• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient charge separation in hierarchical NiS@ZnIn2S4 hollow nanospheres for photocatalytic water splitting

    2022-06-18 03:00:42KaiWuLiangMaoXiuquanGuXiaoyanCaiYulongZhao
    Chinese Chemical Letters 2022年2期

    Kai Wu, Liang Mao, Xiuquan Gu, Xiaoyan Cai,*, Yulong Zhao,*

    a School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China

    b Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, China University of Mining and Technology, Xuzhou 221116, China

    ABSTRACT In this work, hierarchical NiS@ZnIn2S4 heterostructure was developed by constructing ultra-thin ZnIn2S4(ZIS) nanosheets on hollow NiS nanospheres for hydrogen production from photocatalytic water splitting.The NiS@ZIS displayed a strong optical absorption ability in the visible region and a high specific surface area of 33.14 m2/g.The Type-I band alignment in NiS@ZIS heterostructure was determined by the combination of UV–vis absorption spectroscopy and Mott-Schottky curves.The photocatalytic hydrogen production of NiS@ZIS (1.24 mmol g-1 h-1) was nearly 5.6 times higher than that of ZIS under visible light, in the absence of any co-catalyst and sacrificial agent.The separation and migration of charge in NiS@ZIS were characterized by a series of spectroscopy and photo/electrochemical tests, which verified the efficient charge transfer from ZIS to NiS.

    Keywords:Hollow sphere Heterostructure Photocatalyst Charge separation Hydrogen production

    The shortage of fossil energy has forced mankind to seek energy revolution.Compared with other energy sources, hydrogen (H2), as an ideal, clean and renewable energy with ultra-high calorific value of 122 kJ/g, has great advantages in preparation and application[1].The traditional H2production methods, mainly including water gas reforming and electrolysis of water, consume a large amount of fossil energy and cause pollution.In contrast, using semiconductors to produce H2from solar energy is a clean and low-cost way [2,3].

    Various semiconductor photocatalysts have been explored and prepared to split water, but most of them cannot be used alone and require the participation of sacrificial agents.Moreover, the high-performance of most photocatalysts come from the deposition of precious metals, which undoubtedly increases the cost of photocatalytic H2production [4–12].Therefore, it is very necessary to develop a non-noble metal photocatalyst with high photocatalytic activity without the assistance of sacrificial agent.

    Recently, hexagonal ZnIn2S4(ZIS), a two-dimensional (2D)metal sulfide, is of great interest to researchers.Due to its suitable band gap, unique layered structure, good stability and low cost, ZIS has been considered as an ideal photocatalyst for H2production[13–16].However, there are still some disadvantages in ZIS, such as the slow charge transfer, easy recombination of electron-hole pairs, which limit its practical application [17–20].Previous studies have reported that the coupling of suitable semiconductors to form heterojunctions can effectively improve the photocatalytic performance [21–25].For example, Zhanget al.deposited MoS2quantum dots (QDs) on the S vacancies of monolayered ZIS to realize the rapid transfer of photogenerated electrons from ZIS to MoS2,through the mutual bonding of Zn atoms nearby the S vacancy of ZIS with S atoms of MoS2[26].Wanget al.synthesized a cage-like hierarchical Co9S8@ZIS heterostructure for enhanced photocatalytic charge separation and transfer, improving the photocatalytic activity and stability [16].Therefore, developing a suitable semiconductor material to couple with ZIS is an important strategy to improve the photocatalytic activity of ZIS.

    In this work, we designed a hierarchical hollow NiS@ZIS heterostructure photocatalyst by growing two-dimensional ZIS ultrathin nanosheets on hollow NiS nanospheres.NiS is a narrow bandgap (0.4–0.7 eV) semiconductor.When coupling with ZIS, the lower conduction band (CB)/valence band (VB) potential of NiS will be great for the separation and migration of charges.Meanwhile,this unique hierarchical hollow structure can not only provide larger surface area and more active sites but also extend the optical absorption, enhancing the utilization of visible light and boosting the separation and migration of photogenerated charges [27–31].Based on these advantages, the prepared NiS@ZIS heterostructure photocatalyst exhibits high photocatalytic activity for splitting of water.In the absence of co-catalysts and sacrificial agents, the H2evolution rate of NiS@ZIS reached 1.24 mmol g-1h-1, which was 5.6 times higher than that of pure ZIS nanosheets.The charge transfer and photocatalytic reaction mechanism of NiS@ZIS heterostructure was proposed upon a series of spectroscopic and photoelectrochemical characterizations.

    Fig.1a illustrates the preparation process of hierarchical NiS@ZIS heterostructure.First, a nickel silicate (Ni3Si2O5(OH)4)coating was grown on the surface of SiO2nanospheres in a hydrothermal reaction system containing SiO2, urea and nickel nitrate(Step I).Next, the Ni3Si2O5(OH)4nanospheres were vulcanized by hydrothermal process, producing NiS hollow spheres (Step II).Finally, the hollow NiS@ZIS heterostructure was obtained by growing a layer of ZIS nanosheets on the surface of NiS under 80 °C of oil bath (Step III).In the experiment, SiO2nanospheres were synthesized according to the reported method [32,33].The Powder Xray diffraction (XRD) pattern is shown in Fig.S1a (Supporting information).The diffraction peak at 22.02° is consistent with the standard PDF card of SiO2(JCPDS No.29-0085).The field-emission scanning electron microscopy (FESEM) image in Fig.S1b (Supporting information) shows the smooth surface of SiO2spheres with average diameter of 400 nm.Nickel silicate (Ni3Si2O5(OH)4)nanospheres were synthesizedviaa hydrothermal reaction [34],and XRD analysis indicates their successful formation (Fig.S2a in Supporting information).FESEM image shows that the morphology of Ni3Si2O5(OH)4is uniform nanospheres coating with nickel silicate thin layer (Fig.S2b in Supporting information).The original spherical shape and size of the SiO2templates are retained.To remove the SiO2templates and vulcanize the nickel silicate,Ni3Si2O5(OH)4nanospheres were dispersed in Na2S·9H2O solution,followed by a hydrothermal treatment at 160 °C [34].After the sulfuration, the coating layer of nickel silicate was translated to NiS while the hollow structure was still retained.As shown in Fig.1b, NiS nanospheres have an average diameter of 420 nm.The surfaces are composed of ultra-thin nanosheets.From the broken spheres, one can conclude that the obtained NiS possesses a hollow structure.The corresponding N2sorption measurement confirms the presence of mesopores in NiS, with a specific surface area of 19.76 m2/g (Fig.S3 in Supporting information).XRD pattern in Fig.S4a identifies the formation of NiS mixed phase.All the diffraction peaks belong to the NiS rhomboid phase (β-NiS, JCPDS No.12-0041) and NiS hexagonal phase (α-NiS, JCPDS No.02-1280),consisting with the previous reports [35,36].Transmission electron microscopy (TEM) image further proves the hollow structure of NiS(Fig.1c).The high-resolution TEM (HRTEM) image (Fig.S4b in Supporting information) exhibits clear crystal lattice fringe with an interlayer distance of 0.29 nm, corresponding to (101) crystal plane of NiS.

    Fig.1.(a) Schematic illustration of the preparation process of hierarchical NiS@ZIS heterostructure: (I) hydrothermal reaction, (II) sulfidation reaction and (III) the growth of ZIS nanosheets.(b) FESEM and (c) TEM image of NiS nanospheres.(d)FESEM image, (e) TEM image, (f) XRD pattern, and (g) N2 sorption isotherms and BET surface area of NiS@ZIS composites.Inset is the corresponding pore size distribution curve.

    Subsequently, ultra-thin ZIS nanosheets were grown on the surface of NiS nanospheres through a low temperature oil bath method.The mass ratio of NiS to ZIS in the composite is 1:x,which is denoted as NiS@ZIS 1-x (NiS@ZIS 1–8 is abbreviated as NiS@ZIS unless otherwise specified).In Figs.1d and e, ZIS ultra-thin nanosheets are uniformly coated on the surface of NiS nanospheres.The composite remains the original spherical morphology with an average size of 500 nm.XRD pattern in Fig.1f indicates that the composite includes the mixed phase of NiS and hexagonal ZIS, proving the successful preparation of NiS@ZIS.N2sorption measurement confirms the unaltered mesopore structure in NiS@ZIS, with a much higher specific surface area of 33.14 m2/g(Fig.1g).The chemical composition and distribution of NiS@ZIS were checked through the energy dispersive X-ray spectroscopy(EDX) mapping images (Fig.S5 in Supporting information).Ni, In,S and Zn elements are uniformly distributed in the composite,which further proves the coupling of NiS and ZIS.For comparison,NiS@ZIS 1–2, NiS@ZIS 1–4, NiS@ZIS 1–6 and NiS@ZIS 1–10 were synthesized at the same condition (Fig.S6 in Supporting information).Meanwhile, pure ZIS nanosheets were also synthesized, as shown in Fig.S7 in Supporting information.

    The composition and surface chemical states of the composites were analyzed by X-ray photoelectron spectroscopy (XPS).As shown in Fig.S8a (Supporting information), all elements of the composites (Zn, In, S, Ni) are detected in the survey XPS spectra(C and O elements come from the external environment or substrate).In Fig.S8b (Supporting information), the Zn 2p spectra of ZIS and NiS@ZIS show symmetrical characteristic peaks at 1023.4 and 1046.4 eV, corresponding to Zn 2p3/2and Zn 2p1/2, respectively, which indicates that Zn exists in the form of Zn2+[15,37–39].Fig.S8c (Supporting information) displays the high-resolution XPS spectra of In 3d, and the characteristic peaks of ZIS at 446.3 and 453.8 eV correspond to In 3d5/2and In 3d3/2, respectively, with a peak spacing of 7.5 eV.It can be attributed to In-S bond in the ZIS lattice (marked as Inlatt.) [15,37–39].Compared with pure ZIS,the characteristic peaks of In 3d in NiS@ZIS shift toward higher binding energy for about 0.7 eV, indicating the changed chemical environment in the composite.Moreover, there are two additional peaks at 443.9 and 451.5 eV, which can be attributed to the In-S bond formed at the interface (marked as Ininter.).This is because when ZIS grows on NiS surface, the dangling bonds between their interfaces form bonds with each other, leading to their tight connection.Fig.S8d (Supporting information) is the XPS spectra of S 2p, where 163 eV corresponds to the S 2p characteristic peak of ZIS, and 160.8 and 162.2 eV correspond to the S 2p characteristic peak of NiS.They all belong to the S in the lattice (marked as Slatt.)[15,37–39].After coupling, additional peak located at 164.8 eV appears, which can be attributed to the interface bonding of ZIS with NiS (marked as Sinter.).Ni 2p spectra is shown in Fig.S8e (Supporting information), where the characteristic peaks at 857.1 and 875.1 eV correspond to Ni 2p3/2and Ni 2p1/2, respectively, and the characteristic peaks at 862.6 and 880.3 eV correspond to the satellite peaks of Ni 2p3/2and Ni 2p1/2.Similarly, the signal peaks of Ni 2p in the composite also shift, and additional Niinter.signals appear at 854.3 and 873.7 eV.

    Fig.2.(a) Photocatalytic H2 evolution over ZIS, NiS and NiS@ZIS.(b) Photocatalytic H2 evolution performance of NiS@ZIS with different ZIS loading amount.(c) Photocatalytic H2 evolution rate of hollow NiS@ZIS and solid NiS@ZIS NPs.(d) Wavelength dependence of AQE and the light absorption spectra of NiS@ZIS photocatalyst.

    UV–vis diffuse reflection spectra (DRS) was tested to study optical properties of the as-prepared composites.In Fig.S9 (Supporting information), obviously, NiS exhibits higher light absorption coeffi-cient and wider light absorption range in the test area.ZIS absorbs from the ultraviolet to visible light region, with an absorption edge at about 520 nm.After the in-situ growth of ZIS on NiS, the absorption spectra possess the absorption characteristics of both NiS and ZIS.With the increase of the ZIS content, the absorption edge of NiS@ZIS 1-x gradually become slant, exhibiting strong absorption for visible light.The band gaps of NiS and ZIS were identified by the Touch curve, which are 0.60 and 2.45 eV, respectively(Fig.S10 in Supporting information).Besides, the flat-band potential (Vfb) of NiS and ZIS were obtained through Mott-Schottky (MS) measurements, which are determined to be -0.53 and -0.84 Vvs.RHE, respectively (Fig.S11 in Supporting Information).Since NiS and ZIS aren-type semiconductors, their conduction band minimum (CBM) is approximately equal toVfb[40].Combining with the band gap and the CB position, the VB position can be determined to be 0.07 and 1.61 Vvs.RHE for NiS and ZIS, respectively.This indicates that the NiS@ZIS heterostructure presents a typical Type-I band alignment.

    Fig.3.(a) Steady-state PL spectra, (b) time-resolved transient PL decay, (c) EIS spectra, and (d) transient photocurrent spectra of ZIS and NiS@ZIS.

    Fig.2a shows the photocatalytic H2production performance of different materials under visible light (λ >400 nm), in the absence of co-catalyst and sacrificial agent.It is obvious that NiS is completely inactive to the photocatalytic reaction, because of the fast recombination of photogenerated charges.ZIS exhibits low photocatalytic activity, with a H2production of 0.66 mmol/g for 3 h(0.22 mmol g-1h-1).The performance is significantly improved after NiS coupling with ZIS, reaching up to 3.73 mmol/g under 3 h of light irradiation (1.24 mmol g-1h-1), which is 5.6 times higher than that of ZIS.The optimal loading amount of ZIS on NiS surface was explored in Fig.2b.The photocatalytic performance firstly increases and then decreases as a function of ZIS loading amount,and reaches the optimum when the mass ratio of NiS to ZIS is 1:8.Appropriate decoration of ZIS on NiS surface can extend the light absorption and promote the charge transfer from ZIS to NiS.However, when ZIS content exceeds the optimum, the superfluous ZIS clusters cause light shielding effect and in turn hinder the charge migration [41].To demonstrate the superiority of hollow structure, solid NiS nanoparticles (NiS NPs) were synthesized (Fig.S12 in Supporting information) and ZIS nanosheets were grown on their surface, which was denoted as NiS@ZIS NPs (Fig.S13 in Supporting information).The photocatalytic performance of NiS@ZIS NPs was examined at the same condition.Showing a H2production rate of 1.09 mmol g-1h-1, the solid NiS@ZIS NPs possesses a lower photocatalytic activity than the hollow NiS@ZIS heterostructure (Fig.2c).This can be explained by the absorption spectra of hollow NiS@ZIS and solid NiS@ZIS NPs in Fig.S14 (Supporting information).It is observed that the hollow heterostructure exhibits a stronger light absorption than the solid heterostructure, which is mainly due to multiple reflections inside the cavity of the hollow structure [27–31].The apparent quantum efficiency (AQE) of NiS@ZIS under different monochromatic light irradiation, including 365, 405, 420 and 450 nm, was measured.It can be found from Fig.2d that the hydrogen production efficiency is basically consistent with the light absorption capacity of NiS@ZIS composite, indicating that the water splitting is driven by the light excitation[42].The stability of NiS@ZIS was checked by cyclic hydrogen evolution testing (Fig.S15 in Supporting information).It can be clearly seen that the hydrogen production performance declines with the cycles.This is due to the self-oxidation of the sulfide material when neither co-catalyst nor sacrificial agent is present in the reaction system.Therefore, the role of sacrificial agent on the photocorrosion resistance of NiS@ZIS was verified, as displayed in Fig.S16 (Supporting information).When hole-scavenger (Na2S/Na2SO3)is present in the system, NiS@ZIS composite shows higher photocatalytic activity compared to ZIS (Fig.S16a), as well as satisfactory stability during the four tested cycles (Fig.S16b).

    Fig.4.The separation and transfer process of photogenerated electrons (e-) and holes (h+) in the NiS@ZIS heterostructure.

    To understand the excellent performance of NiS@ZIS composite and confirm the charge transfer process, series of spectroscopic and photoelectrochemical (PEC) characterizations were performed.The steady-state photoluminescence (PL) spectra of NiS@ZIS displays obvious PL quenching compared with that of pure ZIS(Fig.3a), indicating the charge transfer from ZIS to NiS.The PL lifetime of ZIS and NiS@ZIS was estimated by the time-resolved PL (TRPL) spectra (Fig.3b).From the fitting results of the PL decay curve, NiS@ZIS exhibits a longer lifetime (42.17 ns) compared to ZIS(22.87 ns), indicating that the construction of heterostructure can effectively boost the separation of photogenerated electrons and holes, and thus prolong their lifetime.The results of PL and TRPL demonstrate the effective transfer of charge from ZIS to NiS.The electrochemical impedance spectra (EIS) of ZIS and NiS@ZIS were displayed in Fig.3c.NiS@ZIS electrode manifests a smaller radius than ZIS electrode, suggesting a lower resistance and a more favorable charge transfer.In the transient photocurrent spectra (Fig.3d),NiS@ZIS exhibits a larger photocurrent density than ZIS, indicating the improved photo-electric response in the heterostructure.All these results demonstrate that the hollow heterostructure effectively boost the separation and migration of carriers, inhibit the recombination of electrons-holes, extend the lifetime of carriers,thereby ensuring the high H2production efficiency.

    Based on the above analysis, the possible charge transfer mechanism is proposed (Fig.4).The coupling of NiS with ZIS extend the light absorption to the full visible range.Under visible light irradiation, the hollow structure can absorb and utilize the light energy more efficiently by increasing the scattering and reflection of light.The electrons (e-) on the VB of ZIS and NiS are excited to their CB respectively, and then leave the same number of holes(h+) on their VB, forming electron-hole pairs.Due to the potential difference between NiS and ZIS, the electrons on CB and holes on VB of ZIS transfer to the CB and VB of NiS, respectively, boosting the separation and migration of photogenerated carriers.The larger surface area of the composite facilitates a sufficient contact between the catalyst with water.Meanwhile, plentiful active sites help the capture of more H+for reduction reaction.Therefore, the combination of large surface area, multi light harvesting and effective charge separation is responsible for the superior photocatalytic activity of hollow NiS@ZIS heterostructure.

    In summary, hollow NiS@ZIS heterostructure photocatalyst was synthesized by growing ZIS nanosheets on NiS hollow spheres for efficient visible-light-driven hydrogen production from water splitting.Comparing with the pristine ZIS nanosheets, NiS@ZIS composites displayed higher light harvesting and surface area, which were benefit to the effective charge separation and migration in the heterostructure.Photocurrent, EIS, and TRPL results indicated that the coupling of two sulfides reduced the charge recombination and prolonged the charge lifetime.Based on the above factors, the NiS@ZIS composite exhibited a significant improvement in photocatalytic activity, with a hydrogen production rate of 1.24 mmol g-1h-1in the absence of any co-catalyst and sacrifice agent.This work will bring novel inspiration for the design of hollow structured photocatalysts for efficient charge separation.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgment

    This work is supported by the Natural Science Foundation of Jiangsu Province (Youth Fund, Nos.BK20190640 and BK20190641).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.07.011.

    色综合婷婷激情| 日韩欧美免费精品| e午夜精品久久久久久久| 国产成人av激情在线播放| 国产乱人伦免费视频| 新久久久久国产一级毛片| 又紧又爽又黄一区二区| 亚洲精品一卡2卡三卡4卡5卡| av视频免费观看在线观看| 亚洲片人在线观看| 91麻豆精品激情在线观看国产 | 亚洲熟妇中文字幕五十中出 | 久久这里只有精品19| 真人一进一出gif抽搐免费| 制服诱惑二区| 十八禁人妻一区二区| 一边摸一边抽搐一进一小说| 日韩大码丰满熟妇| 欧美人与性动交α欧美精品济南到| 欧美日韩一级在线毛片| 久99久视频精品免费| 亚洲成国产人片在线观看| 日韩欧美在线二视频| 免费av中文字幕在线| 欧美日韩瑟瑟在线播放| 久久亚洲精品不卡| 一级片免费观看大全| 99久久综合精品五月天人人| 精品福利观看| 亚洲,欧美精品.| 一边摸一边抽搐一进一小说| 怎么达到女性高潮| 亚洲专区字幕在线| 久久久久久亚洲精品国产蜜桃av| 99国产精品免费福利视频| 亚洲成av片中文字幕在线观看| 国产av精品麻豆| 超色免费av| 久久午夜亚洲精品久久| 精品久久久久久,| 村上凉子中文字幕在线| 十八禁网站免费在线| 男女之事视频高清在线观看| 大香蕉久久成人网| 69精品国产乱码久久久| 校园春色视频在线观看| 精品高清国产在线一区| 每晚都被弄得嗷嗷叫到高潮| 波多野结衣av一区二区av| 黄色视频不卡| 日韩大码丰满熟妇| 国产精品久久电影中文字幕| 级片在线观看| www日本在线高清视频| 久热爱精品视频在线9| 精品人妻1区二区| 丰满的人妻完整版| 极品教师在线免费播放| 女警被强在线播放| 老司机福利观看| 99国产精品99久久久久| 手机成人av网站| 亚洲av成人不卡在线观看播放网| 岛国视频午夜一区免费看| 亚洲男人天堂网一区| 午夜福利在线免费观看网站| 亚洲av第一区精品v没综合| 久久性视频一级片| 法律面前人人平等表现在哪些方面| 日日爽夜夜爽网站| 亚洲欧美日韩另类电影网站| 亚洲专区中文字幕在线| 黄色女人牲交| 免费女性裸体啪啪无遮挡网站| 久9热在线精品视频| 夫妻午夜视频| 亚洲精品久久午夜乱码| 国产成+人综合+亚洲专区| 老汉色∧v一级毛片| 黄色女人牲交| 亚洲一码二码三码区别大吗| 桃红色精品国产亚洲av| 精品一区二区三区四区五区乱码| 亚洲男人的天堂狠狠| 久久 成人 亚洲| 色婷婷久久久亚洲欧美| 亚洲专区字幕在线| 欧美精品亚洲一区二区| 午夜免费成人在线视频| 琪琪午夜伦伦电影理论片6080| 免费人成视频x8x8入口观看| 亚洲一区高清亚洲精品| 黄片播放在线免费| 色老头精品视频在线观看| 少妇粗大呻吟视频| 亚洲国产精品sss在线观看 | 人人妻人人爽人人添夜夜欢视频| а√天堂www在线а√下载| 无人区码免费观看不卡| 首页视频小说图片口味搜索| 在线播放国产精品三级| 午夜91福利影院| 午夜两性在线视频| 国产xxxxx性猛交| 午夜免费观看网址| 国产一区二区三区在线臀色熟女 | 曰老女人黄片| 精品电影一区二区在线| 丰满的人妻完整版| 亚洲av第一区精品v没综合| 99久久精品国产亚洲精品| 免费观看精品视频网站| 中文亚洲av片在线观看爽| 新久久久久国产一级毛片| 日本精品一区二区三区蜜桃| 18禁美女被吸乳视频| 大香蕉久久成人网| 精品久久久久久电影网| 在线观看免费午夜福利视频| 免费在线观看日本一区| 国产99白浆流出| 国产成年人精品一区二区 | 搡老熟女国产l中国老女人| 男人舔女人的私密视频| 日本 av在线| 亚洲欧美一区二区三区黑人| 桃色一区二区三区在线观看| 国产1区2区3区精品| 亚洲精品成人av观看孕妇| 久久精品国产亚洲av香蕉五月| 亚洲av第一区精品v没综合| 黄色片一级片一级黄色片| 午夜免费鲁丝| 精品一区二区三区视频在线观看免费 | 亚洲少妇的诱惑av| 亚洲片人在线观看| 99国产综合亚洲精品| 两性夫妻黄色片| 欧美黄色淫秽网站| 色播在线永久视频| 欧美日韩亚洲高清精品| 国产免费av片在线观看野外av| 成人免费观看视频高清| 国产精品成人在线| 夫妻午夜视频| 丝袜美足系列| 久久精品亚洲熟妇少妇任你| 99久久久亚洲精品蜜臀av| 亚洲国产精品sss在线观看 | 国产黄色免费在线视频| 国产区一区二久久| 精品国产乱子伦一区二区三区| 九色亚洲精品在线播放| 国产精品久久久av美女十八| 欧美黑人欧美精品刺激| 欧美激情高清一区二区三区| 免费看十八禁软件| 国产人伦9x9x在线观看| 久久精品亚洲熟妇少妇任你| 国产无遮挡羞羞视频在线观看| 村上凉子中文字幕在线| 国产不卡一卡二| 极品教师在线免费播放| 桃红色精品国产亚洲av| 免费久久久久久久精品成人欧美视频| av国产精品久久久久影院| 好看av亚洲va欧美ⅴa在| 成年版毛片免费区| 波多野结衣高清无吗| 国产在线观看jvid| 国产精品九九99| a在线观看视频网站| 国产av一区在线观看免费| 久热爱精品视频在线9| 一a级毛片在线观看| 啪啪无遮挡十八禁网站| 美女 人体艺术 gogo| 脱女人内裤的视频| 国产成人欧美| 少妇被粗大的猛进出69影院| 这个男人来自地球电影免费观看| www国产在线视频色| 欧美乱码精品一区二区三区| 午夜精品国产一区二区电影| 国产欧美日韩精品亚洲av| 桃红色精品国产亚洲av| 两个人看的免费小视频| av免费在线观看网站| 久久精品aⅴ一区二区三区四区| 亚洲九九香蕉| 久99久视频精品免费| 在线播放国产精品三级| 欧美最黄视频在线播放免费 | 在线观看免费视频日本深夜| 热re99久久精品国产66热6| 久久精品aⅴ一区二区三区四区| 午夜亚洲福利在线播放| 很黄的视频免费| 麻豆一二三区av精品| 色哟哟哟哟哟哟| 色老头精品视频在线观看| 韩国精品一区二区三区| 日本黄色日本黄色录像| 熟女少妇亚洲综合色aaa.| 免费在线观看影片大全网站| 夜夜爽天天搞| 高清欧美精品videossex| 免费看a级黄色片| 亚洲国产精品sss在线观看 | 热re99久久精品国产66热6| 久久精品国产亚洲av香蕉五月| 中国美女看黄片| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩国产mv在线观看视频| 精品国产超薄肉色丝袜足j| 波多野结衣av一区二区av| videosex国产| 久99久视频精品免费| 99精品在免费线老司机午夜| 动漫黄色视频在线观看| 80岁老熟妇乱子伦牲交| 色精品久久人妻99蜜桃| 夫妻午夜视频| 老熟妇乱子伦视频在线观看| 国产高清激情床上av| 亚洲国产精品一区二区三区在线| 国产区一区二久久| 亚洲一区二区三区不卡视频| 无遮挡黄片免费观看| 狠狠狠狠99中文字幕| 免费av中文字幕在线| 老司机在亚洲福利影院| 91av网站免费观看| 久久国产亚洲av麻豆专区| 午夜a级毛片| 18禁黄网站禁片午夜丰满| 午夜激情av网站| 午夜福利在线免费观看网站| 日日爽夜夜爽网站| 亚洲第一青青草原| 国产成人啪精品午夜网站| 国产精品影院久久| av福利片在线| 超碰97精品在线观看| 69av精品久久久久久| 国产成人精品久久二区二区免费| 99在线人妻在线中文字幕| 多毛熟女@视频| 神马国产精品三级电影在线观看 | 嫩草影视91久久| www.www免费av| 国产免费男女视频| 亚洲av电影在线进入| 9色porny在线观看| 一进一出好大好爽视频| 成熟少妇高潮喷水视频| 成人三级黄色视频| 一进一出抽搐动态| 99久久久亚洲精品蜜臀av| 琪琪午夜伦伦电影理论片6080| 97超级碰碰碰精品色视频在线观看| 一级黄色大片毛片| 亚洲第一青青草原| 欧美黄色淫秽网站| av天堂在线播放| tocl精华| 午夜两性在线视频| 久久精品成人免费网站| 两性午夜刺激爽爽歪歪视频在线观看 | 精品欧美一区二区三区在线| 婷婷精品国产亚洲av在线| 两性夫妻黄色片| 老司机在亚洲福利影院| 高清黄色对白视频在线免费看| 精品国产国语对白av| 亚洲av美国av| 久久人妻av系列| 久久国产精品男人的天堂亚洲| 欧美日韩福利视频一区二区| 黄色 视频免费看| 老鸭窝网址在线观看| 在线观看舔阴道视频| 欧美日本中文国产一区发布| xxx96com| a级片在线免费高清观看视频| 中出人妻视频一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久亚洲精品国产蜜桃av| av中文乱码字幕在线| 午夜精品久久久久久毛片777| 在线观看免费视频日本深夜| 视频在线观看一区二区三区| 亚洲色图av天堂| 欧美日韩亚洲综合一区二区三区_| 啦啦啦在线免费观看视频4| a级片在线免费高清观看视频| 校园春色视频在线观看| 精品一区二区三卡| 精品午夜福利视频在线观看一区| 在线观看一区二区三区激情| 欧美黄色淫秽网站| 欧美日本亚洲视频在线播放| 精品久久久久久电影网| 99久久久亚洲精品蜜臀av| 一夜夜www| 狂野欧美激情性xxxx| 免费在线观看亚洲国产| 欧美中文综合在线视频| 中文亚洲av片在线观看爽| 日韩欧美三级三区| 欧美成狂野欧美在线观看| 午夜福利影视在线免费观看| 99热只有精品国产| 亚洲第一欧美日韩一区二区三区| 在线观看www视频免费| 最近最新中文字幕大全免费视频| 一级毛片女人18水好多| 99re在线观看精品视频| 国产精品美女特级片免费视频播放器 | 国产成人精品在线电影| 法律面前人人平等表现在哪些方面| 水蜜桃什么品种好| 国产蜜桃级精品一区二区三区| 中文字幕人妻熟女乱码| 精品卡一卡二卡四卡免费| 欧美av亚洲av综合av国产av| 大型av网站在线播放| 国产高清videossex| 新久久久久国产一级毛片| 久久久久国内视频| 韩国av一区二区三区四区| 久久精品国产亚洲av香蕉五月| 国产97色在线日韩免费| 亚洲欧美日韩另类电影网站| 久久中文字幕人妻熟女| 午夜免费鲁丝| 国产免费av片在线观看野外av| 女人被狂操c到高潮| 黄色 视频免费看| 人成视频在线观看免费观看| 看片在线看免费视频| 男女下面进入的视频免费午夜 | 少妇粗大呻吟视频| 日韩av在线大香蕉| 一级毛片精品| 一进一出好大好爽视频| 中文字幕色久视频| 每晚都被弄得嗷嗷叫到高潮| 国产精品 国内视频| 91在线观看av| 另类亚洲欧美激情| 在线观看日韩欧美| 国产精品乱码一区二三区的特点 | 免费在线观看亚洲国产| 看黄色毛片网站| 精品国产亚洲在线| 丝袜在线中文字幕| 狠狠狠狠99中文字幕| 国产成人免费无遮挡视频| 国产主播在线观看一区二区| 精品久久久久久电影网| 国产精品亚洲一级av第二区| 香蕉丝袜av| 免费在线观看日本一区| 午夜福利一区二区在线看| 久99久视频精品免费| 亚洲人成网站在线播放欧美日韩| 精品久久久久久久毛片微露脸| 国产精品久久电影中文字幕| 女人高潮潮喷娇喘18禁视频| 久久精品91无色码中文字幕| 中文字幕精品免费在线观看视频| 另类亚洲欧美激情| 国产亚洲欧美98| 在线观看免费视频日本深夜| 亚洲七黄色美女视频| av国产精品久久久久影院| 久久亚洲精品不卡| 桃色一区二区三区在线观看| 一级a爱视频在线免费观看| av有码第一页| 国产成人啪精品午夜网站| 97碰自拍视频| 久久亚洲真实| 精品久久久久久久久久免费视频 | 99在线人妻在线中文字幕| 精品国产一区二区久久| 国产精品乱码一区二三区的特点 | 国产精品九九99| 国产aⅴ精品一区二区三区波| 色在线成人网| 操出白浆在线播放| 久久香蕉精品热| 亚洲七黄色美女视频| 啦啦啦在线免费观看视频4| 日韩欧美一区视频在线观看| 很黄的视频免费| 在线观看www视频免费| 日日干狠狠操夜夜爽| 麻豆一二三区av精品| 亚洲成人国产一区在线观看| 欧美另类亚洲清纯唯美| 人人妻,人人澡人人爽秒播| 久久精品亚洲av国产电影网| 成人永久免费在线观看视频| www.999成人在线观看| 精品久久久久久成人av| 婷婷精品国产亚洲av在线| 久久午夜亚洲精品久久| 91九色精品人成在线观看| 国产av一区二区精品久久| 国产麻豆69| 黑人巨大精品欧美一区二区mp4| 女性生殖器流出的白浆| 久久人人爽av亚洲精品天堂| 国产av一区二区精品久久| 日本一区二区免费在线视频| 久久婷婷成人综合色麻豆| 男女下面插进去视频免费观看| 亚洲精品久久午夜乱码| 午夜a级毛片| 两人在一起打扑克的视频| 超碰97精品在线观看| 1024视频免费在线观看| 超碰成人久久| 黑丝袜美女国产一区| 大码成人一级视频| 日韩欧美国产一区二区入口| 午夜免费激情av| 99国产精品一区二区三区| 91精品三级在线观看| 成熟少妇高潮喷水视频| 午夜精品国产一区二区电影| 91国产中文字幕| 757午夜福利合集在线观看| 久久久久久久午夜电影 | 在线视频色国产色| 国产国语露脸激情在线看| 在线观看www视频免费| 亚洲国产欧美一区二区综合| 又黄又粗又硬又大视频| 亚洲中文av在线| 午夜免费鲁丝| 欧美午夜高清在线| 亚洲精品国产一区二区精华液| 亚洲精品在线观看二区| 69精品国产乱码久久久| 亚洲中文字幕日韩| 中亚洲国语对白在线视频| 女性被躁到高潮视频| 免费高清在线观看日韩| 看片在线看免费视频| 日本黄色日本黄色录像| 两个人看的免费小视频| 精品国产美女av久久久久小说| 女人被狂操c到高潮| 一区福利在线观看| 久久久久久久久免费视频了| 又黄又粗又硬又大视频| 啪啪无遮挡十八禁网站| 欧美亚洲日本最大视频资源| 女人精品久久久久毛片| 日韩欧美一区二区三区在线观看| 91老司机精品| 久久久精品欧美日韩精品| 国产精品乱码一区二三区的特点 | 黑人欧美特级aaaaaa片| 精品久久久久久久毛片微露脸| 欧美精品啪啪一区二区三区| 国产精品偷伦视频观看了| 欧美+亚洲+日韩+国产| 99久久综合精品五月天人人| 亚洲男人天堂网一区| 色综合婷婷激情| 亚洲aⅴ乱码一区二区在线播放 | 亚洲一区高清亚洲精品| 午夜免费观看网址| 丝袜美足系列| 日韩人妻精品一区2区三区| 免费在线观看影片大全网站| www国产在线视频色| 久久精品国产清高在天天线| 国产成人精品久久二区二区免费| 啪啪无遮挡十八禁网站| 少妇粗大呻吟视频| 久久久久国产一级毛片高清牌| 宅男免费午夜| 看黄色毛片网站| 99国产精品一区二区蜜桃av| 精品国产亚洲在线| 国产亚洲欧美98| 少妇被粗大的猛进出69影院| 99国产精品99久久久久| 免费搜索国产男女视频| 久久久久久人人人人人| 一级片'在线观看视频| 国产精品二区激情视频| 又黄又粗又硬又大视频| 青草久久国产| 亚洲少妇的诱惑av| 正在播放国产对白刺激| 午夜福利在线免费观看网站| 变态另类成人亚洲欧美熟女 | 一级毛片高清免费大全| av网站免费在线观看视频| 麻豆久久精品国产亚洲av | 精品国产美女av久久久久小说| 免费一级毛片在线播放高清视频 | 亚洲一码二码三码区别大吗| 欧美亚洲日本最大视频资源| 亚洲第一欧美日韩一区二区三区| 亚洲久久久国产精品| 韩国av一区二区三区四区| 国产精品久久视频播放| 久久欧美精品欧美久久欧美| 黄色丝袜av网址大全| 国产免费现黄频在线看| 亚洲欧美精品综合一区二区三区| 99久久国产精品久久久| 午夜福利一区二区在线看| 麻豆一二三区av精品| 久久久精品欧美日韩精品| 麻豆一二三区av精品| 亚洲第一青青草原| 国内毛片毛片毛片毛片毛片| 男男h啪啪无遮挡| 美女高潮到喷水免费观看| 一级毛片高清免费大全| 国产精品日韩av在线免费观看 | 久久人人爽av亚洲精品天堂| 人人妻人人爽人人添夜夜欢视频| 国产在线精品亚洲第一网站| 亚洲熟妇熟女久久| 麻豆一二三区av精品| 久久久精品欧美日韩精品| 女人爽到高潮嗷嗷叫在线视频| 一夜夜www| 亚洲欧美精品综合一区二区三区| 国产成人影院久久av| 精品一区二区三区视频在线观看免费 | 欧美日韩一级在线毛片| 男人舔女人的私密视频| 精品无人区乱码1区二区| 午夜免费成人在线视频| 成年女人毛片免费观看观看9| 久久国产精品男人的天堂亚洲| 高清av免费在线| 国产精品国产av在线观看| 黑人欧美特级aaaaaa片| 亚洲中文av在线| 精品久久久精品久久久| 男女之事视频高清在线观看| 美女国产高潮福利片在线看| 视频在线观看一区二区三区| 超碰97精品在线观看| 国产欧美日韩综合在线一区二区| 国产av在哪里看| 精品久久蜜臀av无| 亚洲精品久久成人aⅴ小说| 国产片内射在线| 91精品三级在线观看| 成人精品一区二区免费| 欧美激情高清一区二区三区| 久久久久国产精品人妻aⅴ院| 久久亚洲真实| 亚洲精品在线美女| 无人区码免费观看不卡| 色在线成人网| 国产成人啪精品午夜网站| 亚洲精品av麻豆狂野| 19禁男女啪啪无遮挡网站| 欧美乱码精品一区二区三区| 国产精品久久久久久人妻精品电影| 麻豆成人av在线观看| 一区二区三区精品91| 久久人人97超碰香蕉20202| 精品一区二区三区四区五区乱码| 久久国产乱子伦精品免费另类| 搡老乐熟女国产| 久久久久久大精品| 日韩精品中文字幕看吧| 一区二区三区精品91| 日韩精品青青久久久久久| 国产精品秋霞免费鲁丝片| 日韩成人在线观看一区二区三区| 亚洲avbb在线观看| 一区二区日韩欧美中文字幕| √禁漫天堂资源中文www| 99热只有精品国产| 丁香六月欧美| 免费观看人在逋| 欧美精品亚洲一区二区| 中文欧美无线码| 成人国产一区最新在线观看| 少妇的丰满在线观看| 男女做爰动态图高潮gif福利片 | 中文欧美无线码| 日韩欧美国产一区二区入口| 欧美成人免费av一区二区三区| 一进一出好大好爽视频| av国产精品久久久久影院| av在线天堂中文字幕 | 亚洲成人国产一区在线观看| 丁香六月欧美| 亚洲精品中文字幕一二三四区| 一级黄色大片毛片| 99香蕉大伊视频| 91成人精品电影| 国产精品电影一区二区三区| 中国美女看黄片| 免费少妇av软件| 亚洲av成人一区二区三| 如日韩欧美国产精品一区二区三区| 日韩欧美一区视频在线观看| 无限看片的www在线观看|