• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxygen-vacancy-rich phenanthroline/TiO2 nanocomposites: An integrated adsorption, detection and photocatalytic material for complex pollutants remediation

    2022-06-18 03:00:40PinghuaChenHuitaoZhengHualinJiangJunLiuXinmanTuWeiboZhangBaileyPhillipsLeiFangJianPingZou
    Chinese Chemical Letters 2022年2期

    Pinghua Chen, Huitao Zheng, Hualin Jiang,*, Jun Liu, Xinman Tu,Weibo Zhang, Bailey Phillips, Lei Fang,*, Jian-Ping Zou,*

    a Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China

    b Department of Applied Chemistry, College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China

    c Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States

    d School of Resources, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China

    ABSTRACT To address the challenge of treating complex pollutants containing heavy metals and organic compounds,a phenanthroline/TiO2 nanocomposite with rich oxygen vacancy defects was synthesized to integrate the functions of pollutant detection, adsorption, and photocatalytic degradation.The results showed that the nanocomposite could adsorb Cr3+ and the process could be transduced into a colorimetric signal for qualitative and quantitative detection.The adsorbed heavy metal also exhibited a synergistically enhanced photocatalytic degradation of a model organic pollutant under visible light.The simultaneous adsorption, detection, and photocatalysis could reduce the multifarious operations and high cost of traditional environmental remediation methods, indicating a strong application potential for the nanocomposite.

    Keywords:Heavy metals Organic contaminants Adsorption Detection Photocatalytic degradation Oxygen vacancy

    With the rapid development of human society, the increasing discharge of pollutants into the environment poses a serious hazard to all living things.Organic pollutants and heavy metals are among the most concerning contemporary contaminants due to their high toxicity and persistence in the environment.Consequently, methods for the detection and removal of these pollutants are important.Colorimetric detection has attracted much attention because it is intuitive and requires relatively simple instrumentation.Adsorption is widely used to remove heavy metals, and its low-cost and practicality make it suitable for use in rural and remote areas [1,2].The photocatalytic removal of organic pollutants has seen rapid development in recent years due to its low cost,environmental-friendliness, and ease of operation [3-6].

    Organic pollutants and heavy metals are two important classes of contaminants [7-9], and remediation strategies that only target one type of them are usually ineffective in treating complex pollution systems.Consequently, different methods are typically coupled together as a broad treatment strategy.However, the multiple treatment steps and materials employed result in tedious operations and high costs [10-12].In this context, the emergence of novel multifunctional materials that couple high performance adsorption, detection and photocatalysis are exciting prospects for the future of environmental remediation technology.Oxygen vacancy defects can confer materials with beneficial properties, such as plentiful adsorption active sites, enhanced conductivity and suppression of electron-hole pair (e--h+) recombination.Accordingly,they have been widely engineered into adsorbents [13], detectors[14] and photocatalysts [15].With this potential in mind, we envisaged that the introduction of oxygen vacancies could endow a material with the multifunctionality of adsorption, detection and photocatalysis.

    With the aim to effectively treat organic and heavy metal contaminants, an oxygen-vacancy-rich nanocomposite of phenanthroline (Phen) modified TiO2(Phen/TiO2) was synthesized by a facile single-step hydrothermal method.Methyl orange (MO) and Cr3+were selected as the organic and heavy metal model contaminants due to their toxicity and ubiquity.

    Scanning electron microscopy and transmission electron microscopy were used to analyze the nanoparticle morphology of Phen/TiO2(Figs.S2a and b in Supporting information).The elemental mapping analysis (Figs.S2c-g in Supporting information)demonstrated that C, N, O and Ti were evenly distributed on the Phen/TiO2surface, suggesting the successful integration of Phen and TiO2.The high-resolution X-ray photoelectron spectroscopy(XPS) spectra of the Ti 2p and O 1s regions of TiO2and Phen/TiO2exhibited a significant binding energy decrease in both Ti 2p and Ti-O of Phen/TiO2(Figs.1a and b).This phenomenon indicated the existence of oxygen vacancies in Phen/TiO2[16].The additional e-remaining after the O atoms were removed from the surface of TiO2increases the e-cloud density around the Ti and O atoms close to the oxygen vacancies, thus decreasing the binding energies of Ti and O [16].The N 1s high-resolution XPS spectrum of Phen/TiO2could be resolved into three peaks at 397.49,399.27 and 400.20 eV, corresponding to Ti–N, C=N and N–O, respectively (Fig.1c) [17-18].The N–O and C=N originated from adventitious organic compounds and phenanthroline, respectively.The N-Ti bond energies of Phen/TiO2indicate that the N atoms in phenanthroline were coordinated with the Ti atoms of TiO2.This interaction between N and Ti may reduce the strength of the O-Ti bond in TiO2, allowing the O atoms to leave, thereby promoting the formation of oxygen vacancies.To further confirm the existence of oxygen vacancies in Phen/TiO2, an electron paramagnetic resonance (EPR) spectroscopy investigation was carried out.Fig.1d shows the EPR spectra of Phen/TiO2and TiO2.The EPR spectrum of Phen/TiO2exhibited a strong signal atg= 2.003, which was absent for TiO2.This signal could be attributed to the e-trapped in the oxygen vacancies and is strong evidence of their existence [19-20].

    Fig.1.High-resolution of XPS in the (a) Ti 2p, (b) O 1s regions of TiO2 and Phen/TiO2.(c) High-resolution of XPS in the N 1s region of Phen/TiO2.(d) EPR spectra of Phen/TiO2 and TiO2.

    It was anticipated that Phen/TiO2would adsorb Cr3+viachelation with the Lewis base N centers of Phen along with the electrostatic attraction from hydroxyl groups on the surface of TiO2.The coordination event could be transduced into a colorimetric signalviametal-ligand charge transfer allowing the nanocomposite to operate as a chemosensor and an adsorbent.The isothermal and kinetic studies of Cr3+adsorption by Phen/TiO2are given in Figs.S3 and S4 (Supporting information), and Tables S1 and S2 (Supporting infromation); the experimental details are given in Supporting information.The maximum adsorption capacity of Cr3+was calculated to be 12.76 mg/g based on the Langmuir isotherm model, which is comparable with those of reported benchmark adsorbents for Cr3+(Table S3 in Supporting Infromation).The kinetic study revealedpseudo-first order kinetic behavior (rate constant,k= 1 × 10-2g mg-1min-1) depending on the concentrations of Cr3+and Phen/TiO2.In mixture of co-existing ions, Phen/TiO2exhibited high adsorption ability towards Cr3+, indicating its highly selective adsorption performance (Fig.S8 in Supporting infromation).

    To demonstrate the qualitative detection capability of Phen/TiO2towards Cr3+, the nanocomposite was used to adsorb different metal ions, and its color-change was observed visually.Fig.2a shows that the color of the Phen/TiO2nanocomposite was light yellow.When it captured Cr3+, its color rapidly changed to green.The color-change was highly specific to Cr3+.Other metal ions,such as Mn2+, Zn2+, Pb2+, Co2+, Ag+, Cd2+, Bi2+, Ce2+, Hg2+,In2+, Ni2+, and Zr2+did not induce a color change, while Fe3+and Cr2O72-induced color changes of red and bright yellow, respectively, even at concentrations five times than that of Cr3+.These results demonstrated that Cr3+could be visually and qualitatively detected by Phen/TiO2.In order to quantitatively detect Cr3+, Phen/TiO2was used to adsorb varying concentrations of Cr3+.The chroma of Cr3+adsorbed on Phen/TiO2was analyzed using visible-light difference diffuse reflectance spectroscopy (DRS).Fig.2b shows the absorbance peak atλ= 621 nm from the diffuse reflectance spectra (DRS) of Cr3+adsorbed Phen/TiO2at pH 7 and a temperature of 30 °C; the intensity of the peak at 621 nm increased with increasing concentration of Cr3+.The intensity of the peak at 621 nm in the difference DRS was plotted against the Cr3+concentration (Fig.2c) and a linear relationship (calibration curve) was obtained over the concentration range 1-20 mg/L(insert in Fig 2c).Using this method, the Cr3+concentration could be quantitatively determined from the color change of Phen/TiO2measured with DRS.The limit of detection (LD) for Cr3+was estimated to be 0.42 mg/L from the blank response according to Eq.1:

    Fig.2.(a) Photographic images of Phen/TiO2 powders after being treated with different metal ions.Mn2+, Zn2+, Pb2+, Co2+, Ag+, Bi2+, Ce2+, Hg2+, In2+, Ni2+, Zr2+, Fe3+,Cr2O72- and Cd2+: 100 mg/L; Cr3+: 20 mg/L; Adsorbent dosage: 1 g/L.(b) Concentration-dependent changes in visible difference DRS of Phen/TiO2 during the detection of Cr3+.(c) Concentration-dependent changes at λ = 621 nm (Adsorbent dosage was 1 g/L; The concentrations of Cr3+ were from 1 mg/L to 100 mg/L.Temperature was 30°C, pH was 7.The experiments were performed in triple and the related error bars are indicated).(d) Photocatalytic degradation of MO over the bare TiO2, Phen/TiO2 and Phen/TiO2-Cr3+ (The photocatalyst dosage was 1 g/L and the concentration of MO was 10 mg/L, room temperature.).

    whereK= 3,Sbwas the standard deviation (SD) for the blank, andmwas the slope of the linear calibration curve.The influence of pH, temperature and co-existing ions towards Phen/TiO2detecting Cr3+are shown in Figs.S14-S16 (Supporting infromation).

    To verify the accuracy of the colorimetric Cr3+analysis obtained using the Phen/TiO2nanomaterial, the results were compared with those obtained by atomic absorption spectrometry (AAS) (Table S4 in Supporting Infromation).The relative standard deviation (SD)of the difference between the absolute values obtained by each method were<3%, confirming the accuracy of the Phen/TiO2-based method.

    The bright color exhibited by the Cr3+adsorbed Phen/TiO2(Phen/TiO2-Cr3+) indicated that the nanomaterial may possess enhanced light absorption capacity.It was envisioned that this feature could be exploited to enhance the photocatalytic activity,which could be applied to the degradation of organic pollutants.In this way, the adsorbed Cr3+could act as a synergistic photocatalyst for the remediation of organic pollutants.To test this hypothesis, Phen/TiO2was pre-adsorbed with 1, 20, 50 and 100 mg/L of Cr3+and used to photocatalytically degrade MO under visible light irradiation (Fig.2d).Phen/TiO2exhibited higher photocatalytic capacity than TiO2, indicating that the nanomaterial had enhanced visible light activity.Adsorption of Cr3+onto Phen/TiO2further improved the photocatalytic activity.The photocatalytic degradation of MO increased as the Cr3+concentration increased from 1 mg/L to 50 mg/L, reaching a plateau beyond 50 mg/L.Presumably the hyperchromic effect resulting from Cr3+adsorption was almost saturated at a Cr3+concentration of 50 mg/L, so further adsorption of Cr3+had no additional influence.At an optimum Cr3+adsorption of 50 mg/L, Phen/TiO2-Cr3+could degrade ~98% of 10 mg/L MO solution within 100 min.

    The X-ray diffraction (XRD) patterns of the crystal phases of TiO2, Phen/TiO2, and Phen/TiO2-Cr3+are shown in Fig.S5 (Supporting infromation).The results showed that the incorporation of Phen changed the crystal phase of TiO2from pure anatase to mixed phases of anatase, rutile and brookite.Mixtures of different crystal phases of TiO2were shown to enhance visible light absorption due to the increased probability of forming heterojunctions in the TiO2, thereby boosting the related photocatalytic performance [21].To understand the mechanism of the increased photocatalytic activity demonstrated by the nanomaterial, the photoelectric properties of Phen/TiO2and Phen/TiO2-Cr3+were characterized.Fig.3a shows that the dimensions of the light absorption edges of Phen/TiO2, Phen/TiO2-Cr3+(1), Phen/TiO2-Cr3+(20),Phen/TiO2-Cr3+(50) and Phen/TiO2-Cr3+(100) were 408, 417, 423,431 and 428 nm, respectively; (1), (20), (50) and (100) refer to the concentrations (mg/L) of adsorbed Cr3+.The hyperchromicity resulting from the adsorption of Cr3+produced a redshift of the absorption edge of Phen/TiO2.However, when the concentration of Cr3+was>50 mg/L the hyperchromicity was saturated and the redshift of the adsorption edge ceased.These observations were consistent with the results of the photocatalytic degradation experiments.The nanomaterials were additionally characterized by electrochemical impedance spectroscopy (EIS) (Fig.3b).Phen/TiO2exhibited the highest impedance.The impedance decreased with the addition of Cr3+over the concentration range 1-50 mg/L but increased at concentrations>50 mg/L Cr3+.In other words, Phen/TiO2in the presence of 50 mg/mL Cr3+exhibited the smallest impedance among the samples, suggesting that the adsorption of Cr3+significantly decreased the impedance of Phen/TiO2[22].The photocurrent (PC) spectroscopy responses and photoluminescence (PL) spectra of the samples are shown in Figs.3c and d.Compared with EIS, the PC responses and PL spectra exhibited similar trends following Cr3+adsorption by Phen/TiO2.The corresponding photo-electronic properties of the samples increased with the increasing Cr3+adsorption to reach maximum values at a Cr3+concentration of 50 mg/L and decreased thereafter.The magnitude of the current density in PC spectra reflects the number of e-produced in the sample by light irradiation[23].In PL spectra, a low fluorescence intensity is indicative of the slow recombination rate of photo-generated charge carriers [24].Phen/TiO2-Cr3+(50) had the highest PC density and lowest PL intensity.

    Fig.3.(a) DRS of Phen/TiO2 and Phen/TiO2-Cr3+.(b) Electrochemical impedance spectroscopy of Phen/TiO2 and Phen/TiO2-Cr3+.(c) Photocurrent responses of Phen/TiO2 and Phen/TiO2-Cr3+ under visible light.(d) Photoluminescence spectra of Phen/TiO2 and Phen/TiO2-Cr3+.The values in the brackets mean the feeding concentration (mg/L) of Cr3+ in the materials preparation.

    To determine the active species in the degradation of MO, various scavengers were added to the photocatalysis system.The results given in Fig.S6 (Supporting infromation) indicated that h+and·O2-are the important active species in the degradation of MO while e-and·OH play a minor role.

    Based on these results, a mechanism for the photocatalytic degradation of MO by Phen/TiO2-Cr3+under visible light was proposed: Although pure anatase TiO2cannot be excited under visible light, the incorporation of Phen modified the crystal phase of TiO2from pure anatase to mixed phases of anatase, rutile and brookite;visible light absorbed by the modified phase could now excite efrom the valence band (VB) to the conduction band (CB) leaving h+(on the VB) [21,25].Furthermore, the hyperchromic effect resulting from the N-chelation of Cr3+by Phen enhanced the absorption of visible light, while also decreasing the impedance, which facilitated the photo-generation of charge carriers and depressed the recombination of charge carriers, all boosting the photocatalytic performance [26].The photo-generated e-in the CB could then react with O2to produce·O2-, which oxidized and degraded MO.The photo-generated h+on the VB could also oxidize and degrade the pollutant.

    An oxygen-vacancy-rich nanocomposite of Phen/TiO2, integrating the functions of detection, adsorption, and photocatalytic degradation of pollutants, was successfully prepared by a facile one-step hydro-thermal method.Phen/TiO2could simultaneously adsorb and detect Cr3+while the adsorbed heavy metal could synergistically enhance the photocatalytic degradation of MO under visible light irradiation.The integrated multi-functionality of the Phen/TiO2demonstrated that these nanomaterials may offer a credible and efficient alternative to traditional adsorbents used for the remediation of complex pollutants.The strategy developed here may also provide a new outlook for the design of functional materials for practical applications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The project is supported by the National Natural Science Foundation of China (Nos.51978323, 42077162), the Key Research and Development Project of Jiangxi Province (No.20203BBGL73229),and the Natural Science Foundation of Jiangxi Province (No.20192ACBL20042).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.07.002.

    99久久99久久久精品蜜桃| 久久久精品国产亚洲av高清涩受| 亚洲国产精品999在线| 在线播放国产精品三级| 免费女性裸体啪啪无遮挡网站| 又紧又爽又黄一区二区| 亚洲av电影不卡..在线观看| 久久人妻熟女aⅴ| 国产在线观看jvid| av电影中文网址| 中文字幕色久视频| a在线观看视频网站| 两个人免费观看高清视频| 久久人妻av系列| 久久久久久久久久久久大奶| 村上凉子中文字幕在线| 欧美日韩精品网址| 黄色丝袜av网址大全| 香蕉丝袜av| 午夜福利高清视频| 一级毛片精品| 国产极品粉嫩免费观看在线| 欧美日韩亚洲综合一区二区三区_| 最好的美女福利视频网| 曰老女人黄片| www.熟女人妻精品国产| 别揉我奶头~嗯~啊~动态视频| or卡值多少钱| 亚洲国产看品久久| 女同久久另类99精品国产91| 精品久久久久久久久久免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一区二区三区综合在线观看| 一进一出抽搐gif免费好疼| www国产在线视频色| 亚洲中文av在线| 婷婷六月久久综合丁香| 黄色 视频免费看| 精品人妻1区二区| 亚洲av成人不卡在线观看播放网| 香蕉久久夜色| 亚洲精品国产色婷婷电影| 可以在线观看的亚洲视频| av超薄肉色丝袜交足视频| 99热只有精品国产| 18禁观看日本| 亚洲精品av麻豆狂野| 两性夫妻黄色片| 免费高清视频大片| 麻豆久久精品国产亚洲av| 久久国产亚洲av麻豆专区| 在线观看午夜福利视频| 宅男免费午夜| 国产成人欧美| 女人爽到高潮嗷嗷叫在线视频| 欧美另类亚洲清纯唯美| 免费搜索国产男女视频| 亚洲美女黄片视频| 亚洲最大成人中文| 正在播放国产对白刺激| 丝袜人妻中文字幕| 午夜福利免费观看在线| 成人三级黄色视频| 99国产精品一区二区三区| 国产av一区在线观看免费| 两人在一起打扑克的视频| 此物有八面人人有两片| 91大片在线观看| 黄色片一级片一级黄色片| 黄频高清免费视频| 岛国视频午夜一区免费看| 嫩草影视91久久| 超碰成人久久| 国产片内射在线| 国产区一区二久久| 高清毛片免费观看视频网站| 亚洲av电影在线进入| 久热这里只有精品99| 久久久久亚洲av毛片大全| 欧美精品啪啪一区二区三区| 我的亚洲天堂| 亚洲成国产人片在线观看| 成人手机av| 欧美日韩中文字幕国产精品一区二区三区 | 欧美黑人欧美精品刺激| 亚洲av成人不卡在线观看播放网| 不卡av一区二区三区| 91在线观看av| 亚洲情色 制服丝袜| www国产在线视频色| 女警被强在线播放| 国产欧美日韩一区二区精品| 久久久久久久久久久久大奶| 国产精品精品国产色婷婷| 亚洲第一青青草原| 久久狼人影院| 曰老女人黄片| 看片在线看免费视频| 在线播放国产精品三级| 中文字幕色久视频| 一进一出抽搐动态| 午夜精品在线福利| 一边摸一边抽搐一进一小说| 中文字幕另类日韩欧美亚洲嫩草| 久久中文看片网| 大陆偷拍与自拍| 亚洲第一青青草原| 黄色女人牲交| 亚洲精品一区av在线观看| 精品国产亚洲在线| 777久久人妻少妇嫩草av网站| 黑人操中国人逼视频| 50天的宝宝边吃奶边哭怎么回事| 欧美一级a爱片免费观看看 | 在线观看免费视频日本深夜| 欧美绝顶高潮抽搐喷水| 真人做人爱边吃奶动态| 夜夜躁狠狠躁天天躁| 九色国产91popny在线| 制服人妻中文乱码| 91大片在线观看| √禁漫天堂资源中文www| 精品国产国语对白av| 岛国在线观看网站| 亚洲一区二区三区不卡视频| 91国产中文字幕| 最好的美女福利视频网| 亚洲少妇的诱惑av| 久久欧美精品欧美久久欧美| 老司机靠b影院| 久久精品91蜜桃| 麻豆成人av在线观看| 成人永久免费在线观看视频| 涩涩av久久男人的天堂| 在线观看www视频免费| 少妇 在线观看| 亚洲av五月六月丁香网| 久热爱精品视频在线9| 成人亚洲精品av一区二区| www日本在线高清视频| 波多野结衣av一区二区av| 亚洲午夜理论影院| 丁香六月欧美| 精品高清国产在线一区| 日韩 欧美 亚洲 中文字幕| 日韩精品中文字幕看吧| 黑人操中国人逼视频| 国产精品久久久久久人妻精品电影| 一进一出好大好爽视频| 91麻豆精品激情在线观看国产| 他把我摸到了高潮在线观看| 两个人免费观看高清视频| 午夜a级毛片| 搡老岳熟女国产| 午夜影院日韩av| 999久久久国产精品视频| 色哟哟哟哟哟哟| 可以免费在线观看a视频的电影网站| 午夜老司机福利片| 无人区码免费观看不卡| 国产区一区二久久| x7x7x7水蜜桃| 性欧美人与动物交配| 精品欧美一区二区三区在线| 精品日产1卡2卡| www.精华液| 亚洲人成网站在线播放欧美日韩| 三级毛片av免费| 亚洲aⅴ乱码一区二区在线播放 | 国产麻豆成人av免费视频| 日韩视频一区二区在线观看| 在线免费观看的www视频| 亚洲欧美日韩无卡精品| 日韩大码丰满熟妇| 免费高清在线观看日韩| 亚洲av日韩精品久久久久久密| 90打野战视频偷拍视频| 女性生殖器流出的白浆| 国产一区二区三区综合在线观看| 变态另类丝袜制服| 长腿黑丝高跟| 天堂√8在线中文| 亚洲久久久国产精品| 亚洲视频免费观看视频| 国产免费av片在线观看野外av| 精品国产美女av久久久久小说| 一二三四社区在线视频社区8| 88av欧美| 成人免费观看视频高清| 国产亚洲欧美在线一区二区| 男女床上黄色一级片免费看| 深夜精品福利| 亚洲av成人av| 男女床上黄色一级片免费看| 午夜视频精品福利| 999久久久精品免费观看国产| 18禁观看日本| 熟妇人妻久久中文字幕3abv| 国产成人av激情在线播放| 久9热在线精品视频| 9色porny在线观看| 成年版毛片免费区| 亚洲成人免费电影在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 国内精品久久久久久久电影| 在线av久久热| √禁漫天堂资源中文www| 午夜久久久在线观看| av天堂久久9| 亚洲欧美日韩高清在线视频| 亚洲精品av麻豆狂野| 91九色精品人成在线观看| 老司机深夜福利视频在线观看| www日本在线高清视频| 亚洲三区欧美一区| 国产精品久久久久久亚洲av鲁大| 无遮挡黄片免费观看| avwww免费| 人人妻人人爽人人添夜夜欢视频| 欧美日韩中文字幕国产精品一区二区三区 | 无遮挡黄片免费观看| 一级a爱片免费观看的视频| 久久精品国产清高在天天线| 男女床上黄色一级片免费看| 99国产综合亚洲精品| 国产精品久久久久久人妻精品电影| 一区二区三区精品91| 欧美色视频一区免费| 在线av久久热| 非洲黑人性xxxx精品又粗又长| 老司机午夜十八禁免费视频| 国产精品久久视频播放| 18禁美女被吸乳视频| 最近最新免费中文字幕在线| 夜夜爽天天搞| 亚洲人成电影免费在线| 精品午夜福利视频在线观看一区| 久久香蕉精品热| 日韩大尺度精品在线看网址 | 国产又色又爽无遮挡免费看| 涩涩av久久男人的天堂| 国产av一区二区精品久久| 日韩三级视频一区二区三区| 91av网站免费观看| 最近最新免费中文字幕在线| 一进一出抽搐动态| 日本在线视频免费播放| 制服人妻中文乱码| 精品国产国语对白av| 中文亚洲av片在线观看爽| 久久国产乱子伦精品免费另类| 久久中文看片网| 久久人妻熟女aⅴ| 在线观看免费日韩欧美大片| 亚洲人成电影观看| 视频在线观看一区二区三区| 免费不卡黄色视频| av天堂久久9| 色播在线永久视频| 久热爱精品视频在线9| 日韩精品青青久久久久久| 巨乳人妻的诱惑在线观看| 天堂动漫精品| 免费高清在线观看日韩| 18美女黄网站色大片免费观看| 大香蕉久久成人网| 精品国产一区二区久久| 中出人妻视频一区二区| 亚洲第一电影网av| 国产1区2区3区精品| 亚洲va日本ⅴa欧美va伊人久久| 亚洲中文字幕日韩| 美女免费视频网站| 啦啦啦 在线观看视频| 国产亚洲精品久久久久5区| 久久九九热精品免费| 三级毛片av免费| 日韩欧美国产在线观看| 欧美乱码精品一区二区三区| 久久精品亚洲熟妇少妇任你| 12—13女人毛片做爰片一| 日韩 欧美 亚洲 中文字幕| 免费高清视频大片| 日韩高清综合在线| 大型av网站在线播放| 久久久久九九精品影院| 首页视频小说图片口味搜索| 亚洲天堂国产精品一区在线| 欧美绝顶高潮抽搐喷水| 好男人电影高清在线观看| 久久天堂一区二区三区四区| 亚洲性夜色夜夜综合| 欧美色视频一区免费| 欧美成人免费av一区二区三区| 欧美一级a爱片免费观看看 | 欧美在线黄色| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲片人在线观看| 19禁男女啪啪无遮挡网站| 制服丝袜大香蕉在线| av福利片在线| 色尼玛亚洲综合影院| 国产亚洲精品综合一区在线观看 | 黑丝袜美女国产一区| 亚洲一码二码三码区别大吗| 日韩有码中文字幕| xxx96com| 国产精品免费视频内射| 午夜福利18| 亚洲av电影在线进入| 国产熟女午夜一区二区三区| 法律面前人人平等表现在哪些方面| 热re99久久国产66热| 精品国产亚洲在线| 男女下面进入的视频免费午夜 | 国产熟女xx| 12—13女人毛片做爰片一| 一区二区日韩欧美中文字幕| 免费高清在线观看日韩| 久久精品成人免费网站| 亚洲成a人片在线一区二区| 啦啦啦观看免费观看视频高清 | 91精品三级在线观看| 大型av网站在线播放| 亚洲免费av在线视频| 一级毛片高清免费大全| 精品不卡国产一区二区三区| 久久欧美精品欧美久久欧美| 欧美黄色片欧美黄色片| 在线天堂中文资源库| 久久天躁狠狠躁夜夜2o2o| 精品国产乱码久久久久久男人| 欧美激情高清一区二区三区| 18禁黄网站禁片午夜丰满| 人人澡人人妻人| 欧美精品亚洲一区二区| 色在线成人网| 天天添夜夜摸| 香蕉国产在线看| 久久人人爽av亚洲精品天堂| 黄色成人免费大全| 涩涩av久久男人的天堂| 国产三级黄色录像| 69精品国产乱码久久久| 最新美女视频免费是黄的| 色婷婷久久久亚洲欧美| 中文字幕人成人乱码亚洲影| 日韩视频一区二区在线观看| 国产熟女午夜一区二区三区| 最新美女视频免费是黄的| 一二三四在线观看免费中文在| 午夜影院日韩av| 国产一区二区三区综合在线观看| 日韩大码丰满熟妇| 日本撒尿小便嘘嘘汇集6| 国产精品野战在线观看| 亚洲成人免费电影在线观看| 他把我摸到了高潮在线观看| 人成视频在线观看免费观看| 好男人在线观看高清免费视频 | 精品第一国产精品| 大型黄色视频在线免费观看| 国产91精品成人一区二区三区| 97人妻天天添夜夜摸| 91成人精品电影| 一夜夜www| 欧美一级毛片孕妇| 免费在线观看视频国产中文字幕亚洲| 色在线成人网| 日韩视频一区二区在线观看| 在线av久久热| 不卡av一区二区三区| 国产精品影院久久| 黄色视频,在线免费观看| 性欧美人与动物交配| 久久精品国产综合久久久| 男人舔女人的私密视频| 免费在线观看完整版高清| 欧美成狂野欧美在线观看| 亚洲情色 制服丝袜| 在线观看66精品国产| 欧美在线黄色| а√天堂www在线а√下载| 精品一区二区三区四区五区乱码| 国产成人精品久久二区二区免费| 亚洲av成人不卡在线观看播放网| 露出奶头的视频| 非洲黑人性xxxx精品又粗又长| 热re99久久国产66热| 18禁观看日本| 亚洲无线在线观看| 女人精品久久久久毛片| 超碰成人久久| 丰满的人妻完整版| 桃红色精品国产亚洲av| 精品一区二区三区av网在线观看| 亚洲成人久久性| 国产成人精品在线电影| 精品久久蜜臀av无| 亚洲欧美精品综合一区二区三区| 国产精品久久久久久精品电影 | 国产精品二区激情视频| 欧美激情高清一区二区三区| bbb黄色大片| 99久久99久久久精品蜜桃| 在线视频色国产色| 在线永久观看黄色视频| 俄罗斯特黄特色一大片| 别揉我奶头~嗯~啊~动态视频| 欧洲精品卡2卡3卡4卡5卡区| 此物有八面人人有两片| 满18在线观看网站| 性欧美人与动物交配| 看黄色毛片网站| 免费看a级黄色片| 欧美日韩乱码在线| 欧美中文日本在线观看视频| 日韩精品中文字幕看吧| 少妇被粗大的猛进出69影院| 又大又爽又粗| 日韩大尺度精品在线看网址 | 久久久久久久精品吃奶| √禁漫天堂资源中文www| 黄网站色视频无遮挡免费观看| 国产午夜精品久久久久久| 亚洲欧美激情综合另类| 欧美精品啪啪一区二区三区| avwww免费| 桃红色精品国产亚洲av| 黑人欧美特级aaaaaa片| 日韩中文字幕欧美一区二区| 亚洲精品粉嫩美女一区| 欧美丝袜亚洲另类 | 天堂动漫精品| 成人手机av| 人妻丰满熟妇av一区二区三区| 麻豆久久精品国产亚洲av| 嫩草影院精品99| 可以免费在线观看a视频的电影网站| 9热在线视频观看99| 宅男免费午夜| 日本一区二区免费在线视频| 熟妇人妻久久中文字幕3abv| 亚洲成人精品中文字幕电影| 欧美在线一区亚洲| av天堂久久9| 久久婷婷成人综合色麻豆| 变态另类丝袜制服| 最新在线观看一区二区三区| 手机成人av网站| 男人舔女人下体高潮全视频| 成在线人永久免费视频| 99久久综合精品五月天人人| 国产精品一区二区精品视频观看| 美女高潮喷水抽搐中文字幕| 美女 人体艺术 gogo| 老司机深夜福利视频在线观看| 免费av毛片视频| 69精品国产乱码久久久| 熟妇人妻久久中文字幕3abv| 久热这里只有精品99| 两性夫妻黄色片| 韩国av一区二区三区四区| 日韩欧美一区视频在线观看| 99在线视频只有这里精品首页| 久久国产亚洲av麻豆专区| 一级黄色大片毛片| 男人舔女人的私密视频| cao死你这个sao货| 免费在线观看日本一区| 国产又爽黄色视频| 中文字幕人妻熟女乱码| 精品福利观看| 国产精品自产拍在线观看55亚洲| 色尼玛亚洲综合影院| 久久精品91蜜桃| 久久精品人人爽人人爽视色| 国产激情久久老熟女| 嫩草影视91久久| 免费看十八禁软件| 咕卡用的链子| 色综合亚洲欧美另类图片| 最新在线观看一区二区三区| 妹子高潮喷水视频| 69av精品久久久久久| 欧美最黄视频在线播放免费| 亚洲欧美日韩无卡精品| 在线观看免费日韩欧美大片| 欧美性长视频在线观看| 亚洲,欧美精品.| 欧美中文日本在线观看视频| 亚洲精品中文字幕在线视频| 男女之事视频高清在线观看| 91老司机精品| 亚洲国产精品999在线| 国产欧美日韩综合在线一区二区| 黄色成人免费大全| 在线天堂中文资源库| 国产精品一区二区免费欧美| 国产又色又爽无遮挡免费看| 国产麻豆69| 精品国产超薄肉色丝袜足j| 国产成人精品久久二区二区91| 天堂影院成人在线观看| 午夜福利18| 国产成人av教育| 久热爱精品视频在线9| 日韩视频一区二区在线观看| 国产在线精品亚洲第一网站| 日韩 欧美 亚洲 中文字幕| 国产精品秋霞免费鲁丝片| 精品一区二区三区视频在线观看免费| 男女之事视频高清在线观看| 在线国产一区二区在线| 免费高清视频大片| 伦理电影免费视频| 99re在线观看精品视频| 性少妇av在线| 夜夜看夜夜爽夜夜摸| 一个人观看的视频www高清免费观看 | 日韩精品免费视频一区二区三区| 在线观看免费午夜福利视频| 欧美成人午夜精品| 51午夜福利影视在线观看| 色综合婷婷激情| 久久精品影院6| 国产aⅴ精品一区二区三区波| 啦啦啦免费观看视频1| 两人在一起打扑克的视频| 99久久久亚洲精品蜜臀av| 丝袜人妻中文字幕| 岛国在线观看网站| 丝袜美腿诱惑在线| 热re99久久国产66热| www.999成人在线观看| 国内久久婷婷六月综合欲色啪| 999久久久国产精品视频| 精品熟女少妇八av免费久了| 麻豆久久精品国产亚洲av| 俄罗斯特黄特色一大片| 亚洲国产欧美网| 国产一区二区三区综合在线观看| 久久影院123| 男女午夜视频在线观看| 91国产中文字幕| 亚洲电影在线观看av| 日本 欧美在线| 亚洲va日本ⅴa欧美va伊人久久| videosex国产| 亚洲精品av麻豆狂野| 老汉色av国产亚洲站长工具| av天堂久久9| avwww免费| 欧美一级毛片孕妇| 婷婷精品国产亚洲av在线| 亚洲人成电影免费在线| 精品国产亚洲在线| 1024视频免费在线观看| 老熟妇乱子伦视频在线观看| 香蕉丝袜av| 9191精品国产免费久久| 久久久久久国产a免费观看| 日韩大尺度精品在线看网址 | 精品久久蜜臀av无| 国产av在哪里看| 午夜老司机福利片| 一进一出抽搐gif免费好疼| 中国美女看黄片| 777久久人妻少妇嫩草av网站| 搡老妇女老女人老熟妇| 国产成+人综合+亚洲专区| 极品教师在线免费播放| 欧美日本视频| 大陆偷拍与自拍| 国产亚洲精品综合一区在线观看 | 黄片播放在线免费| 人人妻人人爽人人添夜夜欢视频| 亚洲天堂国产精品一区在线| 精品人妻在线不人妻| √禁漫天堂资源中文www| 一级a爱片免费观看的视频| 欧美丝袜亚洲另类 | 一进一出抽搐动态| 国产精品综合久久久久久久免费 | 最新美女视频免费是黄的| 久久中文看片网| www.熟女人妻精品国产| 国产精品免费一区二区三区在线| 久久 成人 亚洲| 变态另类丝袜制服| 一区二区三区国产精品乱码| 久久久久久大精品| 一级毛片高清免费大全| 国产亚洲欧美在线一区二区| 黄色毛片三级朝国网站| 99精品欧美一区二区三区四区| 亚洲在线自拍视频| www.999成人在线观看| 黄色a级毛片大全视频| 亚洲熟妇熟女久久| 真人做人爱边吃奶动态| 久久久久久久午夜电影| 丝袜美足系列| 免费看美女性在线毛片视频| 超碰成人久久| 久久亚洲真实| av免费在线观看网站| 日韩大码丰满熟妇| 动漫黄色视频在线观看| 嫁个100分男人电影在线观看| 中文亚洲av片在线观看爽| 一区二区三区精品91| 麻豆久久精品国产亚洲av| 女警被强在线播放|