• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tuning the shell thickness of core-shell α-Fe2O3@SiO2 nanoparticles to promote microwave absorption

    2022-06-18 03:00:48HonghongFuYueGuoJinYuZhenShenJieZhoYuXieYunLingShengOuyngShiqiLiWeiZhng
    Chinese Chemical Letters 2022年2期

    Honghong Fu, Yue Guo, Jin Yu, Zhen Shen, Jie Zho,,*, Yu Xie, Yun Ling,Sheng Ouyng, Shiqi Li, Wei Zhng

    a Department of Materials Chemistry, School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China

    b Instrumental Analysis Center of Nanchang Hangkong University, Nanchang 330063, China

    c School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

    d Research Institute of Aero-Engine, Beihang University, Beijing 100191, China

    e School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China

    ABSTRACT Various advanced microwave absorbing materials have been developed for reducing/avoiding the harm of microwave radiation.Among them, core-shell structural nanomaterials have been widely fabricated for microwave absorption.However, the “structure-performance” relationship between shell thickness and microwave absorption performance is rarely reported.In this paper, we first explored the “structureperformance” relationship between shell thickness and microwave absorption performance, based on the core-shell α-Fe2O3@SiO2 nanoparticles with a constant α-Fe2O3-core size and changeable SiO2-shell thickness.With increasing the SiO2-shell thickness, the microwave absorption ability first increased, then decreased.Under a proper SiO2-shell thickness of 35 nm, α-Fe2O3@SiO2 sample achieved the strongest microwave absorbing ability with a reflection loss minimum value of –4.3 dB, better than that of pure α-Fe2O3 (–3.8 dB).This enhanced microwave absorption performance was mainly derived from the dielectric loss.Although the absolute value of the reflection loss was relatively low (–4.3 dB), this study shed an important reference on designing next-generation advanced iron oxide-based materials for microwave absorption.

    Keywords:α-Fe2O3@SiO2 Core-shell structure Microwave absorption Dielectric loss Interfacial polarization Conductivity loss

    With more and more electronic products into life, the microwave radiation generated by electronic devices has caused harm to human health and the environment.In order to reduce/avoid the harm of microwave radiation, intensive efforts have been made to develop advanced microwave absorbing materials [1-5].At present,the widely used microwave absorbing materials are mainly divided into ferrites (Fe3O4,α-Fe2O3and BaFe12O19,etc.) [6-8], magnetic metals (Ni, Co,α-Fe) [9-11], non-iron-based metal oxides (TiO2,NiO, CaBiNb2O4, ZnO and MoS2,etc.) [12-16], carbon-based materials (graphene, carbon nanotube and porous carbon,etc.) [17-20],polymers (polyaniline, polypyrrole, and polythiophene,etc.) [21-23], and other composites [24-31].Among them, ferrites have attracted extensive interest owing to their abundant resources, low cost, and good absorption performance [32,33].

    Usually, ferrites have three structures,i.e., Fe3O4,γ-Fe2O3andα-Fe2O3.Among them, Fe3O4andγ-Fe2O3belong to ferromagnetic materials, which have large saturation magnetization and high relative complex permeability suiting for microwave absorption.However, these two ferrites are easy to oxidization and agglomerate, leading to poor microwave absorption performance[2,34].By contrast,α-Fe2O3provides more options for the microwave absorber design due to its stable chemical properties,environment-friendly feature, and controllable morphology.

    Various morphologies ofα-Fe2O3have been widely reported,such as microspheres, microcubes, nanoparticles, and nanorods[35-42].Coating an insulating layer onα-Fe2O3particle surface is an effective strategy to adjust the particle-particle distance, enhance the anti-oxidation capability, reduce the density of particles,and improve the impedance matching between particles and free space.As a surface modification material, SiO2is an ideal candidate due to its excellent chemical stability, nontoxicity, and easy conjugation with various functional groups.Various structures withα-Fe2O3as the core and SiO2as the shell have been fabricated for microwave absorption, such as core-shell structure, and yolkshell structure [43-46].However, the “structure-performance” relationship between shell thickness and microwave absorption performance is rarely reported.

    Herein, we have synthesized the core-shell structuralα-Fe2O3@SiO2nanoparticles with a constant core size and changeable shell thickness to explore the “structure-performance”relationship between shell thickness and microwave absorption performance.The dependence of shell thickness on microwave absorption performance and the corresponding mechanisms were revealed and explained, respectively.The results indicated thatα-Fe2O3@SiO2of 35 nm shell-thickness presented a significant enhancement of absorption performance compared with that of pureα-Fe2O3.Although the absolute value of the reflection loss was relatively low (–4.3 dB), this study has shed an important reference on the design of next-generation advanced iron oxidebased materials for excellent microwave absorption by tuning the shell-thickness.Meanwhile, based on the “structure-performance”relationship between shell-thickness and microwave absorption performance, the Fe@SiO2,γ-Fe2O3@SiO2, Fe3O4@SiO2, and FeNx@SiO2with excellent absorption performance will also be fabricated/developed from the core-shell structuralα-Fe2O3@SiO2nanoparticles by phase conversion ofα-Fe2O3through heat treatment.

    The core-shell structuralα-Fe2O3@SiO2nanoparticles were synthesized through the St?ber method (Fig.S1 in Supporting information) [47,48].By controlling the mass of tetraethyl orthosilicate(TEOS) during this reaction, the shell-thickness of SiO2was finely regulated in the range of 0-190 nm (Fig.1).Pureα-Fe2O3cores present a uniformly dispersed size with 50 ± 10 nm (Figs.1a and b, Fig.S2 in Supporting information).The lattice space of 0.27 nm corresponds to the (104) lattice plane ofα-Fe2O3(Fig.1b).With increasing the mass of TEOS from 30 to 2000 mg, the shellthickness of SiO2increases from 6 ± 2 nm to more than 190 nm (Figs.1a-t).Specifically, when the TEOS mass is less than 200 mg, theα-Fe2O3@SiO2nanoparticles are granular (Figs.1c-j).Then with increasing TEOS from 200 to 500 mg, the morphology ofα-Fe2O3@SiO2tends to be a sphere with a single core (Figs.1k-n).And further increasing TEOS mass to 2000 mg, the agglomeration ofα-Fe2O3cores would be induced inα-Fe2O3@SiO2particles(Figs.1o-t, Fig.S3 in Supporting information).Based on the relationship between shell-thickness and TEOS mass, we can infer the shell growth rate is 0.091 nm/mg(TEOS),i.e., each 1 mg TEOS can increase the shell-thickness by 0.091 nm (Fig.S4 in Supporting information).This SiO2shell growth rate maybe provides an important data reference for the fine synthesis of other core-shell structural M@SiO2(M = metal oxides, metal particles, carbon materials,etc.)nanomaterials.

    Fig.1.Regulation of shell-thickness in core-shell structural α-Fe2O3@SiO2 nanoparticles: (a, b) α-Fe2O3, (c, d) S-30, (e, f) S-60, (g, h) S-100, (i, j) S-200, (k, l) S-400, (m, n)S-500, (o, p) S-800, (q, r) S-1000, (s, t) S-2000.

    Typically, the structure and components ofα-Fe2O3, S-30, S-500, and S-1000 were characterized in detail (Fig.2).Pristineα-Fe2O3nanoparticle presents a series of X-ray diffraction (XRD)peaks at 24.1°, 33.1°, 35.6°, 40.9°, 49.5°, 54.09°, 57.59°, 62.45°,63.99°, 71.94°, and 75.43°, corresponding to the (012), (104), (110),(113), (024), (116), (018), (214), (300), and (1010) lattice planes(JCPDS No.33-0664) (Fig.2a).These sharp and strong diffraction peaks indicate that the pristineα-Fe2O3nanoparticles have high crystallinity and purity.When the added mass of TEOS was less than 500 mg, the as-prepared samples,i.e., S-30 and S-500, exhibit similar diffraction peaks with pristineα-Fe2O3, and no obvious SiO2characteristic peak appeared due to the amorphous form of SiO2shell.When the TEOS mass was 1000 mg, the amorphous SiO2characteristic peak around 20°~30° began to appear in the corresponding sample,i.e., S-1000.The existence of SiO2in S-500 and S-30 samples could be confirmed by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and elemental mappings (Figs.2b-j, Fig.S5 in Supporting information).For the S-500 sample, FT-IR absorption peaks at 1097, 949, and 789 cm–1were caused by Si-O-Si, Si-OH, and Si-O vibrations from the SiO2shell (Fig.S5 in Supporting information).After coating of the SiO2shell, Fe 2p and Fe 3p peaks in XPS full spectra almost disappeared, but Si 2p and Si 2s appeared (Figs.2b and c).Compared with pristineα-Fe2O3, the Fe 2p3/2, and Fe 2p1/3peaks of S-500 all shifted to higher binding energy byca.0.4 eV in XPS fine spectra,confirming the interaction betweenα-Fe2O3core and SiO2shell(Fig.2d).These results indicate the presence of SiO2-shell layers in S-500 [49,50].In order to further visually observe the core-shell structure, the S-30 sample with thin SiO2layers was selected for elemental mapping characterization (Figs.2e-j).Element mappings demonstrated that the outer shell layers were dominated by Si and O, and the inter cores by Fe and O (Figs.2f-j).

    Fig.2.Structure and components characterization.(a) XRD patterns.(b) XPS full spectra.(c,d) XPS fine spectra of Si 2p and Fe 2p.(e) High-angle annular dark-field (HAADF)image.(f-j) Elemental mappings of Fe, O, Si, Fe + O, and Fe + Si.

    The static magnetic properties of as-preparedα-Fe2O3@SiO2nanoparticles were measured using a vibrating sample magnetometer (VSM).For pureα-Fe2O3, it does not reach saturation magnetization even under a very high applied magnetic field of–80~80 kOe, suggesting its weak ferromagnetic behavior [35,37,51](Fig.S6 in Supporting information).Therefore, theα-Fe2O3@SiO2samples also do not reach saturation magnetization, and only possess narrow hysteresis features (Fig.S7 in Supporting information).Among them, the S-500 sample has a maximum area indicating higher hysteresis loss of energy.The detailed remanent magnetization (Mr) and coercivity(Hc) values of these samples were summarized in Table S1 (Supporting information).With increasing SiO2-shell thickness,MrandHcfirst increase and then decrease.TheMrvalue increases from 0.030 emu/g (for pureα-Fe2O3) to 0.045 emu/g (for S-500), then decreases to 0.022 emu/g (for S-1000).Similarly, theHcvalue increases from 71 Oe to 1100 Oe, then decreases to 458 Oe (Table S1).The first increment resulted from the internal stress on the core generated by the shell, which hindered the rotation of the magnetic domain during the magnetization process [7,52].The subsequent decline was attributed to the fact that quite large amount of non-magnetic SiO2shell layer reduced the content ofα-Fe2O3core.Besides, whether the agglomeration ofα-Fe2O3cores in single particles leads to the deterioration ofHcstill needs further study (Fig.S7 in Supporting information).

    For microwave absorbing materials, the electromagnetic parameters,i.e., relative complex permittivity (?r=?r′ +?r′′) and relative complex permeability (μr=μr′+μr′′), directly influence their microwave absorbing performances.The real parts (?r′ andμr′) represent the storage capability of electric and magnetic energy, and the imaginary parts (?r′′ andμr′′) represent the loss ability of electric and magnetic energy [21,53].Specifically, with increasing thickness of the SiO2shell, the?r′ values of these four samples gradually decreased fromca.5.7 toca.3.5, in the order ofα-Fe2O3>S-30>S-500>S-1000 (Fig.3a).Finally, the?r′value of S-1000 was close to that of bulk SiO2(ca.4.0), due to the ~90 nm thick insulating layer of SiO2[54].However, with the increase of SiO2-shell thickness, the?r′′ values first increased and then decreased (Fig.3b).The corresponding dielectric loss tangent(tanδ?=?r′′/?r′) values also presented a similar evolution, from 0.02 (α-Fe2O3) to 0.08 (S-500), then to 0.06 (S-1000) (Fig.3c).The evolutions of?r′ and tanδ?may be due to the influence of SiO2-shell thicknesses, which was explained in the section for relationships of “structure-performance”.For relative complex permeability, with increasing the SiO2-shell thickness, theμr′values in these four samples ranged from 0.99 to 1.13 (Fig.3d), and theμr′′values presented a gradually decreasing trend from 0.08 to 0.02 (Fig.3e).The corresponding magnetic loss tangent (tanδμ=μr′′/μr′) values gradually decreased from 0.08 (α-Fe2O3) to 0.02 (S-1000), indicating the decrease of magnetic loss capability (Fig.3f).Compared with the electromagnetic parameters,i.e., relative complex permittivity and relative complex permeability, the values of?r′,?r′′ and tanδ?were all higher than those ofμr′,μr′′and tanδμ.This result indicated that the contributions of dielectric loss were more than that of magnetic loss in the microwave absorption process.

    Fig.3.Electromagnetic parameters: (a) ?r′, (b) ?r′′, (c) tan ??, (d) ?r′, (e) μr′′, (f) tan δμ.

    Fig.4.Microwave absorption performances.(a) RL curves of α-Fe2O3, S-30, S-500,and S-1000 under d of 3.0 mm.(b) RL curves of S-500 with different d in the range of 1.0~5.5 mm.

    In general, the dielectric loss of material stems from conduction loss and polarization loss (e.g.ionic polarization, electric polarization, dipolar polarization, and interfacial polarization) [55,56].In our case, the ionic polarization and electron polarization would be excluded, because they generally exist in a much higher frequency region (103~106 GHz) [54].Wave-like shapes of the curves were a typical behavior of dielectric relaxation (Figs.3a-c), which was responsible for intrinsic dipolar polarization of the core structure [55,57].Generally, the insulator SiO2possesses lower conductivity than that of the semiconductorα-Fe2O3.With the increase of SiO2content, the reduced conductivity ofα-Fe2O3@SiO2led to the degradation of?r′ (Fig.3a).According to the equation (?r′′ ≈σ/(2π?0f), whereσis the conductivity,ε0is the permittivity in the free space, andfis the frequency), the?r′′ theoretically should also decrease with the reduced conductivity [3,34].However, the?r′′ of core-shell structuralα-Fe2O3@SiO2nanoparticles (S-30 and S-500)was higher than that of pureα-Fe2O3(Fig.3b).The phenomena may be possibly attributed to the compensation effect from the interfacial polarization, which originates from the charge buildup around the core-shell interface [7,53,55].Therefore, the variations feature of dielectric loss ofα-Fe2O3@SiO2samples came from the dipolar polarization of the core structure, decrease of overall conductivity, and introduction of interfacial polarization.

    Microwave absorption performances ofα-Fe2O3@SiO2nanoparticles can be evaluated by the reflection loss (RL), which is derived from the following formulas [58,59].

    whereZ0is the characteristic impedance of free space,Zinis the input impedance of the microwave absorber,dis the thickness of the absorber,cis the speed of light, andfis the frequency of the microwave.Using the measured electromagnetic parameters in Fig.3, theRLof core-shell structuralα-Fe2O3@SiO2nanoparticles with different shell thicknesses can be calculated from formulas 1and 2.

    To more clearly reflect the influence of SiO2-shell thickness,theRLofα-Fe2O3@SiO2nanoparticles with fixedd(sample thickness) of 3.0 mm were evaluated in Fig.4a.With increasing the SiO2-shell thickness, the minimum value ofRLfirst decreased and then increased (Fig.4a).S-500 sample possessed the strongest microwave absorption with the lowestRLvalue of –4.3 dB.Thus, the microwave absorption performance ofα-Fe2O3@SiO2would be enhanced under proper SiO2-shell thickness.Fig.4b shows the performances of S-500 under different d of 1.0~5.5 mm.Asdwas in the range of 1.0~2.0 mm, theRLdecreased monotonously with the increase of frequency from 1~18 GHz.In the range of 2.5~5.5 mm,each curve presented a sharp or broad peak.Asdwas 3.0 mm, theRLachieved the minimum value of –4.3 dB at 16 GHz, which was superior to that of pureα-Fe2O3(Fig.4b and Fig.S8 in Supporting information).Additionally, it is interesting to note that most of the strong peaks were constrained in 6~11 and 13~17 GHz.This phenomenon may be generated from the wave character of dielectric loss (Figs.3b, c and 4b).

    Fig.5.The “structure-performance” relationships.(a) Schematic of the possible microwave absorbing mechanism.(b) The evolution of the dielectric loss ability with the increase of SiO2-shell thickness.

    Fig.5 illustrates the analysis of “structure-performance” relationships in the core-shell structuralα-Fe2O3@SiO2nanoparticles.Based above results, the microwave absorption performances for theα-Fe2O3@SiO2nanoparticles mainly come from the dielectric loss rather than the magnetic loss.The evolution of dielectric loss is mainly influenced by three factors: dipolar polarization of theα-Fe2O3core, interfacial polarization betweenα-Fe2O3core and SiO2shell, and conductivity loss from theα-Fe2O3core (Fig.5a).The former factor may lead to the wave-like shapes of curves?′,?r′′ and tanδ?, and the others will be conducive for the microwave absorption enhancement.Therefore, the microwave absorption performance ofα-Fe2O3@SiO2can be adjusted by tuning the SiO2-shell thickness, and achieve the best under a proper SiO2-shell thickness (Fig.5b).

    Specifically, for the pureα-Fe2O3nanoparticle, there are dipolar polarization and conductivity loss contributing to the dielectric loss.Although the dipolar polarization interaction and conductivity loss slightly decrease with the slight increase of the SiO2-shell thickness, the appearances of interfacial polarization lead to an enhancement of the overall dielectric loss ability,e.g., the case of S-30(Fig.5b).With the continuous increase of the SiO2-shell thickness,e.g., the case from S-30 to S-500, the contributions of both dipolar polarization and conductivity loss all gradually decrease.But the interfacial polarization continuously increases so that the dielectric loss ability reaches the optimum level at a proper SiO2-shell thickness,i.e., in the case of S-500 (Fig.5b).Further increasing the thickness of SiO2shells,e.g., the case from S-500 to S-1000, the dipolar polarization, interfacial polarization, and conductivity loss all gradually decrease to the minimum,e.g., the case of S-1000.It is due to the mismatched thickness of SiO2insulation layers resulting in that the overall dielectric loss ability presents a decreased trend and unlimitedly approaches to that of pure SiO2nanoparticles (Fig.5b) [54].Therefore, at the proper SiO2-shell thickness of 35 nm, the S-500 sample achieved the strongest microwave absorbing ability.

    In summary, we have synthesized the core-shell structuralα-Fe2O3@SiO2nanoparticles with a constantα-Fe2O3-core size and changeable SiO2-shell thickness to explore the “structureperformance” relationship between shell thickness and microwave absorption performance.The shell thickness increases nearly linearly as the TEOS addition increases, with a slope of about 0.091 nm/mg(TEOS).There is a strong “structure-performance” dependence between microwave absorption performance and SiO2-shell thickness.With increasing the SiO2-shell thickness, the microwave absorption ability first increase and then decrease.This indicates that the microwave absorption performance ofα-Fe2O3@SiO2can be enhanced under proper SiO2-shell thickness.With a proper SiO2-shell thickness of 35 nm, the S-500 sample achieved the strongest microwave absorbing ability with a minimumRLvalue of –4.3 dB under a sample thickness of 3 mm, higher than that of pureα-Fe2O3(–3.8 dB with 2.5 mm).This enhanced microwave absorption performance is mainly derived from dielectric loss including conductivity loss, interfacial polarization, and dipolar polarization.Although the absolute value of the reflection loss was relatively low (–4.3 dB), this study shed an important reference on designing next-generation advanced iron oxide-based materials for microwave absorption by tuning the shell thickness.Meanwhile, based on the “structure-performance” relationship between SiO2-shell thickness and microwave absorption performance, the M@SiO2(M = Fe,γ-Fe2O3, Fe3O4and FeNx) with excellent absorption performance will also be fabricated/developed from the coreshell structuralα-Fe2O3@SiO2nanoparticles by phase conversion ofα-Fe2O3through heat treatment.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.21667019, 22066017, 52001156,and 52000163), the Key Project of the Natural Science Foundation of Jiangxi Province (No.20171ACB20016), the Jiangxi Province Major Academic and Technical Leaders Cultivating Object Program (No.20172BCB22014), the Science and Technology Department of Jiangxi Province (Nos.20181BCB18003, 20181BAB216012,20181ACG70025, CK202002473, and 20192BAB216003), the Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, CSA (No.PCOM201906), and the Key Project of Science and Technology Research of the Jiangxi Provincial Department of Education (Nos.DA201602063, GJJ191044), the Aviation Science Foundation of China (No.2017ZF56020) and the Program B for Outstanding Ph.D.Candidate of Nanjing University(No.202002B076), and the Natural Science Foundation of Henan Province (No.202300410423).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.07.027.

    日本a在线网址| 高清在线国产一区| 白带黄色成豆腐渣| 久久精品国产自在天天线| 嫩草影院精品99| 十八禁人妻一区二区| 亚洲一区高清亚洲精品| 一个人看视频在线观看www免费| 国产一级毛片七仙女欲春2| 黄色女人牲交| 国模一区二区三区四区视频| 亚洲欧美精品综合久久99| 欧美高清成人免费视频www| 熟女电影av网| www日本黄色视频网| 欧美性感艳星| 国产69精品久久久久777片| 少妇的逼水好多| 日本黄大片高清| 黄色女人牲交| 亚洲五月婷婷丁香| 国产av一区在线观看免费| 久久久久国产精品人妻aⅴ院| 人人妻,人人澡人人爽秒播| 九色成人免费人妻av| 高清毛片免费观看视频网站| 国产又黄又爽又无遮挡在线| 一级黄色大片毛片| 色吧在线观看| 日本一二三区视频观看| 精品人妻一区二区三区麻豆 | 国产成人av教育| 国产成人a区在线观看| 麻豆成人av在线观看| 少妇丰满av| 91在线精品国自产拍蜜月| 首页视频小说图片口味搜索| 757午夜福利合集在线观看| 久久人人精品亚洲av| 亚洲av日韩精品久久久久久密| 精品一区二区三区视频在线| 中文字幕高清在线视频| 最好的美女福利视频网| 一夜夜www| 欧美3d第一页| 成年版毛片免费区| 少妇丰满av| 欧美激情在线99| 亚洲第一欧美日韩一区二区三区| 99久久九九国产精品国产免费| 18禁黄网站禁片免费观看直播| 国产精品自产拍在线观看55亚洲| 成年免费大片在线观看| 亚洲,欧美,日韩| 欧美+亚洲+日韩+国产| 九色成人免费人妻av| av女优亚洲男人天堂| 日韩大尺度精品在线看网址| 波多野结衣高清无吗| 亚洲av电影在线进入| 18禁黄网站禁片午夜丰满| 99热精品在线国产| 自拍偷自拍亚洲精品老妇| av在线天堂中文字幕| 欧美色欧美亚洲另类二区| 久久久久久久久中文| 午夜福利高清视频| 亚洲性夜色夜夜综合| 免费在线观看亚洲国产| 天天一区二区日本电影三级| 精品一区二区免费观看| 国产欧美日韩一区二区精品| 91狼人影院| 亚洲成人精品中文字幕电影| 天天躁日日操中文字幕| 国产在线精品亚洲第一网站| 国产午夜福利久久久久久| 亚洲自偷自拍三级| 精品一区二区三区视频在线| 日日摸夜夜添夜夜添av毛片 | 久久精品综合一区二区三区| 欧美3d第一页| h日本视频在线播放| 婷婷六月久久综合丁香| 国产欧美日韩一区二区精品| 久久久久免费精品人妻一区二区| 中文字幕人成人乱码亚洲影| 美女cb高潮喷水在线观看| 久久国产精品人妻蜜桃| 久久精品人妻少妇| 91在线精品国自产拍蜜月| 一卡2卡三卡四卡精品乱码亚洲| 757午夜福利合集在线观看| 热99在线观看视频| 久久九九热精品免费| 亚洲av成人精品一区久久| 精品国产亚洲在线| 亚洲最大成人av| 99久久精品国产亚洲精品| 久久久久免费精品人妻一区二区| 九九久久精品国产亚洲av麻豆| 午夜福利在线观看吧| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美日韩中文字幕国产精品一区二区三区| 免费在线观看成人毛片| 国产伦一二天堂av在线观看| 他把我摸到了高潮在线观看| 一级作爱视频免费观看| 欧美精品啪啪一区二区三区| 免费av毛片视频| 十八禁人妻一区二区| 午夜精品一区二区三区免费看| 精品人妻1区二区| 欧美性猛交╳xxx乱大交人| 又爽又黄无遮挡网站| 又黄又爽又免费观看的视频| 国产高清视频在线观看网站| 国产中年淑女户外野战色| 在线观看舔阴道视频| 18禁黄网站禁片免费观看直播| 嫩草影院入口| 亚洲av成人精品一区久久| 日韩人妻高清精品专区| 久久久久久久精品吃奶| 国产v大片淫在线免费观看| 国产精品永久免费网站| 最近最新中文字幕大全电影3| av在线老鸭窝| 亚洲,欧美,日韩| 亚洲经典国产精华液单 | 中亚洲国语对白在线视频| 最近在线观看免费完整版| 桃色一区二区三区在线观看| 性欧美人与动物交配| 久久精品国产亚洲av天美| 久久久久久久久中文| 少妇高潮的动态图| 大型黄色视频在线免费观看| 91av网一区二区| 亚洲av电影在线进入| 欧美中文日本在线观看视频| 99久久九九国产精品国产免费| 国产精品,欧美在线| av女优亚洲男人天堂| 在线观看舔阴道视频| 男人舔女人下体高潮全视频| 亚洲人成电影免费在线| 欧美不卡视频在线免费观看| 久久久成人免费电影| 亚洲成av人片免费观看| 特级一级黄色大片| 亚洲综合色惰| 中文字幕精品亚洲无线码一区| 日本熟妇午夜| 一二三四社区在线视频社区8| 三级毛片av免费| 熟妇人妻久久中文字幕3abv| 欧美黑人欧美精品刺激| 97超级碰碰碰精品色视频在线观看| 日韩国内少妇激情av| 黄色女人牲交| 桃色一区二区三区在线观看| 日本黄色视频三级网站网址| 国内毛片毛片毛片毛片毛片| 国产在视频线在精品| 亚洲成人久久性| 听说在线观看完整版免费高清| 成人亚洲精品av一区二区| 午夜两性在线视频| 一夜夜www| 久久人妻av系列| 国产精品久久久久久亚洲av鲁大| 久久久久国内视频| 内射极品少妇av片p| 精品一区二区免费观看| 日本黄色片子视频| 成年女人看的毛片在线观看| 日本免费a在线| 尤物成人国产欧美一区二区三区| 午夜免费成人在线视频| 久久九九热精品免费| 欧美日本视频| 欧美精品国产亚洲| 麻豆av噜噜一区二区三区| 免费av不卡在线播放| 九色成人免费人妻av| 亚洲第一欧美日韩一区二区三区| 12—13女人毛片做爰片一| 欧美一区二区亚洲| 精品久久久久久久久久免费视频| 深夜a级毛片| 日韩欧美精品免费久久 | 搡老妇女老女人老熟妇| 啦啦啦韩国在线观看视频| 深夜a级毛片| 午夜免费激情av| 久久久久久久久中文| 国产主播在线观看一区二区| 亚洲人成电影免费在线| 国产老妇女一区| 久久久久久大精品| 中文在线观看免费www的网站| 国内少妇人妻偷人精品xxx网站| 51午夜福利影视在线观看| av在线老鸭窝| 男女下面进入的视频免费午夜| 精品欧美国产一区二区三| 91狼人影院| 免费电影在线观看免费观看| 成熟少妇高潮喷水视频| 国产精品久久久久久亚洲av鲁大| 亚洲最大成人手机在线| h日本视频在线播放| 久久精品综合一区二区三区| 国产色爽女视频免费观看| 99国产极品粉嫩在线观看| 中国美女看黄片| 色综合婷婷激情| 他把我摸到了高潮在线观看| aaaaa片日本免费| .国产精品久久| 国产精品日韩av在线免费观看| 人妻久久中文字幕网| 亚洲成人久久性| 亚洲欧美日韩卡通动漫| 日韩欧美在线乱码| 精品午夜福利在线看| 性欧美人与动物交配| 精品一区二区三区视频在线观看免费| 老鸭窝网址在线观看| 欧美高清成人免费视频www| 国产欧美日韩一区二区三| 热99re8久久精品国产| 婷婷亚洲欧美| 欧美性感艳星| 真人做人爱边吃奶动态| 日韩欧美三级三区| 别揉我奶头 嗯啊视频| 神马国产精品三级电影在线观看| 国产欧美日韩一区二区精品| 九九在线视频观看精品| 搡老妇女老女人老熟妇| 在线播放无遮挡| 丰满人妻一区二区三区视频av| 欧美丝袜亚洲另类 | 国产私拍福利视频在线观看| 色av中文字幕| 久久人人精品亚洲av| 男人和女人高潮做爰伦理| 特级一级黄色大片| 舔av片在线| 国产在线精品亚洲第一网站| 国内揄拍国产精品人妻在线| 国产69精品久久久久777片| 国产一区二区三区视频了| 国产一区二区三区在线臀色熟女| 91久久精品国产一区二区成人| 国产成年人精品一区二区| 午夜亚洲福利在线播放| 99久久精品国产亚洲精品| av天堂中文字幕网| 久久亚洲精品不卡| 久久九九热精品免费| 国产av麻豆久久久久久久| 深夜a级毛片| 性色avwww在线观看| 啦啦啦韩国在线观看视频| 日本与韩国留学比较| 深爱激情五月婷婷| 免费黄网站久久成人精品 | 亚洲国产欧美人成| 日本黄色片子视频| av天堂中文字幕网| 国产亚洲欧美在线一区二区| 成年女人毛片免费观看观看9| 国产白丝娇喘喷水9色精品| 高清日韩中文字幕在线| 午夜免费激情av| 国产aⅴ精品一区二区三区波| 国产免费男女视频| 在线观看一区二区三区| 嫁个100分男人电影在线观看| 99热精品在线国产| av在线观看视频网站免费| а√天堂www在线а√下载| 免费黄网站久久成人精品 | 在线观看美女被高潮喷水网站 | netflix在线观看网站| 国产三级在线视频| 免费看美女性在线毛片视频| 99热这里只有是精品在线观看 | 最近视频中文字幕2019在线8| 国产视频内射| av福利片在线观看| www.色视频.com| 国模一区二区三区四区视频| 老女人水多毛片| 亚洲欧美日韩东京热| 久久久久亚洲av毛片大全| 欧美日韩中文字幕国产精品一区二区三区| 国产成人av教育| 国产精品亚洲美女久久久| 亚洲av成人不卡在线观看播放网| 长腿黑丝高跟| 国产中年淑女户外野战色| 搡老熟女国产l中国老女人| 欧美日本亚洲视频在线播放| 国产精品爽爽va在线观看网站| 亚洲欧美激情综合另类| 国内精品久久久久精免费| 激情在线观看视频在线高清| 他把我摸到了高潮在线观看| 久9热在线精品视频| 三级男女做爰猛烈吃奶摸视频| 亚洲av一区综合| 看片在线看免费视频| 欧美黄色片欧美黄色片| 国产色爽女视频免费观看| 九九久久精品国产亚洲av麻豆| 特大巨黑吊av在线直播| 97人妻精品一区二区三区麻豆| 免费在线观看亚洲国产| 婷婷精品国产亚洲av在线| 简卡轻食公司| 99久久久亚洲精品蜜臀av| 国产成人影院久久av| 亚洲经典国产精华液单 | 久久精品91蜜桃| 国产精品久久视频播放| 欧美最新免费一区二区三区 | 麻豆一二三区av精品| 亚洲自偷自拍三级| 国产色婷婷99| 国产欧美日韩精品亚洲av| 久久国产精品人妻蜜桃| 美女高潮喷水抽搐中文字幕| 又黄又爽又刺激的免费视频.| 久久这里只有精品中国| 欧美高清性xxxxhd video| av中文乱码字幕在线| 中国美女看黄片| 国产精品人妻久久久久久| av国产免费在线观看| 午夜福利在线观看吧| 精品一区二区三区av网在线观看| 久久久久久九九精品二区国产| 亚洲国产欧美人成| 成人亚洲精品av一区二区| 亚洲一区二区三区色噜噜| 亚洲狠狠婷婷综合久久图片| 老司机午夜福利在线观看视频| 久久久久久久久久成人| 亚洲美女视频黄频| 69av精品久久久久久| 中出人妻视频一区二区| 国产毛片a区久久久久| 精华霜和精华液先用哪个| 日韩av在线大香蕉| 直男gayav资源| 1000部很黄的大片| 宅男免费午夜| 久99久视频精品免费| 窝窝影院91人妻| 亚洲国产精品sss在线观看| 成年人黄色毛片网站| 中文亚洲av片在线观看爽| 亚洲精华国产精华精| 国产黄片美女视频| 亚洲精品久久国产高清桃花| 变态另类成人亚洲欧美熟女| 高清毛片免费观看视频网站| 国内精品美女久久久久久| 一本一本综合久久| 日本免费一区二区三区高清不卡| 亚洲人与动物交配视频| 国内少妇人妻偷人精品xxx网站| 午夜精品久久久久久毛片777| 成人av一区二区三区在线看| 久99久视频精品免费| 国产爱豆传媒在线观看| 国产中年淑女户外野战色| 欧美又色又爽又黄视频| 久久久久性生活片| 亚洲国产精品999在线| 精品无人区乱码1区二区| 国产乱人视频| 亚洲人成伊人成综合网2020| 色在线成人网| 中文字幕免费在线视频6| 3wmmmm亚洲av在线观看| www.熟女人妻精品国产| 在线免费观看的www视频| 日本一本二区三区精品| 麻豆国产97在线/欧美| 国产欧美日韩精品一区二区| 亚洲无线在线观看| 国产精品99久久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产精品合色在线| 欧美xxxx黑人xx丫x性爽| 亚洲专区国产一区二区| 午夜精品在线福利| 国产爱豆传媒在线观看| 久久99热6这里只有精品| 国产午夜精品久久久久久一区二区三区 | 久久久久久久久久成人| а√天堂www在线а√下载| 婷婷亚洲欧美| 嫁个100分男人电影在线观看| 亚洲中文字幕一区二区三区有码在线看| 午夜精品在线福利| 日韩精品青青久久久久久| 在线看三级毛片| 日韩成人在线观看一区二区三区| 免费黄网站久久成人精品 | 3wmmmm亚洲av在线观看| 久久伊人香网站| 精品一区二区免费观看| 国产色婷婷99| 中文字幕熟女人妻在线| 国内精品一区二区在线观看| 亚洲五月天丁香| 在线a可以看的网站| 俺也久久电影网| av在线蜜桃| 国产人妻一区二区三区在| 久久欧美精品欧美久久欧美| 99久国产av精品| 婷婷六月久久综合丁香| 夜夜躁狠狠躁天天躁| 成年女人永久免费观看视频| 久久久久久久久久成人| 色精品久久人妻99蜜桃| 国产精品一区二区性色av| 精品人妻熟女av久视频| 色在线成人网| 一卡2卡三卡四卡精品乱码亚洲| 国产免费av片在线观看野外av| 又黄又爽又刺激的免费视频.| 亚洲内射少妇av| 在线播放无遮挡| 狠狠狠狠99中文字幕| 亚洲专区国产一区二区| 久久久国产成人免费| 97碰自拍视频| 亚洲第一欧美日韩一区二区三区| 国产精品久久视频播放| 亚洲中文字幕一区二区三区有码在线看| 久久午夜亚洲精品久久| 国产精品久久久久久亚洲av鲁大| 欧美成人免费av一区二区三区| 久久精品国产自在天天线| 久久久久精品国产欧美久久久| 男女床上黄色一级片免费看| 欧美高清成人免费视频www| 男女之事视频高清在线观看| 久久国产精品影院| 亚洲人成电影免费在线| 少妇人妻一区二区三区视频| 精品人妻一区二区三区麻豆 | 亚洲 欧美 日韩 在线 免费| 无人区码免费观看不卡| 午夜福利欧美成人| 精品久久久久久久久久免费视频| 综合色av麻豆| 欧美不卡视频在线免费观看| 亚洲av免费高清在线观看| 日韩精品青青久久久久久| 中出人妻视频一区二区| 丰满人妻一区二区三区视频av| 日日摸夜夜添夜夜添小说| 亚洲av一区综合| .国产精品久久| 久久久国产成人免费| 日本与韩国留学比较| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av成人av| 国产熟女xx| 亚洲黑人精品在线| 国产午夜福利久久久久久| 美女 人体艺术 gogo| 日韩中字成人| 久久久久久久亚洲中文字幕 | 9191精品国产免费久久| 老鸭窝网址在线观看| 亚洲一区二区三区色噜噜| 亚洲成av人片免费观看| 2021天堂中文幕一二区在线观| 亚洲美女搞黄在线观看 | 久久精品夜夜夜夜夜久久蜜豆| 国产高清三级在线| 露出奶头的视频| 在线十欧美十亚洲十日本专区| 18美女黄网站色大片免费观看| 一区二区三区高清视频在线| 性欧美人与动物交配| 亚洲av.av天堂| 国产激情偷乱视频一区二区| 日本a在线网址| 一区二区三区激情视频| aaaaa片日本免费| 久久亚洲精品不卡| 丁香六月欧美| 久久久久久久精品吃奶| 亚洲成人久久性| 又爽又黄无遮挡网站| 久久精品国产清高在天天线| 18+在线观看网站| 久久亚洲真实| 在线观看av片永久免费下载| 亚洲欧美精品综合久久99| 久久久久久久久久黄片| 国产午夜精品论理片| 18美女黄网站色大片免费观看| 欧美一区二区精品小视频在线| 久久草成人影院| 久久久久久久久久黄片| 国产伦一二天堂av在线观看| 啪啪无遮挡十八禁网站| 中文亚洲av片在线观看爽| 老司机午夜十八禁免费视频| 黄色女人牲交| 午夜免费男女啪啪视频观看 | 久久久精品欧美日韩精品| 亚洲经典国产精华液单 | 国产一区二区在线观看日韩| 人妻丰满熟妇av一区二区三区| 欧美性猛交黑人性爽| 国产白丝娇喘喷水9色精品| 精品熟女少妇八av免费久了| 最新中文字幕久久久久| 免费一级毛片在线播放高清视频| 亚洲黑人精品在线| 在线观看av片永久免费下载| 亚洲男人的天堂狠狠| 色哟哟·www| 少妇高潮的动态图| 亚洲成人久久爱视频| 最新中文字幕久久久久| 天堂av国产一区二区熟女人妻| 一个人观看的视频www高清免费观看| 国产免费一级a男人的天堂| 久久久国产成人精品二区| 88av欧美| 国产探花极品一区二区| 欧美色视频一区免费| www日本黄色视频网| 脱女人内裤的视频| 亚洲欧美日韩卡通动漫| 午夜福利高清视频| 亚洲男人的天堂狠狠| 国产精品三级大全| 波野结衣二区三区在线| 三级毛片av免费| 丰满的人妻完整版| 搡老熟女国产l中国老女人| 桃红色精品国产亚洲av| 成人三级黄色视频| 脱女人内裤的视频| 久久亚洲真实| 亚洲精品在线观看二区| 亚洲天堂国产精品一区在线| 免费看美女性在线毛片视频| 不卡一级毛片| 一卡2卡三卡四卡精品乱码亚洲| 国产三级黄色录像| 黄色日韩在线| 很黄的视频免费| 免费电影在线观看免费观看| 欧美+日韩+精品| 国产亚洲精品久久久com| 色在线成人网| 免费观看精品视频网站| 久久亚洲真实| av在线观看视频网站免费| 日本一本二区三区精品| 岛国在线免费视频观看| 精品国产亚洲在线| 色综合欧美亚洲国产小说| 久久久久久国产a免费观看| 在线a可以看的网站| 麻豆av噜噜一区二区三区| 亚洲熟妇中文字幕五十中出| 白带黄色成豆腐渣| aaaaa片日本免费| 亚洲精品色激情综合| 亚洲欧美日韩东京热| 精品人妻熟女av久视频| 国产欧美日韩一区二区三| 久久久久久久久久成人| 午夜精品久久久久久毛片777| 久久精品国产亚洲av香蕉五月| 中文资源天堂在线| 真人一进一出gif抽搐免费| 久久精品夜夜夜夜夜久久蜜豆| 亚洲午夜理论影院| 欧美乱妇无乱码| av欧美777| 日韩欧美在线乱码| 成年人黄色毛片网站| 午夜a级毛片| 欧美日本视频| 国产精品嫩草影院av在线观看 | 五月玫瑰六月丁香| 99久久九九国产精品国产免费| 精品无人区乱码1区二区| 美女高潮喷水抽搐中文字幕| 少妇高潮的动态图| 欧美色欧美亚洲另类二区| 一二三四社区在线视频社区8| 国产黄片美女视频| 亚洲一区高清亚洲精品| 黄色女人牲交| av专区在线播放| 搡老妇女老女人老熟妇|