• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sea-urchin-like ReS2 nanosheets with charge edge-collection effect as a novel cocatalyst for high-efficiency photocatalytic H2 evolution

    2022-06-18 03:00:46BoLinBownJingngChnYoZhouJiongZhouXioqingYnChoXuXioLuoQingLiuJinyongWngRnjiBinGuiongYngFuiLiu
    Chinese Chemical Letters 2022年2期

    Bo Lin, Bown M, Jingng Chn, Yo Zhou, Jiong Zhou, Xioqing Yn,Cho Xu, Xio Luo, Qing Liu, Jinyong Wng, Rnji Bin, Guiong Yng,*, Fui Liu,*

    a School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

    b School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

    c Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China

    d XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China

    e State Centre for International Cooperation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering,Zhengzhou University, Zhengzhou 450001, China

    ABSTRACT The recombination of charge carriers arriving from the random charge movement in semiconductor photocatalysts greatly limits the practical application of solar-driven H2 evolution.The design of photocatalytic systems with spatially oriented charge-transfer is a promising route to achieve high chargeseparation efficiency for photocatalysts.Herein, novel sea-urchin-like ReS2 nanosheet/TiO2 nanoparticle heterojunctions (SURTHs) are constructed.The unique sea-urchin-like structure endows the ReS2 cocatalyst with an unusual charge edge-collection effect, which leads to a significant acceleration of charge separation and transfer, as evidenced by the well-designed selective photodeposition of Pt quantum dots in SURTHs.The markedly improved charge transfer capacity contributes to a high photocatalytic H2 evolution rate of 3.71 mmol h-1 g-1 for SURTHs (an apparent quantum efficiency (AQE) of 16.09%), up to 231.9 times by contrast with that of P25 TiO2.This work would provide a new platform for designing the high-efficiency cocatalyst/photocatalyst system with excellent charge transfer capacity.

    Keywords:Sea-urchin-like ReS2 nanosheets Charge edge-collection effect 2D planar edges/tips Charge transfer Photocatalytic H2 evolution

    Solar-driven H2generation from water is an attractive route to deal with the global energy crisis [1–3], yet the high recombination rate of charge carriers arriving from the random charge movement in semiconductor photocatalysts greatly limits its practical application [4–6].One effective approach to break this bottleneck is the use of cocatalysts, which can provide massive adsorption and reaction active sites for water molecules, facilitate the separation and migration of charges, thus improving the overall photocatalytic quantum efficiency [7,8].In terms of the choice of cocatalysts, noble metals represented by Pt, Pd, and Au have been considered to be the highly-active cocatalysts for photocatalytic H2generation[9].However, the high cost and scarcity of noble-metal cocatalysts limit their future applications.Hence, it is necessary to develop the alternative cocatalysts with high activity and low cost.Recently,transition metal dichalcogenides (TMDs) have aroused keen interests owing to their outstanding optical and electronic properties,high aspect ratio, and low cost [10–12].In the community of TMDs,a new member of ReS2has many unique advantages, including large surface area, highly active basal-plane sites, and structural anisotropy, which enable it to be an ideal cocatalyst for photocatalytic H2evolution [13,14].

    Except for the types of cocatalysts, the morphology and structure of cocatalysts is another important factor to influence the photocatalytic performance for H2evolution.The common morphologies of cocatalysts include nanoparticles, nanospheres, flakes,clusters, nanotubes, and quantum dots,etc.The loading of cocatalysts with the specific morphologies presented above can improve the charge transfer efficiency and boost the photocatalytic H2generation activity for semiconductor photocatalysts [15–20].Apart from the common structures, inspired by nature, the mimic nature-like nanostructures have been introduced into nanomaterials to achieve high-efficiency charge separation and migration in photocatalytic H2evolution, such as fish-scale-like nanostructure,butterfly-wing-like nanostructure, and ginkgo-leaf-like nanostructure [6,21,22].Among diverse nature-like nanostructures, the seaurchin-like sheet nanostructure is an interesting and superexcellent structure for cocatalysts.As shown in Scheme 1a, the numerous minor open-up sheets with sharp edges are similar to the spines of a sea urchin, which can not only provide plenty of adsorption and reaction active sites to speed up the H2evolution reaction, but also induce a fast charge transfer and collection at the tips of minor sheets like the lightning rod effect [15].Therefore, if well developed, the construction of sea-urchin-like structured cocatalysts with the charge edge-collection effect would open a new window for the design of cocatalyst/photocatalyst system with high photocatalytic H2evolution performance (Scheme 1b).

    Scheme 1.(a) Schematic of sea-urchin-like sheet nanostructure.(b) Schematic of the sea-urchin-like cocatalyst with the charge edge-collection effect loaded on the photocatalyst for H2 evolution.

    Herein, we construct novel sea-urchin-like ReS2nanosheet/TiO2nanoparticle heterojunctions (shorthand for SURTHs) by a simple one-step hydrothermal method.By contrast with the bulk ReS2cocatalyst constituted by massive agglomerated nanoparticles or nanosheets, the sea-urchin-like ReS2cocatalyst displays the unusual charge edge-collection effect, thus leading to a significantly accelerated charge transfer and a high photocatalytic H2evolution rate of 3.71 mmol h-1g-1(an apparent quantum efficiency (AQE)of 16.09%) for SURTHs, up to 231.9 times in comparison with that of P25 TiO2.

    The overall formation procedure of SURTHs is illustrated in Fig.1a.Initially, P25 TiO2nanoparticles were dispersed into an aqueous solution containing NH4ReO4and TAA, where the ReO4-group absorbed on the surface of TiO2nanoparticles.After the hydrothermal treatment at 250 °C, the released S2-from TAA reacted with the ReO4-group to generate sea-urchin-like ReS2nanosheets, which were anchored on the surface of TiO2nanoparticles to form SURTHs.The unique structure of SURTHs was investigated by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and transmission electron microscopy (TEM).As displayed in Figs.1b–e, 3D open-up interconnecting ReS2sheets with sharp edges like a sea urchin(a size of ~70 nm) were uniformly loaded on the surface of P25 TiO2nanoparticles to form the binary heterojunction.The highresolution TEM (HRTEM) is performed to further investigate the interface details of sea-urchin-like ReS2nanosheet/TiO2nanoparticle heterojunctions.As shown in Fig.1f, the adjacent latticefringe spacings of 0.61 and 0.325 nm belong to the (001) reflection plane of triclinic ReS2and the (110) reflection plane of rutile TiO2, respectively.As shown in Fig.1g, the adjacent latticefringe spacings of 0.61 and 0.352 nm are attributed to the (001)reflection plane of triclinic ReS2and the (101) reflection plane of anatase TiO2, respectively.The results presented above indicate the successfully construction of sea-urchin-like ReS2nanosheet/TiO2nanoparticle heterojunctions.With the presence of the above heterojunction interface, the light-induced charges can transfer from TiO2to sea-urchin-like ReS2nanosheets, then rapidly move to 2D planar edges/tips of urchin-like ReS2nanosheets due to the charge edge-collection effect, thus accelerating the separation and transfer of charges significantly.This conclusion is strongly supported by the elemental mappings (Fig.1h) and the energy-dispersive X-ray(EDX) images (Fig.S1 in Supporting information), where SURTHs exhibits the uniform spatial distribution of the elements of O, Ti,Re, and S.

    Fig.1.(a) The formation procedure of SURTHs.(b, c) HAADF-STEM, (d, e) TEM and(f, g) HRTEM images of SURTHs.(h) HAADF-STEM and corresponding mapping images of O, Ti, Re and S.

    Fig.2a shows the X-ray diffraction (XRD) patterns of P25 TiO2(shorthand for TiO2) and SURTHs.Concerning TiO2, all XRD diffraction peaks are assigned to the anatase and rutile crystal structures of TiO2(JCPDS No.21-1272 and No.21–1276) [23].For the XRD curve of SURTHs, a minor and broad peak at 14.4° corresponds to the (001) crystal plane of triclinic ReS2(JCPDS No.27-0502)[24,25], and all other XRD peaks are attributed to the anatase and rutile crystal structures of TiO2, strongly suggesting the formation of ReS2/TiO2heterojunctions.To further study the surface chemical state of SURTHs, the X-ray photoelectron spectroscopy (XPS)was performed.As shown in Fig.2b, the peaks in the Re 4f region at 42.4 and 44.8 eV belong to Re 4f7/2and Re 4f5/2in ReS2, respectively [13,14,26].The peaks in the S 2p region (Fig.2c) at 163.0 and 164.4 eV are attributed to S 2p3/2and S 2p1/2in ReS2, respectively[14,27,28].The peaks in the Ti 2p region (Fig.2d) at 459.0 and 464.7 eV are ascribed to Ti 2p3/2and Ti 2p1/2in TiO2, respectively[29,30].The peaks in the O 1s region (Fig.2d) indicate the presence of Ti–O bond at 530.0 eV and O–H bond at 531.5 eV [31,32].The XPS results presented above strongly indicate the formation of urchin-like ReS2nanosheets with the charge edge-collection effect on the surface of TiO2nanoparticles.

    Fig.2.(a) XRD patterns of TiO2 and SURTHs.XPS spectra of SURTHs in the regions of (b) Re 4f, (c) S 2p, (d) Ti 2p and O 1s.

    Time-dependent photocatalytic hydrogen production experiments were performed using triethanolamine as the hole scavenger under simulated solar-light irradiation.As exhibited in Fig.3a, pure ReS2exhibits the negligible photocatalytic hydrogen evolution rate (HER), while TiO2shows a far low HER of 0.016 mmol h-1g-1, indicative of their inferior charge-separation capacity.With the construction of the ReS2/TiO2heterojunctions,the sample of bulk ReS2/TiO2nanoparticle heterojunctions (bulk ReS2/TiO2, Fig.3b and Fig.S2 in Supporting information) shows sharply increased HER of 0.83 mmol h-1g-1, indicative of the advantages of the heterojunction interface.As expected, SURTHs with the optimal cocatalyst-loading amount displays a remarkable performance with a HER of 3.71 mmol h-1g-1(Fig.3b and Fig.S3 in Supporting information), up to 4.47 and 231.9 times by contrast with that of bulk ReS2/TiO2and TiO2, respectively, suggesting the high photocatalytic activity induced by the sea-urchin-like structured ReS2cocatalyst with charge edge-collection effect.The AQE of SURTHs was estimated to be 16.09% at 365 ± 10 nm (Fig.3c),far outperforming the overwhelming majority of TiO2-based photocatalysts as previously reported [33-40].The stability of hydrogen production for SURTHs was investigated.As shown in Fig.3d,SURTHs displays a negligible photoactivity loss after 5 consecutive cycling tests, suggesting its excellent stability, as evidenced by the XRD patterns in Fig.S4 (Supporting information), where the XRD patterns of fresh SURTHs and recycled SURTHs show no obvious differences.Additionally, HAADF-STEM, TEM and HRTEM images of the SURTHs sample after the 5th reaction (Fig.S5 in Supporting information) further support the above results, where the recycled SURTHs remains the relatively intact structure of sea-urchin-like ReS2nanosheet/TiO2nanoparticle heterojunctions similarly to the fresh SURTHs in Figs.1b-g.

    Fig.3.(a) Time-dependent photocatalytic hydrogen production of TiO2 and ReS2 under simulated solar-light irradiation.(b) Time-dependent photocatalytic hydrogen production of Bulk ReS2/TiO2 and SURTHs under simulated solar-light irradiation.(c) Wavelength-dependent AQE at 365 nm for photocatalytic hydrogen production over SURTHs in this work by contrast with the previously reported work of TiO2-based photocatalysts.(d) Cycling tests for hydrogen production over SURTHs under simulated solar-light irradiation.

    To reveal the dominating factors regarding the outstanding photocatalytic H2evolution performance of sea-urchin-like ReS2nanosheet/TiO2nanoparticle heterojunctions, the optical properties, textural properties and photoelectronic properties of SURTHs were investigated.In the UV–vis diffuse reflectance spectra (DRS,Fig.S6a in Supporting information), TiO2displays an absorption in the ultraviolet region with a calculated band-gap energy (Eg) of 3.19 eV.Notably, SURTHs shows a dramatically enhanced visiblelight absorption than TiO2due to the effect of ReS2.The ultraviolet photoelectron spectroscopy (UPS) was carried out to investigate the details of energy-band structure of TiO2.As exhibited in Fig.S6b (Supporting information), according to the UPS excitation energy of 21.22 eV, the valence band energy (Ev) of TiO2concerning the vacuum level is calculated to be -7.27 eV, and the conduction band energy (Ec) of TiO2is calculated to be -4.08 eV based on itsEgvalue.It is noted that 0 Vversusthe normal hydrogen electrode (NHE) equals to -4.44 eVversusthe vacuum level, therefore, theEvandEcof TiO2regarding the NHE are estimated to be 2.83 V and -0.36 V, respectively.Moreover, the N2adsorptiondesorption isotherms of TiO2and SURTHs were measured to acquire the texture information.As showed in Fig.S6c (Supporting information), both of TiO2and SURTHs display the typical IV adsorption-desorption isotherm of N2with a H3-type hysteresis loop, suggesting the existence of mesopores [41–43].This result is well supported by the pore-size distributions in Fig.S6d (Supporting information), where both of TiO2and SURTHs exhibit a pore-size distribution in the region of 2–100 nm, suggesting the coexistence of mesopores and macropores.The specific surface areas and pore volumes of TiO2and SURTHs are displayed in Table S1 (Supporting information).It can be found that SURTHs exhibits slightly increased specific surface area (35.78 m2/g) and pore volume (0.25 cm3/g) by contrast with those of TiO2(30.09 m2/g and 0.14 cm3/g, respectively), which can be attributed to the introduction of sea-urchin-like ReS2nanosheets.

    To investigate the separation and migration capacity of charges,transient photocurrent responses of TiO2and SURTHs were detected.As shown in Fig.4a, SURTHs displays a high photocurrent density of 1.45 μA/cm2, up to 2.07 times higher than TiO2(0.70 μA/cm2), indicative of significantly accelerated separation and transfer of charges [44–48].This result is proved by the electrochemical impedance spectroscopy (EIS).As displayed in Fig.4b,SURTHs exhibits a far smaller radius of Nyquist circle by contrast with TiO2, suggestive of the advantages of the unique ReS2cocatalyst with the sea-urchin-like structure on accelerating charge transfer [49–51].Photoluminescence (PL) spectra (Fig.4c) further support the results presented above, where SURTHs displays a lower emission peak intensity by contrast with TiO2, indicating the promotion of charge separation [52–55].Additionally, the timeresolved fluorescence decay spectrum is powerful technique for probing the charge-transfer dynamics.It can be found in Fig.4d that both of fluorescence spectra for TiO2and SURTHs display an exponential intensity decay.The relative fluorescence lifetimes of charge carriers were obtained by fitting the kinetics with twoexponential decay functions.As displayed in Table S2 (Supporting information), the average fluorescence lifetime of charge carriers significantly increases from TiO2(3.64 ns) to SURTHs (6.67 ns),strongly suggesting that the sea-urchin-like ReS2nanosheets with the charge edge-collection effect can facilitate the charge transfer and prolong the radiative lifetime of charge carriers for SURTHs[56–60].Based on all the results presented in Fig.S6 (Supporting information) and Fig.4, we can draw a conclusion that the excellent performance for photocatalytic H2evolution of SURTHs is mainly attributed to the significantly improved charge separation and transfer capacity induced by the unusual cocatalyst of seaurchin-like ReS2nanosheets with the charge edge-collection effect.

    Fig.4.(a) Transient photocurrent responses of TiO2 and SURTHs.(b) EIS Nyquist plots of TiO2 and SURTHs.The inset in (b) displays the impedance equivalent circuit.(c) PL spectra of TiO2 and SURTHs.(d) Time-resolved fluorescence decay spectra of TiO2 and SURTHs.

    In order to shed light on the charge edge-collection effect of sea-urchin-like ReS2nanosheets in SURTHs, we elaborated the photodeposited experiments of Pt quantum dots on the surface of SURTHs with H2PtCl6and triethanolamine as the precursor and the hole scavenger, respectively.It is noteworthy that the photoexcited electrons arriving from TiO2in SURTHs can reduce the [PtCl6]2–to Pt quantum dots under simulated solar-light irradiation, hence,we can almost determine the collection location of photoexcited electrons in SURTHs through investigating the spatial distribution of photodeposited Pt quantum dots.As shown in Figs.5a and d,the HAADF-STEM images reveal that lots of Pt quantum dots like bright spots are mainly decorated on the edges/tips of sea-urchinlike ReS2nanosheets in SURTHs.The TEM images in Figs.5b and c well evidence the results of the HAADF-STEM images, where Pt quantum dots are preferentially loaded on the edges/tips of seaurchin-like ReS2nanosheets rather than randomly distributed on the whole surface of SURTHs.Furthermore, the HRTEM images in Figs.5e and f further indicate that numerous Pt quantum dots with a size of ~4 nm were collected at the sharp edges/tips of seaurchin-like ReS2nanosheets, strongly confirming the charge edgecollection effect of sea-urchin-like ReS2nanosheets in SURTHs.Additionally, the mapping images (Fig.5g) and the EDX image (Fig.S7 in Supporting information) support the results mentioned above,where the element of Pt exhibits the similar spatial distribution with the elements of S and Re in the sample of Pt quantum dots/SURTHs, again evidencing the charge edge-collection effect.

    Fig.5.(a, d) HAADF-STEM images of Pt quantum dots/SURTHs.(b, c) TEM images of Pt quantum dots/SURTHs.(e, f) HRTEM images of Pt quantum dots/SURTHs.The images of (e) and (f) correspond to the areas of the red dotted circles in (b) and(c), respectively.(g) HAADF-STEM and corresponding mapping images of S, Re, Pt,Ti and O.

    According to all the results mentioned above, an underlying mechanism for the improvement of photocatalytic H2evolution activity has been proposed.Under the simulated solar-light irradiation (λ≥300 nm), TiO2in SURTHs can be excited to generate photoexcited electrons and holes (Figs.S6a and b) [61].The photoexcited holes are consumed by the hole-scavenger, while the photoexcited electrons transfer to the ReS2cocatalyst and reduce the H+in aqueous solution to generate H2[62,63].Notably, the seaurchin-like ReS2nanosheet with the charge edge-collection effect is responsible for the excellent photocatalytic activity of SURTHs.As illustrated in the above well-designed experiment of selectively photodeposited Pt quantum dots in SURTHs (Fig.5), the overall sea-urchin-like ReS2nanosheets are consisted of numerous openup interconnecting minor sheets with sharp edges like the spines of a sea urchin (Scheme 1), which can enable the photoexcited electrons arrived at the ReS2cocatalyst to transfer towards the sharp edges/tips rapidly, similarly to the working principle of the lightning rods, thus achieving a significantly acceleration of charge transfer (Fig.4) and a high HER performance of 3.71 mmol h–1g–1(an AQE of 16.09%) for SURTHs.

    In summary, novel sea-urchin-like ReS2nanosheet/TiO2nanoparticle heterojunctions were successfully synthesized using a simple one-step hydrothermal method.Through the well-designed experiment regarding the selective photodeposition of Pt quantum dots, we unravel the unique charge edge-collection effect in the cocatalyst of sea-urchin-like ReS2nanosheets.Due to the charge edge-collection effect of sea-urchin-like ReS2nanosheets, the charge separation and transfer of SURTHs is accelerated significantly, thus yielding a high photocatalytic H2evolution rate of 3.71 mmol h–1g–1(an AQE of 16.09%), up to 231.9 times by contrast with that of P25 TiO2.

    Declaration of competing interest

    The authors declare no conflict of competing interest.

    Acknowledgments

    This work was funded by the China Postdoctoral Science Foundation (pre-station, No.2019TQ0050), Applied Basic Research Program of Sichuan Province (No.2020YJ0068), the China Postdoctoral Science Foundation (No.2020M673186), National Natural Science Foundation of China (No.22002014), the Applied Basic Research Program of Sichuan Province (No.2020ZYD014).Thanks for the technical help from Sichuan Province Key Laboratory of Display Science and Technology, State Key Laboratory of Electronic Thin Films and Integrated Devices.Dr.Xiao Luo acknowledges financial support from the National Natural Science Foundation of China(No.21903084) and Applied Basic Research Program of Sichuan Province (No.2021YJ0408).Dr.Qing Liu acknowledges financial support from the National Natural Science Foundation of China(No.52002051) and the Fundamental Research Funds for the Central Universities, SCUT (No.ZYGX2020J009).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.07.015.

    亚洲性夜色夜夜综合| 白带黄色成豆腐渣| 国产精品综合久久久久久久免费| 九九久久精品国产亚洲av麻豆| 国产黄色小视频在线观看| 麻豆成人午夜福利视频| 久久国产精品人妻蜜桃| 全区人妻精品视频| 香蕉av资源在线| 国产精品精品国产色婷婷| 久99久视频精品免费| 观看免费一级毛片| 亚洲一区二区三区色噜噜| 日韩欧美一区二区三区在线观看| 91在线精品国自产拍蜜月| 国产亚洲欧美98| 丁香六月欧美| 亚洲专区中文字幕在线| 1000部很黄的大片| 男女做爰动态图高潮gif福利片| 一夜夜www| 国产视频内射| 欧美日本视频| 人人妻人人澡欧美一区二区| 一级毛片久久久久久久久女| 日本黄色片子视频| 国内精品一区二区在线观看| 午夜a级毛片| 在线观看美女被高潮喷水网站 | 亚洲av成人精品一区久久| 亚洲精品一卡2卡三卡4卡5卡| av国产免费在线观看| 日本免费a在线| 亚洲欧美激情综合另类| 在线十欧美十亚洲十日本专区| 亚洲美女黄片视频| 久久6这里有精品| 欧美中文日本在线观看视频| 特级一级黄色大片| 久久精品国产自在天天线| 男女之事视频高清在线观看| 精品久久久久久成人av| 99视频精品全部免费 在线| 久久精品国产亚洲av香蕉五月| 69av精品久久久久久| 一级av片app| 国产伦一二天堂av在线观看| 精华霜和精华液先用哪个| 制服丝袜大香蕉在线| 很黄的视频免费| 成人精品一区二区免费| 少妇人妻一区二区三区视频| 亚洲精品影视一区二区三区av| 欧美极品一区二区三区四区| 欧美区成人在线视频| 国产精品久久久久久精品电影| 嫩草影院入口| 亚洲人成网站高清观看| 国内精品美女久久久久久| 丰满人妻一区二区三区视频av| 午夜福利在线观看吧| 日本在线视频免费播放| 999久久久精品免费观看国产| 亚洲av免费在线观看| 美女cb高潮喷水在线观看| 最近最新中文字幕大全电影3| 啦啦啦观看免费观看视频高清| 在线国产一区二区在线| 老鸭窝网址在线观看| 国产视频内射| 亚洲国产色片| 免费看日本二区| 波多野结衣巨乳人妻| 国产黄片美女视频| 国产精品久久久久久亚洲av鲁大| 久久久久久久久大av| 我要看日韩黄色一级片| 99国产精品一区二区蜜桃av| 美女 人体艺术 gogo| 99精品在免费线老司机午夜| 欧美区成人在线视频| 久久亚洲精品不卡| 国产三级黄色录像| 青草久久国产| 免费黄网站久久成人精品 | 亚洲激情在线av| 制服丝袜大香蕉在线| 国产精品美女特级片免费视频播放器| 极品教师在线视频| 麻豆一二三区av精品| 亚洲电影在线观看av| 97人妻精品一区二区三区麻豆| 我的女老师完整版在线观看| 制服丝袜大香蕉在线| 国产成人av教育| av在线老鸭窝| 免费无遮挡裸体视频| 神马国产精品三级电影在线观看| 欧美黑人欧美精品刺激| 国产高清有码在线观看视频| 精品人妻熟女av久视频| 真实男女啪啪啪动态图| 少妇高潮的动态图| 久久国产乱子伦精品免费另类| 亚洲精品粉嫩美女一区| 色播亚洲综合网| 国产精品亚洲av一区麻豆| 可以在线观看毛片的网站| 少妇熟女aⅴ在线视频| 此物有八面人人有两片| 精品久久久久久久久av| 男人和女人高潮做爰伦理| 丰满人妻熟妇乱又伦精品不卡| 国内精品一区二区在线观看| 神马国产精品三级电影在线观看| 亚洲av成人av| 草草在线视频免费看| 香蕉av资源在线| 亚洲国产精品成人综合色| 色视频www国产| 中文字幕久久专区| 亚洲色图av天堂| www日本黄色视频网| 亚洲无线在线观看| 一本一本综合久久| 久久久久精品国产欧美久久久| 国产亚洲精品综合一区在线观看| 日韩中文字幕欧美一区二区| 久久国产乱子免费精品| 90打野战视频偷拍视频| 国产精品嫩草影院av在线观看 | bbb黄色大片| 午夜久久久久精精品| 内射极品少妇av片p| 日韩免费av在线播放| 日韩欧美一区二区三区在线观看| 我要搜黄色片| 18禁黄网站禁片午夜丰满| 午夜久久久久精精品| 美女xxoo啪啪120秒动态图 | 动漫黄色视频在线观看| 国产伦精品一区二区三区视频9| 搡老妇女老女人老熟妇| 三级毛片av免费| 欧美一级a爱片免费观看看| 亚洲成人免费电影在线观看| 国产主播在线观看一区二区| 黄色视频,在线免费观看| 久9热在线精品视频| 亚洲人成网站高清观看| 女同久久另类99精品国产91| 欧美在线黄色| 日韩欧美免费精品| 成人av在线播放网站| 直男gayav资源| 两性午夜刺激爽爽歪歪视频在线观看| 婷婷精品国产亚洲av在线| 久久人人爽人人爽人人片va | 亚洲人成网站高清观看| 在线观看免费视频日本深夜| 国产不卡一卡二| 99国产综合亚洲精品| 国产成人av教育| 美女被艹到高潮喷水动态| 成年女人看的毛片在线观看| 久久99热这里只有精品18| 亚洲黑人精品在线| 成年免费大片在线观看| 天堂av国产一区二区熟女人妻| 麻豆久久精品国产亚洲av| 国产精品,欧美在线| 欧美黑人巨大hd| 首页视频小说图片口味搜索| 免费一级毛片在线播放高清视频| 亚洲一区二区三区色噜噜| 在线免费观看的www视频| 精品久久久久久久末码| 国产精品久久电影中文字幕| 国产成+人综合+亚洲专区| 欧美又色又爽又黄视频| 国产成人福利小说| 亚洲成av人片免费观看| 国产aⅴ精品一区二区三区波| 免费看光身美女| 男人舔女人下体高潮全视频| 国产黄色小视频在线观看| 亚洲一区高清亚洲精品| 成人精品一区二区免费| 老熟妇仑乱视频hdxx| 日韩欧美三级三区| 一本久久中文字幕| 国产av一区在线观看免费| 欧美不卡视频在线免费观看| 日韩中字成人| 制服丝袜大香蕉在线| 美女高潮的动态| 欧美日韩国产亚洲二区| av在线观看视频网站免费| 成人特级av手机在线观看| 国产美女午夜福利| 日日摸夜夜添夜夜添小说| 我的老师免费观看完整版| 免费av毛片视频| 中国美女看黄片| 真实男女啪啪啪动态图| 国语自产精品视频在线第100页| 18禁黄网站禁片免费观看直播| 听说在线观看完整版免费高清| 午夜激情欧美在线| 国内精品久久久久精免费| 日本黄大片高清| 欧美黄色片欧美黄色片| 桃红色精品国产亚洲av| 午夜久久久久精精品| 在线观看免费视频日本深夜| 国产精品免费一区二区三区在线| 国产人妻一区二区三区在| 91狼人影院| 午夜a级毛片| 禁无遮挡网站| 最近最新中文字幕大全电影3| 久久国产精品影院| www.色视频.com| 一区二区三区免费毛片| www.熟女人妻精品国产| 婷婷精品国产亚洲av| 日韩欧美一区二区三区在线观看| 欧美xxxx黑人xx丫x性爽| 又爽又黄a免费视频| 在线观看免费视频日本深夜| 色吧在线观看| 欧美成狂野欧美在线观看| 国产色婷婷99| 免费在线观看影片大全网站| 亚洲av免费在线观看| 99在线视频只有这里精品首页| 高潮久久久久久久久久久不卡| 亚洲电影在线观看av| 午夜a级毛片| 免费人成视频x8x8入口观看| 极品教师在线视频| 99久久九九国产精品国产免费| 国产不卡一卡二| 嫁个100分男人电影在线观看| 男女那种视频在线观看| 日韩欧美 国产精品| 成人特级av手机在线观看| 国产成人aa在线观看| 午夜免费男女啪啪视频观看 | 99久久成人亚洲精品观看| 国产精品久久久久久久电影| 国产av不卡久久| 能在线免费观看的黄片| 18+在线观看网站| 亚洲国产精品999在线| 久久6这里有精品| 国产 一区 欧美 日韩| 亚洲精品在线美女| 哪里可以看免费的av片| 久9热在线精品视频| 看片在线看免费视频| 人人妻,人人澡人人爽秒播| 国内毛片毛片毛片毛片毛片| 国产单亲对白刺激| 最新中文字幕久久久久| 69人妻影院| 国产久久久一区二区三区| 女同久久另类99精品国产91| 88av欧美| 欧美xxxx性猛交bbbb| 久久久久免费精品人妻一区二区| 五月伊人婷婷丁香| 性插视频无遮挡在线免费观看| 国产又黄又爽又无遮挡在线| 1000部很黄的大片| a级毛片免费高清观看在线播放| 国产精品亚洲av一区麻豆| 伦理电影大哥的女人| 久久99热这里只有精品18| 国产亚洲av嫩草精品影院| 免费人成在线观看视频色| 精品久久久久久,| 男女视频在线观看网站免费| 国产又黄又爽又无遮挡在线| 欧美一区二区精品小视频在线| 午夜福利免费观看在线| 久久精品国产99精品国产亚洲性色| 天天一区二区日本电影三级| 久久久成人免费电影| 真人一进一出gif抽搐免费| 日日夜夜操网爽| 日本五十路高清| 亚洲七黄色美女视频| 亚洲第一电影网av| 12—13女人毛片做爰片一| 欧美一区二区国产精品久久精品| 亚洲欧美精品综合久久99| h日本视频在线播放| 免费高清视频大片| 狂野欧美白嫩少妇大欣赏| 欧美激情国产日韩精品一区| 少妇被粗大猛烈的视频| 性色avwww在线观看| 欧美一级a爱片免费观看看| 久久欧美精品欧美久久欧美| 日本a在线网址| 午夜久久久久精精品| ponron亚洲| 国内毛片毛片毛片毛片毛片| 亚洲精品乱码久久久v下载方式| 永久网站在线| 成人特级av手机在线观看| 色综合欧美亚洲国产小说| 全区人妻精品视频| 国产精品精品国产色婷婷| 国产久久久一区二区三区| 91久久精品电影网| 少妇裸体淫交视频免费看高清| 精品99又大又爽又粗少妇毛片 | 国产精品一区二区性色av| 亚洲无线在线观看| 99久国产av精品| 三级男女做爰猛烈吃奶摸视频| 一二三四社区在线视频社区8| 少妇人妻精品综合一区二区 | 国产av麻豆久久久久久久| 亚洲成人精品中文字幕电影| 毛片一级片免费看久久久久 | 又爽又黄无遮挡网站| 国产黄片美女视频| 色综合站精品国产| 精品午夜福利视频在线观看一区| av福利片在线观看| 欧美精品国产亚洲| 日本撒尿小便嘘嘘汇集6| 欧美+日韩+精品| 亚洲美女视频黄频| 麻豆成人午夜福利视频| 91在线观看av| 久久亚洲精品不卡| 亚洲五月婷婷丁香| 欧美最黄视频在线播放免费| 国产三级在线视频| 一区二区三区四区激情视频 | 国产精品亚洲美女久久久| 男人舔女人下体高潮全视频| 久久久色成人| 国产伦在线观看视频一区| 久久精品夜夜夜夜夜久久蜜豆| 男人的好看免费观看在线视频| av专区在线播放| 亚洲欧美日韩无卡精品| 午夜福利视频1000在线观看| 免费av观看视频| 色噜噜av男人的天堂激情| 亚洲av免费高清在线观看| 好看av亚洲va欧美ⅴa在| 国产高清激情床上av| 久99久视频精品免费| h日本视频在线播放| 有码 亚洲区| 亚洲欧美精品综合久久99| 国产亚洲精品久久久久久毛片| 18禁在线播放成人免费| 国产 一区 欧美 日韩| 亚洲乱码一区二区免费版| 欧美成人a在线观看| 日日夜夜操网爽| 最新中文字幕久久久久| 午夜精品久久久久久毛片777| 国产免费男女视频| 亚洲av.av天堂| 亚洲五月天丁香| 国产大屁股一区二区在线视频| 亚洲精品在线观看二区| 久久午夜福利片| 美女被艹到高潮喷水动态| 少妇被粗大猛烈的视频| 欧美色视频一区免费| 欧美精品啪啪一区二区三区| 哪里可以看免费的av片| 老司机福利观看| 又粗又爽又猛毛片免费看| 欧美成人a在线观看| 波多野结衣巨乳人妻| 草草在线视频免费看| 18禁黄网站禁片午夜丰满| 网址你懂的国产日韩在线| 亚洲av日韩精品久久久久久密| 内地一区二区视频在线| 国产高潮美女av| 日韩av在线大香蕉| 亚洲av成人精品一区久久| 国产野战对白在线观看| 一个人观看的视频www高清免费观看| 日日摸夜夜添夜夜添小说| 草草在线视频免费看| 99热这里只有是精品在线观看 | 岛国在线免费视频观看| 亚洲人成网站高清观看| eeuss影院久久| 日韩有码中文字幕| 白带黄色成豆腐渣| 亚洲国产欧美人成| 别揉我奶头~嗯~啊~动态视频| 老司机深夜福利视频在线观看| 亚洲av成人av| 亚洲国产精品久久男人天堂| 午夜福利在线在线| 最后的刺客免费高清国语| 在线国产一区二区在线| 国产免费av片在线观看野外av| 免费在线观看成人毛片| 亚洲国产高清在线一区二区三| 亚洲av第一区精品v没综合| 免费观看精品视频网站| 亚洲国产精品sss在线观看| 国产成人aa在线观看| 在线a可以看的网站| 国产精品女同一区二区软件 | 非洲黑人性xxxx精品又粗又长| 黄色日韩在线| 亚洲片人在线观看| 99热这里只有是精品在线观看 | av女优亚洲男人天堂| 在线a可以看的网站| 噜噜噜噜噜久久久久久91| 亚洲精品乱码久久久v下载方式| av在线观看视频网站免费| 欧美xxxx性猛交bbbb| 亚洲中文字幕日韩| 性插视频无遮挡在线免费观看| 亚洲成av人片在线播放无| 国产高清视频在线观看网站| 国产久久久一区二区三区| 深夜a级毛片| 欧美xxxx性猛交bbbb| 亚洲成人免费电影在线观看| 啪啪无遮挡十八禁网站| 午夜日韩欧美国产| 日本精品一区二区三区蜜桃| 99热这里只有精品一区| 最好的美女福利视频网| 欧美乱妇无乱码| 亚洲色图av天堂| 日韩欧美免费精品| 国产 一区 欧美 日韩| 亚洲 欧美 日韩 在线 免费| 99国产精品一区二区蜜桃av| 色5月婷婷丁香| 国产av不卡久久| 亚洲人成网站高清观看| 国产主播在线观看一区二区| 首页视频小说图片口味搜索| 国产乱人视频| 青草久久国产| 亚洲专区国产一区二区| 成人午夜高清在线视频| 赤兔流量卡办理| 五月玫瑰六月丁香| 99久久成人亚洲精品观看| 日韩中字成人| 久久久国产成人精品二区| 欧美+亚洲+日韩+国产| 亚洲成av人片免费观看| 亚洲色图av天堂| а√天堂www在线а√下载| 中文资源天堂在线| 久久久久久国产a免费观看| 亚洲在线自拍视频| 日韩欧美一区二区三区在线观看| 亚洲一区高清亚洲精品| 在线观看av片永久免费下载| 嫩草影院入口| 国产精品一区二区三区四区免费观看 | 欧美成人a在线观看| 成人永久免费在线观看视频| or卡值多少钱| 亚洲不卡免费看| 亚洲精品日韩av片在线观看| 18禁黄网站禁片午夜丰满| 99久久久亚洲精品蜜臀av| 日韩av在线大香蕉| 国产免费男女视频| 深爱激情五月婷婷| 少妇的逼水好多| 国产成年人精品一区二区| 国产久久久一区二区三区| 精华霜和精华液先用哪个| 精品无人区乱码1区二区| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产精品成人综合色| 国产精品乱码一区二三区的特点| 乱人视频在线观看| 在线国产一区二区在线| 国产成人福利小说| 亚洲三级黄色毛片| 日韩欧美一区二区三区在线观看| 亚洲av不卡在线观看| 午夜福利在线在线| 一级黄片播放器| 日韩免费av在线播放| 日韩亚洲欧美综合| 午夜福利在线观看免费完整高清在 | 久久精品综合一区二区三区| 久久久精品大字幕| 我的女老师完整版在线观看| 日本在线视频免费播放| 国产高清激情床上av| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美精品v在线| 亚洲成a人片在线一区二区| 久久精品人妻少妇| 无人区码免费观看不卡| 麻豆久久精品国产亚洲av| 成人午夜高清在线视频| 99热精品在线国产| 日韩中字成人| 麻豆国产av国片精品| 夜夜看夜夜爽夜夜摸| 亚洲性夜色夜夜综合| 亚洲avbb在线观看| 亚洲第一区二区三区不卡| 国内毛片毛片毛片毛片毛片| 在线播放国产精品三级| 人妻夜夜爽99麻豆av| www.999成人在线观看| 久久久国产成人免费| 亚洲,欧美,日韩| 国产精品av视频在线免费观看| 国产精品亚洲av一区麻豆| 亚洲国产精品sss在线观看| 极品教师在线视频| 3wmmmm亚洲av在线观看| 桃色一区二区三区在线观看| 大型黄色视频在线免费观看| 欧美日韩福利视频一区二区| 国产精品综合久久久久久久免费| a在线观看视频网站| 欧美激情久久久久久爽电影| 最近中文字幕高清免费大全6 | 欧美国产日韩亚洲一区| 亚洲乱码一区二区免费版| 麻豆av噜噜一区二区三区| 九九在线视频观看精品| 日本一二三区视频观看| 欧美区成人在线视频| 欧美成人a在线观看| h日本视频在线播放| 中亚洲国语对白在线视频| 国产乱人伦免费视频| 性插视频无遮挡在线免费观看| av福利片在线观看| 国产成人影院久久av| 动漫黄色视频在线观看| 亚洲专区国产一区二区| 99国产精品一区二区蜜桃av| 白带黄色成豆腐渣| 久久天躁狠狠躁夜夜2o2o| 99视频精品全部免费 在线| 亚洲av免费高清在线观看| 成人av一区二区三区在线看| av女优亚洲男人天堂| 日韩欧美 国产精品| 在线免费观看不下载黄p国产 | 日韩欧美 国产精品| 日韩 亚洲 欧美在线| 亚洲电影在线观看av| 1024手机看黄色片| 午夜福利高清视频| 成年免费大片在线观看| 久久国产乱子免费精品| 亚洲男人的天堂狠狠| 亚洲,欧美精品.| 啦啦啦韩国在线观看视频| 麻豆国产97在线/欧美| 国产色婷婷99| 国产三级黄色录像| 搡老熟女国产l中国老女人| 狠狠狠狠99中文字幕| 99久久九九国产精品国产免费| 国模一区二区三区四区视频| 欧美日韩黄片免| av女优亚洲男人天堂| 国产精品久久久久久亚洲av鲁大| 亚洲成a人片在线一区二区| 日韩成人在线观看一区二区三区| 亚洲不卡免费看| www.999成人在线观看| 国产在线男女| 一级毛片久久久久久久久女| 成人高潮视频无遮挡免费网站| 最近中文字幕高清免费大全6 | 亚洲av成人精品一区久久| 色哟哟·www| 在线国产一区二区在线| 日日干狠狠操夜夜爽| 国产乱人伦免费视频| 免费观看的影片在线观看| 99久久久亚洲精品蜜臀av| 在现免费观看毛片| 亚洲精品在线观看二区| 特大巨黑吊av在线直播| 久久久久久久久大av| 精品一区二区三区av网在线观看| 90打野战视频偷拍视频| 国产精品乱码一区二三区的特点| 日本 欧美在线| 久久精品91蜜桃| 欧美xxxx性猛交bbbb| 丁香欧美五月| 亚洲天堂国产精品一区在线| 精品久久久久久久久av| 欧美激情国产日韩精品一区| 久久亚洲真实|