-circuit voltage,FF: fill factor, andη) are summarized in Table 1.From Table 1, the four cells have a similarFF, while bothJscandηexhibit an increase and then decrease with the increasing Fe content in the precursor.The cells based on WMTHMs-0 and WMTHMs-1 scattering layer photoanodes have achieved higherη(8.38% and 9.12%) than that of the Cell-P25 without scattering layer (8.12%).However, introducing an additional scattering layer of WMTHMs-2, theηof Cell-P25 + WMTHMs-2 decrease to 7.96%.Theηinitially increases from 8.38% to 9.12% with the increasing Fe content in the precursor, which is attributed to the synergistic effects of the appropriate ratio of anatase-rutile, the convenient onedimensional electron transport channel, the superior light scattering ability and the higher dye loading amounts.The mixedphase TiO2can form a synergistic effect between anatase and rutile crystals.The photo-generated electrons coming from N719 inject into the rutile phase TiO2and then migrate to the anatase phase TiO2.Such staggered bandgap can suppress charge recombination, thereby improving the efficiency of DSSCs.However, when the Fe content of the precursor is further increased, theηdecreases from 9.12% to 7.96%, which may be due to the unsuited ratio of anatase-rutile, the inferior light scattering capacity and the lower dye loading amounts.Compared with CaTiO3-Fenlight scattering layer, the DSSCs based on the WMTHMs-n show higher effi-ciency, as shown in Fig.S5 and Table S2 (Supporting information).

    It is well known that theJscis closely related to the light scattering capacity and the amounts of dye loading.To study the effect of light scattering capacity on theJsc, the diffuse reflection property of the as-prepared photoanode films without N719 dye loading is investigated.In Fig.4b, the diffuse reflection property of P25 + WMTHMs-0, P25 + WMTHMs-1 and P25 + WMTHMs-2 films is obviously higher than that of the pure P25 film, which is expected to exhibit a better light scattering capability of the WMTHMs-n layer.For the WMTHMs-n, besides that the comparable sphere size to the wavelength of visible light plays an important role in enhancing light scattering, their hollow structure can confine the incident light within the photoanode by light refraction between the wall and the air-filled pore, as shown in Fig.S6(Supporting information).

    The amounts of N719 dye anchored on the four films are investigated using 0.1 mol/L NaOH solution.UV-vis absorption spectra of dye molecules are shown in Fig.4c.The order of dye loading capability is: Cell-P25 + WMTHMs-1 (16.57 × 10-8mol/cm2)>Cell-P25 + WMTHMs-0 (15.25 × 10-8mol/cm2)>Cell-P25(13.53 × 10-8mol/cm2)>Cell-P25 + WMTHMs-2 (12.27 × 10-8mol/cm2), which are closely related to their BET specific surface areas and ratio of anatase-rutile.Due to the higher light scattering capacity and bigger dye loading capability, Cell-P25 + WMTHMs-1 demonstrates an optimumJsc.

    The differences inJscof the four cells are further investigated by measuring EQE spectra.Fig.4d shows the EQE spectra as a function of wavelength for the four cells.The high EQE values in the short wavelength range are mainly attributed to the higher dye loading capability, and the somewhat higher EQE values in the long wavelength range of 600-750 nm are ascribed to the more efficient light scattering of the WMTHMs-n layer.Considering that dye loading capability and the diffuse reflection, Cell-P25 + WMTHMs-1 possesses higher EQE values over a wide range than Cell-P25.However, Cell-P25 + WMTHMs-1 shows lower EQE values than Cell-P25 in the short wavelength range, whereas it is just the opposite in the long wavelength range.

    The darkJ-Vcharacteristics reflects the recombination of injected electrons with I3-.In Fig.4e, the dark current densities of the Cell-P25 + WMTHMs-n are 4.09, 5.51 and 2.35 mA/cm2at 0.80 V, respectively.On the contrary, the P25 + WMTHMs-2 electrode displays a low current density, indicating the low recombination loss.The relatively high dark current density of P25 + WMTHMs-1 electrode means a high interface recombination loss, which could be explained by the enlarged recombination.The high recombination loss leads to a decrease inVoc, which is agreement with theVocvalue.

    To further make out the electron transport and interface recombination process in the four cells, EIS of Cell-P25 + WMTHMsn are measured (Fig.4f).In Fig.4f, the smaller semicircle is assigned to the charge transfer resistance (Rct1) at the electrolyte/Pt counter electrode, while the larger semicircle is assigned to the charge recombination resistance (Rct2) at the TiO2/dye/electrolyte interfaces.TheCμrepresents the chemical capacitance.The data are analyzed using Z-view software with an equivalent circuit (inset of Fig.4f).The EIS parameters are listed in Table 1.TheRsandRct1values are almost identical because of the similar substrate, counter electrode, and I-/I3-electrolyte.From Table 1, theRct2of the four cells are distinguishing, and the order ofRct2value is: Cell-P25 + WMTHMs-2 (95.38Ω)>Cell-P25 (69.19Ω)>Cell-P25 + WMTHMs-0 (63.12Ω)>Cell-P25 + WMTHMs-1(61.36Ω).Based on the fittedRct2andCμ2, the electron lifetime(τe=Rct2×Cμ2) values are calculated to be 58.23, 55.16, 89.45 and 65.13 ms for Cell-P25 + WMTHMs-0, Cell-P25 + WMTHMs-1, Cell-P25 + WMTHMs-2 and Cell-P25, respectively.Obviously,the Cell-P25 + WMTHMs-1 shows the shortestτe, manifesting that Cell-P25 + WMTHMs-1 has the quickest electron recombination process.This may be attributed to the large surface area of WMTHMs-1 introduced many defects.This leads to rapid recombination of electrons at the photoanode/dye/electrolyte interface,which in turn reflects a shorteningτefor Cell-P25 + WMTHMs-1 [34].The shorterτefor the Cell-P25 + WMTHMs-1 also further supports its lowerVoc.The undesiredVocfor P25 + WMTHMs-1 electrode can be compensated by the highJscdue to the efficient light scattering and superior dye loading capability, making Cell-P25 + WMTHMs-1 endow a marked efficiency.

    In this study, the anatase/rutile mixed TiO2hollow spheres were fabricated via a topotactic synthetic method using monodispersed CaTiO3precursor templates.The ratio of anatase-rutile was controlled through adding FeCl3content.WMTHMs-1 sample exhibited the best light scattering property and highest specific surface area.A double-layer photoanode consisting of WMTHMs-n used as light scattering layer and P25 as underlayer was designed.The DSSCs of the assembled double-layer P25 + WMTHMs-n photoanodes obtained aηof 8.38%, 9.12% and 7.96%, respectively.A maximumηof 9.12% was achieved by using the P25 + WMTHMs-1 bilayer photoanode, showing a marked improvement compared with the pure P25 photoanode (8.12%).The improvement of the efficiency was mainly attributed to the structure of WMTHMs-1,which can provide multiple scattering centers to enhance the light harvesting ability, the direct pathways for fast electron transfer, the appropriate ratio of anatase-rutile for quick charge separation, the staggered bandgap structure, and the high specific surface area for adsorbing dye.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    This work is financially supported by the National Natural Science Foundation of China (No.21965013), the Natural Science Foundation of Hainan Province (No.220RC590), and the Graduate Student Research and Innovation Program of Hainan Province (No.hsyx2019-17).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.07.032.

    两性夫妻黄色片| 制服人妻中文乱码| www日本在线高清视频| 午夜福利高清视频| 亚洲精品美女久久久久99蜜臀| 亚洲精华国产精华精| 欧美中文日本在线观看视频| 在线观看舔阴道视频| 999久久久精品免费观看国产| 久热这里只有精品99| 搡老妇女老女人老熟妇| 人妻久久中文字幕网| 黄色毛片三级朝国网站| 欧美亚洲日本最大视频资源| 88av欧美| 别揉我奶头~嗯~啊~动态视频| 亚洲avbb在线观看| 超碰成人久久| av在线播放免费不卡| 丝袜美腿诱惑在线| 老司机午夜福利在线观看视频| 国产99久久九九免费精品| 老司机深夜福利视频在线观看| av免费在线观看网站| 午夜福利高清视频| 女生性感内裤真人,穿戴方法视频| 一边摸一边抽搐一进一小说| 国产成人av激情在线播放| 黑人巨大精品欧美一区二区mp4| 国产主播在线观看一区二区| 日韩av在线大香蕉| 黄色丝袜av网址大全| 曰老女人黄片| 亚洲国产精品sss在线观看| 露出奶头的视频| 操出白浆在线播放| 一级毛片女人18水好多| www.自偷自拍.com| 亚洲中文av在线| 一区在线观看完整版| 两个人看的免费小视频| 女人被躁到高潮嗷嗷叫费观| 久久精品人人爽人人爽视色| 亚洲免费av在线视频| 国产亚洲精品综合一区在线观看 | 国产精品98久久久久久宅男小说| 男人舔女人下体高潮全视频| 18禁裸乳无遮挡免费网站照片 | 怎么达到女性高潮| 国产精品影院久久| 亚洲欧美一区二区三区黑人| 欧洲精品卡2卡3卡4卡5卡区| 亚洲 欧美 日韩 在线 免费| 久久精品影院6| 真人一进一出gif抽搐免费| 最新美女视频免费是黄的| 黄色成人免费大全| 男女床上黄色一级片免费看| 日本一区二区免费在线视频| 一本大道久久a久久精品| 午夜影院日韩av| 叶爱在线成人免费视频播放| 校园春色视频在线观看| 成年版毛片免费区| 99精品欧美一区二区三区四区| 大香蕉久久成人网| 人妻丰满熟妇av一区二区三区| 国产一区二区三区视频了| 99国产精品免费福利视频| 日韩高清综合在线| 99精品在免费线老司机午夜| 热99re8久久精品国产| 国产精品一区二区精品视频观看| 亚洲精品久久成人aⅴ小说| 日韩av在线大香蕉| 午夜久久久久精精品| 国产视频一区二区在线看| 一进一出好大好爽视频| 国产av又大| 国产在线精品亚洲第一网站| 大型黄色视频在线免费观看| 亚洲av熟女| 国产亚洲欧美精品永久| 日本黄色视频三级网站网址| 亚洲中文av在线| 国产成人一区二区三区免费视频网站| 不卡av一区二区三区| 国产真人三级小视频在线观看| 欧美成人性av电影在线观看| 两个人看的免费小视频| 日韩精品青青久久久久久| 91成年电影在线观看| av片东京热男人的天堂| 亚洲国产精品合色在线| 日韩欧美一区视频在线观看| 久久天躁狠狠躁夜夜2o2o| 午夜久久久久精精品| 妹子高潮喷水视频| 黑丝袜美女国产一区| 夜夜夜夜夜久久久久| 中文字幕精品免费在线观看视频| 久久婷婷人人爽人人干人人爱 | 一区二区三区高清视频在线| 欧美激情高清一区二区三区| 午夜福利成人在线免费观看| 黑人巨大精品欧美一区二区mp4| 人人妻人人爽人人添夜夜欢视频| 国产精品秋霞免费鲁丝片| 国产亚洲精品av在线| 无遮挡黄片免费观看| 久久精品国产亚洲av高清一级| 亚洲国产精品久久男人天堂| ponron亚洲| 日韩视频一区二区在线观看| 午夜久久久在线观看| 黑人巨大精品欧美一区二区mp4| 国产精品二区激情视频| 国产成人av教育| 91九色精品人成在线观看| 国产在线观看jvid| 国产精华一区二区三区| 免费一级毛片在线播放高清视频 | 国产av一区在线观看免费| 亚洲欧美日韩另类电影网站| 国产一区二区激情短视频| x7x7x7水蜜桃| 老司机深夜福利视频在线观看| 精品一品国产午夜福利视频| 99香蕉大伊视频| 色播在线永久视频| 久久精品aⅴ一区二区三区四区| 免费在线观看日本一区| 午夜精品国产一区二区电影| 国产高清有码在线观看视频 | 国产精品 国内视频| 国产精品一区二区在线不卡| 神马国产精品三级电影在线观看 | 99国产精品免费福利视频| 99久久国产精品久久久| 欧美精品啪啪一区二区三区| 88av欧美| www国产在线视频色| 老司机在亚洲福利影院| 黄色视频不卡| 首页视频小说图片口味搜索| 精品国产亚洲在线| 欧美日韩亚洲综合一区二区三区_| 成人国语在线视频| 国产一级毛片七仙女欲春2 | 91麻豆av在线| 中文亚洲av片在线观看爽| 欧美日本中文国产一区发布| 91麻豆av在线| 欧美日韩黄片免| 久久久久久大精品| 中文字幕最新亚洲高清| 精品久久久久久,| 一级,二级,三级黄色视频| 我的亚洲天堂| 国产xxxxx性猛交| 桃红色精品国产亚洲av| 看黄色毛片网站| 搡老岳熟女国产| 日韩大码丰满熟妇| 好看av亚洲va欧美ⅴa在| 午夜a级毛片| 香蕉国产在线看| 亚洲av成人一区二区三| 91麻豆精品激情在线观看国产| 午夜精品久久久久久毛片777| 亚洲国产日韩欧美精品在线观看 | 一级片免费观看大全| 久久人人爽av亚洲精品天堂| 色在线成人网| 制服诱惑二区| 老司机深夜福利视频在线观看| 国产精品香港三级国产av潘金莲| 一个人观看的视频www高清免费观看 | 操出白浆在线播放| 又黄又爽又免费观看的视频| 视频区欧美日本亚洲| 91麻豆av在线| www.自偷自拍.com| 国产精品久久视频播放| 亚洲国产日韩欧美精品在线观看 | 中文字幕另类日韩欧美亚洲嫩草| 亚洲在线自拍视频| 国产真人三级小视频在线观看| 亚洲成av人片免费观看| 成人国产综合亚洲| 亚洲性夜色夜夜综合| 伦理电影免费视频| 婷婷精品国产亚洲av在线| 色播亚洲综合网| 免费观看精品视频网站| avwww免费| 欧美人与性动交α欧美精品济南到| 欧美绝顶高潮抽搐喷水| 黄色视频不卡| 法律面前人人平等表现在哪些方面| 动漫黄色视频在线观看| 最近最新中文字幕大全免费视频| 国产99久久九九免费精品| 丁香欧美五月| 国产av又大| 日韩国内少妇激情av| 免费在线观看完整版高清| 国内精品久久久久久久电影| 亚洲三区欧美一区| 亚洲av熟女| 国产激情欧美一区二区| 欧美黑人精品巨大| aaaaa片日本免费| 久热爱精品视频在线9| 国产精品日韩av在线免费观看 | 亚洲男人天堂网一区| 精品无人区乱码1区二区| 在线观看66精品国产| 久久久精品欧美日韩精品| 国产人伦9x9x在线观看| 日本五十路高清| 国产成人影院久久av| 亚洲国产欧美网| 亚洲成人精品中文字幕电影| 麻豆国产av国片精品| 久久久久国产精品人妻aⅴ院| 亚洲男人天堂网一区| 少妇的丰满在线观看| 黄网站色视频无遮挡免费观看| 国产精品自产拍在线观看55亚洲| 制服人妻中文乱码| 国产不卡一卡二| 男人的好看免费观看在线视频 | 黑人欧美特级aaaaaa片| 男女做爰动态图高潮gif福利片 | 成人av一区二区三区在线看| 久久精品成人免费网站| 亚洲最大成人中文| 丝袜美腿诱惑在线| 亚洲中文日韩欧美视频| 免费av毛片视频| 国内精品久久久久久久电影| 一进一出抽搐gif免费好疼| 国产成人精品无人区| 一级毛片精品| 久久亚洲精品不卡| 非洲黑人性xxxx精品又粗又长| 国产亚洲精品久久久久久毛片| av在线天堂中文字幕| 国产精品一区二区免费欧美| 久久精品国产亚洲av香蕉五月| 国产精品秋霞免费鲁丝片| 中文亚洲av片在线观看爽| 精品免费久久久久久久清纯| 国产亚洲精品av在线| 亚洲久久久国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 91字幕亚洲| 在线观看午夜福利视频| 国语自产精品视频在线第100页| 国产一区二区三区在线臀色熟女| 丁香六月欧美| 1024香蕉在线观看| 成人18禁在线播放| 男人舔女人下体高潮全视频| 大码成人一级视频| 国产三级在线视频| 久久久精品国产亚洲av高清涩受| 纯流量卡能插随身wifi吗| 久久天躁狠狠躁夜夜2o2o| 一本综合久久免费| 精品久久久久久久毛片微露脸| 欧美大码av| 99re在线观看精品视频| 国产成人欧美在线观看| 神马国产精品三级电影在线观看 | 亚洲五月天丁香| 精品欧美一区二区三区在线| 午夜精品国产一区二区电影| 久久香蕉激情| 在线观看www视频免费| 亚洲七黄色美女视频| 国产精品野战在线观看| www.999成人在线观看| 国产激情久久老熟女| 久久欧美精品欧美久久欧美| 欧美乱妇无乱码| 亚洲专区国产一区二区| 亚洲精品中文字幕一二三四区| 热re99久久国产66热| 国产精品一区二区三区四区久久 | 丁香六月欧美| 在线天堂中文资源库| 国产片内射在线| 免费看a级黄色片| 操出白浆在线播放| 午夜福利高清视频| 日韩有码中文字幕| 免费在线观看影片大全网站| 真人一进一出gif抽搐免费| 侵犯人妻中文字幕一二三四区| 欧美日韩乱码在线| 熟妇人妻久久中文字幕3abv| 久久中文字幕人妻熟女| 国产熟女xx| 亚洲av日韩精品久久久久久密| 最近最新中文字幕大全电影3 | 久久久水蜜桃国产精品网| 一级作爱视频免费观看| 久久婷婷成人综合色麻豆| 18禁裸乳无遮挡免费网站照片 | 国产一级毛片七仙女欲春2 | 可以在线观看毛片的网站| 在线免费观看的www视频| 亚洲精品国产一区二区精华液| 村上凉子中文字幕在线| 操美女的视频在线观看| 免费看a级黄色片| 美女 人体艺术 gogo| 身体一侧抽搐| 久久香蕉激情| ponron亚洲| 好男人在线观看高清免费视频 | 在线免费观看的www视频| 日本三级黄在线观看| 精品国产一区二区三区四区第35| 午夜福利成人在线免费观看| 一a级毛片在线观看| 少妇的丰满在线观看| 人人妻人人澡欧美一区二区 | 国产又色又爽无遮挡免费看| 亚洲精品国产一区二区精华液| 国产在线观看jvid| 成人亚洲精品av一区二区| 美女大奶头视频| 老司机午夜十八禁免费视频| 午夜精品国产一区二区电影| 三级毛片av免费| 一进一出抽搐gif免费好疼| 国产免费男女视频| 香蕉丝袜av| 午夜日韩欧美国产| 亚洲人成77777在线视频| 成人精品一区二区免费| 久久久精品欧美日韩精品| 中文字幕高清在线视频| 久久久久久大精品| 91九色精品人成在线观看| 一个人免费在线观看的高清视频| 男男h啪啪无遮挡| АⅤ资源中文在线天堂| 可以在线观看毛片的网站| 变态另类丝袜制服| 一区二区三区国产精品乱码| 天天添夜夜摸| 中文字幕精品免费在线观看视频| 狠狠狠狠99中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 少妇裸体淫交视频免费看高清 | e午夜精品久久久久久久| 此物有八面人人有两片| 女人精品久久久久毛片| 亚洲国产毛片av蜜桃av| 精品欧美一区二区三区在线| 亚洲片人在线观看| 日本在线视频免费播放| 久久中文看片网| 国产日韩一区二区三区精品不卡| 日本精品一区二区三区蜜桃| 怎么达到女性高潮| 久久久国产精品麻豆| 中文字幕av电影在线播放| 亚洲精品国产精品久久久不卡| 国产99久久九九免费精品| 国产一区二区三区综合在线观看| 看片在线看免费视频| 视频区欧美日本亚洲| 中文字幕高清在线视频| 欧美日韩亚洲综合一区二区三区_| 搡老熟女国产l中国老女人| 免费高清在线观看日韩| 免费在线观看视频国产中文字幕亚洲| 日本a在线网址| 又黄又粗又硬又大视频| 欧美成人性av电影在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久久久人妻精品电影| 19禁男女啪啪无遮挡网站| 免费一级毛片在线播放高清视频 | 美女国产高潮福利片在线看| 老鸭窝网址在线观看| 久热爱精品视频在线9| 一边摸一边抽搐一进一小说| 国产一区二区三区视频了| tocl精华| 日本免费一区二区三区高清不卡 | 午夜a级毛片| 日本三级黄在线观看| 他把我摸到了高潮在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产精品九九99| 色综合婷婷激情| 亚洲av电影在线进入| 好看av亚洲va欧美ⅴa在| 黄频高清免费视频| 九色亚洲精品在线播放| 禁无遮挡网站| 亚洲全国av大片| 无人区码免费观看不卡| 波多野结衣av一区二区av| 久久久久国产一级毛片高清牌| 国产精品香港三级国产av潘金莲| 制服人妻中文乱码| 国产午夜精品久久久久久| 一级毛片女人18水好多| 免费高清在线观看日韩| 757午夜福利合集在线观看| av网站免费在线观看视频| 黄色成人免费大全| 久久久久九九精品影院| 欧美日韩黄片免| 免费在线观看黄色视频的| 久久久久亚洲av毛片大全| 女人被狂操c到高潮| 美女午夜性视频免费| 午夜成年电影在线免费观看| 国产精品久久久人人做人人爽| 日韩欧美国产在线观看| 欧美黄色片欧美黄色片| 日日夜夜操网爽| 嫩草影院精品99| 欧美性长视频在线观看| cao死你这个sao货| 国产精品免费视频内射| 久久久久九九精品影院| 12—13女人毛片做爰片一| 久久这里只有精品19| 涩涩av久久男人的天堂| 精品午夜福利视频在线观看一区| 午夜福利一区二区在线看| 国产在线精品亚洲第一网站| 日本免费a在线| 精品国内亚洲2022精品成人| 99国产综合亚洲精品| www日本在线高清视频| 一级,二级,三级黄色视频| 精品国产超薄肉色丝袜足j| 亚洲色图 男人天堂 中文字幕| 成人国产一区最新在线观看| 亚洲成国产人片在线观看| 男女做爰动态图高潮gif福利片 | 欧美av亚洲av综合av国产av| 亚洲第一电影网av| 国产黄a三级三级三级人| 亚洲国产欧美网| 满18在线观看网站| 亚洲国产高清在线一区二区三 | 精品欧美一区二区三区在线| 国产91精品成人一区二区三区| 啦啦啦韩国在线观看视频| 日韩视频一区二区在线观看| 女性被躁到高潮视频| 国产成人影院久久av| 纯流量卡能插随身wifi吗| 国产区一区二久久| 涩涩av久久男人的天堂| 国内久久婷婷六月综合欲色啪| 一二三四社区在线视频社区8| 99国产精品99久久久久| av视频在线观看入口| 欧美成人午夜精品| 美女 人体艺术 gogo| 久久国产精品男人的天堂亚洲| 久久伊人香网站| 一二三四社区在线视频社区8| 9191精品国产免费久久| 色播亚洲综合网| 不卡一级毛片| 免费不卡黄色视频| 国产精品久久久人人做人人爽| 脱女人内裤的视频| 51午夜福利影视在线观看| 在线观看免费视频日本深夜| 一进一出抽搐动态| 久久狼人影院| 看免费av毛片| 亚洲欧美一区二区三区黑人| 精品国产亚洲在线| 国产亚洲欧美98| 国产av一区二区精品久久| 中文字幕久久专区| 51午夜福利影视在线观看| 亚洲熟女毛片儿| 日本一区二区免费在线视频| 国产又色又爽无遮挡免费看| 啦啦啦观看免费观看视频高清 | 亚洲熟女毛片儿| 久久久精品国产亚洲av高清涩受| 一区福利在线观看| 一级毛片女人18水好多| 亚洲av第一区精品v没综合| 黄网站色视频无遮挡免费观看| 国产精品秋霞免费鲁丝片| 男女下面进入的视频免费午夜 | 国产亚洲精品一区二区www| 一级,二级,三级黄色视频| 日韩免费av在线播放| 老司机福利观看| 中文字幕人妻丝袜一区二区| 极品人妻少妇av视频| 国产精品久久久av美女十八| 欧美中文综合在线视频| 国产精品日韩av在线免费观看 | 精品欧美国产一区二区三| 91成人精品电影| 午夜久久久久精精品| or卡值多少钱| 九色亚洲精品在线播放| 国产麻豆成人av免费视频| avwww免费| 亚洲精品av麻豆狂野| 久久久久久久精品吃奶| 国产成人欧美| 色av中文字幕| 变态另类丝袜制服| 亚洲av五月六月丁香网| av福利片在线| 国产高清激情床上av| 看片在线看免费视频| 久久久久久久久久久久大奶| 成人国产一区最新在线观看| 国内久久婷婷六月综合欲色啪| 久久久久久国产a免费观看| 老熟妇乱子伦视频在线观看| 可以在线观看的亚洲视频| 一区福利在线观看| 亚洲中文日韩欧美视频| 久久精品成人免费网站| 免费看a级黄色片| 久久影院123| 欧美日韩福利视频一区二区| 亚洲自拍偷在线| 国产在线精品亚洲第一网站| 搡老妇女老女人老熟妇| 悠悠久久av| 欧美另类亚洲清纯唯美| 亚洲中文av在线| 国产精品一区二区精品视频观看| 精品国产一区二区久久| 久久精品国产清高在天天线| 一本综合久久免费| 男人操女人黄网站| 免费少妇av软件| 免费观看精品视频网站| 国产亚洲精品久久久久5区| 曰老女人黄片| a在线观看视频网站| 国产视频一区二区在线看| 国产av在哪里看| 一个人免费在线观看的高清视频| 色综合婷婷激情| 午夜亚洲福利在线播放| 一本大道久久a久久精品| 两个人视频免费观看高清| 久久精品国产清高在天天线| 国产精品影院久久| 一进一出抽搐动态| 亚洲中文字幕一区二区三区有码在线看 | 给我免费播放毛片高清在线观看| 曰老女人黄片| 亚洲国产欧美一区二区综合| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩中文字幕国产精品一区二区三区 | 首页视频小说图片口味搜索| 午夜福利欧美成人| 制服人妻中文乱码| 亚洲精品粉嫩美女一区| 亚洲av片天天在线观看| 香蕉丝袜av| av免费在线观看网站| 欧美成狂野欧美在线观看| 大型黄色视频在线免费观看| 欧美丝袜亚洲另类 | 老司机午夜福利在线观看视频| 久久久水蜜桃国产精品网| 黄色成人免费大全| 欧美丝袜亚洲另类 | 又黄又爽又免费观看的视频| 国产国语露脸激情在线看| 国产一卡二卡三卡精品| 国产精品乱码一区二三区的特点 | 精品国产一区二区三区四区第35| 成人精品一区二区免费| 大香蕉久久成人网| 一a级毛片在线观看| 亚洲午夜理论影院| 国产av又大| 精品人妻在线不人妻| 亚洲一区二区三区不卡视频| 69精品国产乱码久久久| 欧美黑人精品巨大| 国产精品亚洲美女久久久| 国产av又大| 国产免费av片在线观看野外av| 中文字幕精品免费在线观看视频| 在线观看免费午夜福利视频| 欧美黑人精品巨大| 一本大道久久a久久精品| 可以在线观看的亚洲视频| 亚洲第一青青草原| 欧美性长视频在线观看| 午夜老司机福利片| 日本精品一区二区三区蜜桃| 国产精品99久久99久久久不卡| 国产区一区二久久|