• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxygen-vacancy-rich phenanthroline/TiO2 nanocomposites: An integrated adsorption, detection and photocatalytic material for complex pollutants remediation

    2022-06-18 03:00:40PinghuaChenHuitaoZhengHualinJiangJunLiuXinmanTuWeiboZhangBaileyPhillipsLeiFangJianPingZou
    Chinese Chemical Letters 2022年2期

    Pinghua Chen, Huitao Zheng, Hualin Jiang,*, Jun Liu, Xinman Tu,Weibo Zhang, Bailey Phillips, Lei Fang,*, Jian-Ping Zou,*

    a Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China

    b Department of Applied Chemistry, College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China

    c Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States

    d School of Resources, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China

    ABSTRACT To address the challenge of treating complex pollutants containing heavy metals and organic compounds,a phenanthroline/TiO2 nanocomposite with rich oxygen vacancy defects was synthesized to integrate the functions of pollutant detection, adsorption, and photocatalytic degradation.The results showed that the nanocomposite could adsorb Cr3+ and the process could be transduced into a colorimetric signal for qualitative and quantitative detection.The adsorbed heavy metal also exhibited a synergistically enhanced photocatalytic degradation of a model organic pollutant under visible light.The simultaneous adsorption, detection, and photocatalysis could reduce the multifarious operations and high cost of traditional environmental remediation methods, indicating a strong application potential for the nanocomposite.

    Keywords:Heavy metals Organic contaminants Adsorption Detection Photocatalytic degradation Oxygen vacancy

    With the rapid development of human society, the increasing discharge of pollutants into the environment poses a serious hazard to all living things.Organic pollutants and heavy metals are among the most concerning contemporary contaminants due to their high toxicity and persistence in the environment.Consequently, methods for the detection and removal of these pollutants are important.Colorimetric detection has attracted much attention because it is intuitive and requires relatively simple instrumentation.Adsorption is widely used to remove heavy metals, and its low-cost and practicality make it suitable for use in rural and remote areas [1,2].The photocatalytic removal of organic pollutants has seen rapid development in recent years due to its low cost,environmental-friendliness, and ease of operation [3-6].

    Organic pollutants and heavy metals are two important classes of contaminants [7-9], and remediation strategies that only target one type of them are usually ineffective in treating complex pollution systems.Consequently, different methods are typically coupled together as a broad treatment strategy.However, the multiple treatment steps and materials employed result in tedious operations and high costs [10-12].In this context, the emergence of novel multifunctional materials that couple high performance adsorption, detection and photocatalysis are exciting prospects for the future of environmental remediation technology.Oxygen vacancy defects can confer materials with beneficial properties, such as plentiful adsorption active sites, enhanced conductivity and suppression of electron-hole pair (e--h+) recombination.Accordingly,they have been widely engineered into adsorbents [13], detectors[14] and photocatalysts [15].With this potential in mind, we envisaged that the introduction of oxygen vacancies could endow a material with the multifunctionality of adsorption, detection and photocatalysis.

    With the aim to effectively treat organic and heavy metal contaminants, an oxygen-vacancy-rich nanocomposite of phenanthroline (Phen) modified TiO2(Phen/TiO2) was synthesized by a facile single-step hydrothermal method.Methyl orange (MO) and Cr3+were selected as the organic and heavy metal model contaminants due to their toxicity and ubiquity.

    Scanning electron microscopy and transmission electron microscopy were used to analyze the nanoparticle morphology of Phen/TiO2(Figs.S2a and b in Supporting information).The elemental mapping analysis (Figs.S2c-g in Supporting information)demonstrated that C, N, O and Ti were evenly distributed on the Phen/TiO2surface, suggesting the successful integration of Phen and TiO2.The high-resolution X-ray photoelectron spectroscopy(XPS) spectra of the Ti 2p and O 1s regions of TiO2and Phen/TiO2exhibited a significant binding energy decrease in both Ti 2p and Ti-O of Phen/TiO2(Figs.1a and b).This phenomenon indicated the existence of oxygen vacancies in Phen/TiO2[16].The additional e-remaining after the O atoms were removed from the surface of TiO2increases the e-cloud density around the Ti and O atoms close to the oxygen vacancies, thus decreasing the binding energies of Ti and O [16].The N 1s high-resolution XPS spectrum of Phen/TiO2could be resolved into three peaks at 397.49,399.27 and 400.20 eV, corresponding to Ti–N, C=N and N–O, respectively (Fig.1c) [17-18].The N–O and C=N originated from adventitious organic compounds and phenanthroline, respectively.The N-Ti bond energies of Phen/TiO2indicate that the N atoms in phenanthroline were coordinated with the Ti atoms of TiO2.This interaction between N and Ti may reduce the strength of the O-Ti bond in TiO2, allowing the O atoms to leave, thereby promoting the formation of oxygen vacancies.To further confirm the existence of oxygen vacancies in Phen/TiO2, an electron paramagnetic resonance (EPR) spectroscopy investigation was carried out.Fig.1d shows the EPR spectra of Phen/TiO2and TiO2.The EPR spectrum of Phen/TiO2exhibited a strong signal atg= 2.003, which was absent for TiO2.This signal could be attributed to the e-trapped in the oxygen vacancies and is strong evidence of their existence [19-20].

    Fig.1.High-resolution of XPS in the (a) Ti 2p, (b) O 1s regions of TiO2 and Phen/TiO2.(c) High-resolution of XPS in the N 1s region of Phen/TiO2.(d) EPR spectra of Phen/TiO2 and TiO2.

    It was anticipated that Phen/TiO2would adsorb Cr3+viachelation with the Lewis base N centers of Phen along with the electrostatic attraction from hydroxyl groups on the surface of TiO2.The coordination event could be transduced into a colorimetric signalviametal-ligand charge transfer allowing the nanocomposite to operate as a chemosensor and an adsorbent.The isothermal and kinetic studies of Cr3+adsorption by Phen/TiO2are given in Figs.S3 and S4 (Supporting information), and Tables S1 and S2 (Supporting infromation); the experimental details are given in Supporting information.The maximum adsorption capacity of Cr3+was calculated to be 12.76 mg/g based on the Langmuir isotherm model, which is comparable with those of reported benchmark adsorbents for Cr3+(Table S3 in Supporting Infromation).The kinetic study revealedpseudo-first order kinetic behavior (rate constant,k= 1 × 10-2g mg-1min-1) depending on the concentrations of Cr3+and Phen/TiO2.In mixture of co-existing ions, Phen/TiO2exhibited high adsorption ability towards Cr3+, indicating its highly selective adsorption performance (Fig.S8 in Supporting infromation).

    To demonstrate the qualitative detection capability of Phen/TiO2towards Cr3+, the nanocomposite was used to adsorb different metal ions, and its color-change was observed visually.Fig.2a shows that the color of the Phen/TiO2nanocomposite was light yellow.When it captured Cr3+, its color rapidly changed to green.The color-change was highly specific to Cr3+.Other metal ions,such as Mn2+, Zn2+, Pb2+, Co2+, Ag+, Cd2+, Bi2+, Ce2+, Hg2+,In2+, Ni2+, and Zr2+did not induce a color change, while Fe3+and Cr2O72-induced color changes of red and bright yellow, respectively, even at concentrations five times than that of Cr3+.These results demonstrated that Cr3+could be visually and qualitatively detected by Phen/TiO2.In order to quantitatively detect Cr3+, Phen/TiO2was used to adsorb varying concentrations of Cr3+.The chroma of Cr3+adsorbed on Phen/TiO2was analyzed using visible-light difference diffuse reflectance spectroscopy (DRS).Fig.2b shows the absorbance peak atλ= 621 nm from the diffuse reflectance spectra (DRS) of Cr3+adsorbed Phen/TiO2at pH 7 and a temperature of 30 °C; the intensity of the peak at 621 nm increased with increasing concentration of Cr3+.The intensity of the peak at 621 nm in the difference DRS was plotted against the Cr3+concentration (Fig.2c) and a linear relationship (calibration curve) was obtained over the concentration range 1-20 mg/L(insert in Fig 2c).Using this method, the Cr3+concentration could be quantitatively determined from the color change of Phen/TiO2measured with DRS.The limit of detection (LD) for Cr3+was estimated to be 0.42 mg/L from the blank response according to Eq.1:

    Fig.2.(a) Photographic images of Phen/TiO2 powders after being treated with different metal ions.Mn2+, Zn2+, Pb2+, Co2+, Ag+, Bi2+, Ce2+, Hg2+, In2+, Ni2+, Zr2+, Fe3+,Cr2O72- and Cd2+: 100 mg/L; Cr3+: 20 mg/L; Adsorbent dosage: 1 g/L.(b) Concentration-dependent changes in visible difference DRS of Phen/TiO2 during the detection of Cr3+.(c) Concentration-dependent changes at λ = 621 nm (Adsorbent dosage was 1 g/L; The concentrations of Cr3+ were from 1 mg/L to 100 mg/L.Temperature was 30°C, pH was 7.The experiments were performed in triple and the related error bars are indicated).(d) Photocatalytic degradation of MO over the bare TiO2, Phen/TiO2 and Phen/TiO2-Cr3+ (The photocatalyst dosage was 1 g/L and the concentration of MO was 10 mg/L, room temperature.).

    whereK= 3,Sbwas the standard deviation (SD) for the blank, andmwas the slope of the linear calibration curve.The influence of pH, temperature and co-existing ions towards Phen/TiO2detecting Cr3+are shown in Figs.S14-S16 (Supporting infromation).

    To verify the accuracy of the colorimetric Cr3+analysis obtained using the Phen/TiO2nanomaterial, the results were compared with those obtained by atomic absorption spectrometry (AAS) (Table S4 in Supporting Infromation).The relative standard deviation (SD)of the difference between the absolute values obtained by each method were<3%, confirming the accuracy of the Phen/TiO2-based method.

    The bright color exhibited by the Cr3+adsorbed Phen/TiO2(Phen/TiO2-Cr3+) indicated that the nanomaterial may possess enhanced light absorption capacity.It was envisioned that this feature could be exploited to enhance the photocatalytic activity,which could be applied to the degradation of organic pollutants.In this way, the adsorbed Cr3+could act as a synergistic photocatalyst for the remediation of organic pollutants.To test this hypothesis, Phen/TiO2was pre-adsorbed with 1, 20, 50 and 100 mg/L of Cr3+and used to photocatalytically degrade MO under visible light irradiation (Fig.2d).Phen/TiO2exhibited higher photocatalytic capacity than TiO2, indicating that the nanomaterial had enhanced visible light activity.Adsorption of Cr3+onto Phen/TiO2further improved the photocatalytic activity.The photocatalytic degradation of MO increased as the Cr3+concentration increased from 1 mg/L to 50 mg/L, reaching a plateau beyond 50 mg/L.Presumably the hyperchromic effect resulting from Cr3+adsorption was almost saturated at a Cr3+concentration of 50 mg/L, so further adsorption of Cr3+had no additional influence.At an optimum Cr3+adsorption of 50 mg/L, Phen/TiO2-Cr3+could degrade ~98% of 10 mg/L MO solution within 100 min.

    The X-ray diffraction (XRD) patterns of the crystal phases of TiO2, Phen/TiO2, and Phen/TiO2-Cr3+are shown in Fig.S5 (Supporting infromation).The results showed that the incorporation of Phen changed the crystal phase of TiO2from pure anatase to mixed phases of anatase, rutile and brookite.Mixtures of different crystal phases of TiO2were shown to enhance visible light absorption due to the increased probability of forming heterojunctions in the TiO2, thereby boosting the related photocatalytic performance [21].To understand the mechanism of the increased photocatalytic activity demonstrated by the nanomaterial, the photoelectric properties of Phen/TiO2and Phen/TiO2-Cr3+were characterized.Fig.3a shows that the dimensions of the light absorption edges of Phen/TiO2, Phen/TiO2-Cr3+(1), Phen/TiO2-Cr3+(20),Phen/TiO2-Cr3+(50) and Phen/TiO2-Cr3+(100) were 408, 417, 423,431 and 428 nm, respectively; (1), (20), (50) and (100) refer to the concentrations (mg/L) of adsorbed Cr3+.The hyperchromicity resulting from the adsorption of Cr3+produced a redshift of the absorption edge of Phen/TiO2.However, when the concentration of Cr3+was>50 mg/L the hyperchromicity was saturated and the redshift of the adsorption edge ceased.These observations were consistent with the results of the photocatalytic degradation experiments.The nanomaterials were additionally characterized by electrochemical impedance spectroscopy (EIS) (Fig.3b).Phen/TiO2exhibited the highest impedance.The impedance decreased with the addition of Cr3+over the concentration range 1-50 mg/L but increased at concentrations>50 mg/L Cr3+.In other words, Phen/TiO2in the presence of 50 mg/mL Cr3+exhibited the smallest impedance among the samples, suggesting that the adsorption of Cr3+significantly decreased the impedance of Phen/TiO2[22].The photocurrent (PC) spectroscopy responses and photoluminescence (PL) spectra of the samples are shown in Figs.3c and d.Compared with EIS, the PC responses and PL spectra exhibited similar trends following Cr3+adsorption by Phen/TiO2.The corresponding photo-electronic properties of the samples increased with the increasing Cr3+adsorption to reach maximum values at a Cr3+concentration of 50 mg/L and decreased thereafter.The magnitude of the current density in PC spectra reflects the number of e-produced in the sample by light irradiation[23].In PL spectra, a low fluorescence intensity is indicative of the slow recombination rate of photo-generated charge carriers [24].Phen/TiO2-Cr3+(50) had the highest PC density and lowest PL intensity.

    Fig.3.(a) DRS of Phen/TiO2 and Phen/TiO2-Cr3+.(b) Electrochemical impedance spectroscopy of Phen/TiO2 and Phen/TiO2-Cr3+.(c) Photocurrent responses of Phen/TiO2 and Phen/TiO2-Cr3+ under visible light.(d) Photoluminescence spectra of Phen/TiO2 and Phen/TiO2-Cr3+.The values in the brackets mean the feeding concentration (mg/L) of Cr3+ in the materials preparation.

    To determine the active species in the degradation of MO, various scavengers were added to the photocatalysis system.The results given in Fig.S6 (Supporting infromation) indicated that h+and·O2-are the important active species in the degradation of MO while e-and·OH play a minor role.

    Based on these results, a mechanism for the photocatalytic degradation of MO by Phen/TiO2-Cr3+under visible light was proposed: Although pure anatase TiO2cannot be excited under visible light, the incorporation of Phen modified the crystal phase of TiO2from pure anatase to mixed phases of anatase, rutile and brookite;visible light absorbed by the modified phase could now excite efrom the valence band (VB) to the conduction band (CB) leaving h+(on the VB) [21,25].Furthermore, the hyperchromic effect resulting from the N-chelation of Cr3+by Phen enhanced the absorption of visible light, while also decreasing the impedance, which facilitated the photo-generation of charge carriers and depressed the recombination of charge carriers, all boosting the photocatalytic performance [26].The photo-generated e-in the CB could then react with O2to produce·O2-, which oxidized and degraded MO.The photo-generated h+on the VB could also oxidize and degrade the pollutant.

    An oxygen-vacancy-rich nanocomposite of Phen/TiO2, integrating the functions of detection, adsorption, and photocatalytic degradation of pollutants, was successfully prepared by a facile one-step hydro-thermal method.Phen/TiO2could simultaneously adsorb and detect Cr3+while the adsorbed heavy metal could synergistically enhance the photocatalytic degradation of MO under visible light irradiation.The integrated multi-functionality of the Phen/TiO2demonstrated that these nanomaterials may offer a credible and efficient alternative to traditional adsorbents used for the remediation of complex pollutants.The strategy developed here may also provide a new outlook for the design of functional materials for practical applications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The project is supported by the National Natural Science Foundation of China (Nos.51978323, 42077162), the Key Research and Development Project of Jiangxi Province (No.20203BBGL73229),and the Natural Science Foundation of Jiangxi Province (No.20192ACBL20042).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.07.002.

    3wmmmm亚洲av在线观看| 99热这里只有是精品在线观看| 午夜福利在线观看免费完整高清在 | 女同久久另类99精品国产91| 久久久a久久爽久久v久久| 国产av麻豆久久久久久久| 久久婷婷人人爽人人干人人爱| 天天躁夜夜躁狠狠久久av| 欧美+亚洲+日韩+国产| 久久99精品国语久久久| 精品久久久久久久久亚洲| 久久6这里有精品| 99在线视频只有这里精品首页| 亚洲欧美中文字幕日韩二区| 国产69精品久久久久777片| 人妻久久中文字幕网| 韩国av在线不卡| 日本撒尿小便嘘嘘汇集6| 特大巨黑吊av在线直播| 国产成人aa在线观看| 国产淫片久久久久久久久| 99热全是精品| 午夜福利在线观看吧| 97热精品久久久久久| 国产精品一二三区在线看| 国产在视频线在精品| 天堂av国产一区二区熟女人妻| 亚洲色图av天堂| 久久99精品国语久久久| 哪里可以看免费的av片| 午夜激情欧美在线| 日本一本二区三区精品| 国产探花极品一区二区| 午夜福利高清视频| 成人特级黄色片久久久久久久| 久久精品夜色国产| 久久热精品热| 亚洲最大成人中文| 日日摸夜夜添夜夜添av毛片| 国产探花在线观看一区二区| 蜜桃亚洲精品一区二区三区| 美女黄网站色视频| 99久久人妻综合| 国产亚洲av嫩草精品影院| 一级毛片电影观看 | 久久99蜜桃精品久久| 特大巨黑吊av在线直播| 蜜桃亚洲精品一区二区三区| 禁无遮挡网站| 国产精品三级大全| 亚洲丝袜综合中文字幕| 性欧美人与动物交配| 日本爱情动作片www.在线观看| 国产高清视频在线观看网站| 91在线精品国自产拍蜜月| 精品一区二区免费观看| 99国产极品粉嫩在线观看| 国产老妇女一区| 成人永久免费在线观看视频| 午夜精品国产一区二区电影 | 国产成人91sexporn| 国产伦在线观看视频一区| 国产精品久久久久久久久免| 亚洲精品国产av成人精品| 淫秽高清视频在线观看| 国产视频首页在线观看| 久久精品久久久久久噜噜老黄 | 日本欧美国产在线视频| 中国国产av一级| 男女那种视频在线观看| 亚洲四区av| 性插视频无遮挡在线免费观看| 床上黄色一级片| 最新中文字幕久久久久| 中文亚洲av片在线观看爽| 99久久九九国产精品国产免费| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品自拍成人| 国产精品一区二区在线观看99 | 亚洲欧美清纯卡通| 午夜老司机福利剧场| 亚洲一区高清亚洲精品| 非洲黑人性xxxx精品又粗又长| 亚洲乱码一区二区免费版| 国产精品电影一区二区三区| 国产在线精品亚洲第一网站| 网址你懂的国产日韩在线| 又粗又爽又猛毛片免费看| 全区人妻精品视频| 日韩欧美在线乱码| 中文字幕人妻熟人妻熟丝袜美| 啦啦啦韩国在线观看视频| 大香蕉久久网| 亚洲精品久久久久久婷婷小说 | 狠狠狠狠99中文字幕| 99九九线精品视频在线观看视频| 精品久久久久久久末码| 成人性生交大片免费视频hd| 99久久人妻综合| 亚洲国产日韩欧美精品在线观看| 日韩欧美 国产精品| 久久国产乱子免费精品| 亚洲av免费在线观看| 国产精品爽爽va在线观看网站| 男女视频在线观看网站免费| 亚洲国产色片| 91麻豆精品激情在线观看国产| 亚洲精品久久国产高清桃花| 国产黄a三级三级三级人| 在线免费观看的www视频| 欧美人与善性xxx| 一本精品99久久精品77| 国产淫片久久久久久久久| 午夜福利视频1000在线观看| 久久精品国产自在天天线| 亚洲精品乱码久久久久久按摩| 搡老妇女老女人老熟妇| 在线观看免费视频日本深夜| 国产伦精品一区二区三区四那| 中文字幕人妻熟人妻熟丝袜美| 亚洲av不卡在线观看| 桃色一区二区三区在线观看| 中文在线观看免费www的网站| 成人二区视频| 超碰av人人做人人爽久久| 国产三级在线视频| 九九在线视频观看精品| 成人高潮视频无遮挡免费网站| 久久久国产成人精品二区| 天天躁日日操中文字幕| av卡一久久| 校园人妻丝袜中文字幕| 最近手机中文字幕大全| 我要看日韩黄色一级片| 黄色配什么色好看| 久久精品国产亚洲av天美| 国产精品一区www在线观看| 国国产精品蜜臀av免费| 国产亚洲精品久久久com| 自拍偷自拍亚洲精品老妇| 在线观看一区二区三区| 有码 亚洲区| 好男人视频免费观看在线| 国产一级毛片在线| a级一级毛片免费在线观看| 欧美不卡视频在线免费观看| av.在线天堂| 国产午夜精品久久久久久一区二区三区| АⅤ资源中文在线天堂| 久久韩国三级中文字幕| 少妇熟女欧美另类| 国产精品久久久久久久久免| 国产伦理片在线播放av一区 | 国产一区二区三区av在线 | 精品久久久噜噜| 欧美3d第一页| 美女高潮的动态| 午夜精品在线福利| 色吧在线观看| 在线观看一区二区三区| 日本黄色视频三级网站网址| www日本黄色视频网| 国产91av在线免费观看| 婷婷六月久久综合丁香| 色哟哟哟哟哟哟| 成人午夜精彩视频在线观看| 97热精品久久久久久| 久久精品久久久久久噜噜老黄 | 国产亚洲av嫩草精品影院| 美女cb高潮喷水在线观看| 色综合站精品国产| 1000部很黄的大片| 高清毛片免费观看视频网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲一区高清亚洲精品| 一进一出抽搐动态| 久久国内精品自在自线图片| 精品一区二区三区视频在线| 在线免费十八禁| 少妇人妻精品综合一区二区 | 免费观看的影片在线观看| 99久久成人亚洲精品观看| 日日摸夜夜添夜夜添av毛片| 亚洲性久久影院| 网址你懂的国产日韩在线| 高清午夜精品一区二区三区 | 国产精品蜜桃在线观看 | 麻豆乱淫一区二区| 国产精品嫩草影院av在线观看| 99riav亚洲国产免费| 熟女人妻精品中文字幕| 久久精品国产亚洲av香蕉五月| 亚洲精品国产成人久久av| 成人毛片60女人毛片免费| 永久网站在线| 欧美三级亚洲精品| 婷婷亚洲欧美| 国产精品国产高清国产av| 欧美+亚洲+日韩+国产| 国产一区二区激情短视频| 亚洲va在线va天堂va国产| 欧洲精品卡2卡3卡4卡5卡区| 在线国产一区二区在线| 我的老师免费观看完整版| 寂寞人妻少妇视频99o| 99热只有精品国产| 最后的刺客免费高清国语| 女同久久另类99精品国产91| 能在线免费观看的黄片| 国产色爽女视频免费观看| 人妻制服诱惑在线中文字幕| 久久99热这里只有精品18| 日韩强制内射视频| 国产精品久久久久久精品电影小说 | 国产欧美日韩精品一区二区| 日韩av不卡免费在线播放| 亚洲av中文av极速乱| 最近2019中文字幕mv第一页| 12—13女人毛片做爰片一| 免费av观看视频| 久久久精品大字幕| 久久这里有精品视频免费| 人人妻人人看人人澡| 国产精品电影一区二区三区| 精品久久久久久久人妻蜜臀av| 国产大屁股一区二区在线视频| 岛国在线免费视频观看| 在线免费观看的www视频| 日韩一本色道免费dvd| 亚洲不卡免费看| 99久久精品国产国产毛片| 有码 亚洲区| 亚洲自偷自拍三级| 日本-黄色视频高清免费观看| 成人鲁丝片一二三区免费| 精品一区二区免费观看| 不卡一级毛片| 春色校园在线视频观看| 亚洲av不卡在线观看| 黄色欧美视频在线观看| 欧美日韩国产亚洲二区| 亚洲欧美日韩东京热| 亚洲无线观看免费| 高清在线视频一区二区三区 | 免费在线观看成人毛片| 亚洲自偷自拍三级| 国产高清不卡午夜福利| 久久欧美精品欧美久久欧美| 12—13女人毛片做爰片一| 国产精品福利在线免费观看| 国产在视频线在精品| 观看免费一级毛片| 欧美日本视频| 精品少妇黑人巨大在线播放 | 久久久国产成人精品二区| 亚洲国产精品成人综合色| 身体一侧抽搐| 黄片无遮挡物在线观看| 麻豆国产97在线/欧美| 国产精华一区二区三区| 高清毛片免费看| 日本熟妇午夜| 亚洲图色成人| 国产色爽女视频免费观看| 成人综合一区亚洲| 99久久精品一区二区三区| 97热精品久久久久久| 久久久久久久久久黄片| 日韩人妻高清精品专区| 不卡视频在线观看欧美| 天堂中文最新版在线下载 | 欧美人与善性xxx| 男的添女的下面高潮视频| 国产精品精品国产色婷婷| 中出人妻视频一区二区| 国产精品.久久久| 久久久久久久久大av| 日韩亚洲欧美综合| 亚洲欧美成人精品一区二区| av国产免费在线观看| 日韩国内少妇激情av| 人妻制服诱惑在线中文字幕| 国产人妻一区二区三区在| 欧美丝袜亚洲另类| 成人无遮挡网站| 一级二级三级毛片免费看| 日本av手机在线免费观看| 卡戴珊不雅视频在线播放| 99九九线精品视频在线观看视频| 97超视频在线观看视频| 亚洲av第一区精品v没综合| 免费大片18禁| 97在线视频观看| 观看美女的网站| 国产精品三级大全| 国产精品无大码| 久久精品久久久久久噜噜老黄 | 精品久久久久久久末码| 在线免费观看的www视频| 久久这里有精品视频免费| 中文字幕久久专区| a级一级毛片免费在线观看| 婷婷亚洲欧美| 网址你懂的国产日韩在线| 在线播放无遮挡| 国产亚洲精品久久久久久毛片| 美女大奶头视频| 亚洲内射少妇av| 亚洲精品国产av成人精品| 亚洲人与动物交配视频| 最近最新中文字幕大全电影3| 99热这里只有是精品50| 村上凉子中文字幕在线| 深夜精品福利| 女同久久另类99精品国产91| 日本成人三级电影网站| 美女被艹到高潮喷水动态| 国产精品麻豆人妻色哟哟久久 | 3wmmmm亚洲av在线观看| 偷拍熟女少妇极品色| 日韩欧美三级三区| 少妇被粗大猛烈的视频| 亚洲乱码一区二区免费版| 在线免费观看的www视频| 搞女人的毛片| 夜夜夜夜夜久久久久| 亚洲欧美精品综合久久99| 天堂网av新在线| 日本成人三级电影网站| 成人三级黄色视频| 国产精品一区二区性色av| 精品久久久久久久久亚洲| 国产精品人妻久久久影院| 国产精品久久久久久av不卡| 特大巨黑吊av在线直播| 欧美性猛交黑人性爽| 亚洲最大成人中文| 亚洲中文字幕日韩| 午夜免费男女啪啪视频观看| 大香蕉久久网| 久久精品国产亚洲av涩爱 | 99热6这里只有精品| 99精品在免费线老司机午夜| 国产成人精品久久久久久| 久久久久久久久大av| 色哟哟·www| 综合色丁香网| 又爽又黄无遮挡网站| 两个人的视频大全免费| 少妇的逼好多水| 亚洲四区av| 97热精品久久久久久| 在线国产一区二区在线| 婷婷色综合大香蕉| 欧美成人a在线观看| 美女高潮的动态| 欧美极品一区二区三区四区| 日本黄色视频三级网站网址| 久久久久久久午夜电影| 亚洲国产精品久久男人天堂| 久久久久久久久久成人| av黄色大香蕉| 日产精品乱码卡一卡2卡三| 天天躁日日操中文字幕| av在线亚洲专区| 草草在线视频免费看| 麻豆精品久久久久久蜜桃| 日本成人三级电影网站| 国产一区二区三区在线臀色熟女| 老师上课跳d突然被开到最大视频| 欧美日本亚洲视频在线播放| 免费搜索国产男女视频| 18禁裸乳无遮挡免费网站照片| 51国产日韩欧美| 成年版毛片免费区| 久久综合国产亚洲精品| 精品国内亚洲2022精品成人| 99国产极品粉嫩在线观看| 日韩高清综合在线| 不卡视频在线观看欧美| 免费av毛片视频| 亚洲一区高清亚洲精品| 日本-黄色视频高清免费观看| av卡一久久| 成人一区二区视频在线观看| 成人无遮挡网站| 欧美一区二区亚洲| 欧美变态另类bdsm刘玥| 成人特级黄色片久久久久久久| 高清日韩中文字幕在线| 日韩亚洲欧美综合| 国产精品嫩草影院av在线观看| av专区在线播放| 变态另类丝袜制服| 干丝袜人妻中文字幕| 内射极品少妇av片p| 又粗又爽又猛毛片免费看| 成人无遮挡网站| 国产中年淑女户外野战色| 在线观看66精品国产| 中国国产av一级| 久久99热6这里只有精品| 伦理电影大哥的女人| 国产一级毛片七仙女欲春2| 成人亚洲欧美一区二区av| 国产一区二区三区av在线 | 日日摸夜夜添夜夜爱| 欧美成人免费av一区二区三区| 婷婷色av中文字幕| 别揉我奶头 嗯啊视频| 国产精品野战在线观看| 一进一出抽搐gif免费好疼| 久久99精品国语久久久| 国产av不卡久久| 午夜免费激情av| 熟妇人妻久久中文字幕3abv| 国产免费一级a男人的天堂| 中文字幕精品亚洲无线码一区| 午夜精品一区二区三区免费看| 99久久久亚洲精品蜜臀av| 亚洲一区二区三区色噜噜| av在线蜜桃| 国产精品,欧美在线| 久久99精品国语久久久| 亚洲18禁久久av| 嫩草影院入口| a级毛色黄片| 亚洲av一区综合| 亚洲国产精品成人久久小说 | 国产免费一级a男人的天堂| 国产精品三级大全| 成人亚洲精品av一区二区| 永久网站在线| 成人漫画全彩无遮挡| 久久久国产成人精品二区| 亚洲国产高清在线一区二区三| h日本视频在线播放| 97在线视频观看| 国产精品一二三区在线看| 午夜精品国产一区二区电影 | 日产精品乱码卡一卡2卡三| 精品欧美国产一区二区三| 欧美三级亚洲精品| 精品免费久久久久久久清纯| 亚洲人成网站在线观看播放| 色噜噜av男人的天堂激情| 在线免费观看不下载黄p国产| 熟女人妻精品中文字幕| 中文字幕久久专区| 九九在线视频观看精品| 婷婷精品国产亚洲av| 亚洲国产精品sss在线观看| 午夜福利在线观看吧| 成人特级av手机在线观看| 欧美精品一区二区大全| 国产 一区精品| 色播亚洲综合网| 女人被狂操c到高潮| 亚洲国产日韩欧美精品在线观看| 一个人看的www免费观看视频| 欧美一区二区精品小视频在线| 哪里可以看免费的av片| 一级黄片播放器| 日本熟妇午夜| 国产亚洲5aaaaa淫片| 久久午夜福利片| 99热精品在线国产| 91av网一区二区| 亚洲av中文av极速乱| 国产精品久久久久久精品电影| 毛片一级片免费看久久久久| 干丝袜人妻中文字幕| 国产精品一区二区三区四区免费观看| 欧美日韩在线观看h| 青青草视频在线视频观看| 亚洲四区av| av专区在线播放| 欧美+亚洲+日韩+国产| 1000部很黄的大片| 国产伦精品一区二区三区视频9| 免费大片18禁| 高清在线视频一区二区三区 | 久久婷婷人人爽人人干人人爱| 麻豆国产av国片精品| 夜夜看夜夜爽夜夜摸| 嫩草影院新地址| 国产伦在线观看视频一区| 乱人视频在线观看| 人人妻人人看人人澡| 国产一区二区激情短视频| 大又大粗又爽又黄少妇毛片口| 日日撸夜夜添| 久久久国产成人免费| 久久久午夜欧美精品| 淫秽高清视频在线观看| 国产午夜精品一二区理论片| 99在线人妻在线中文字幕| 国产日韩欧美在线精品| 国产成人91sexporn| 99热全是精品| 成人毛片60女人毛片免费| 性色avwww在线观看| 人妻久久中文字幕网| 黄片无遮挡物在线观看| 偷拍熟女少妇极品色| 欧美高清性xxxxhd video| 日韩欧美精品v在线| 国产精品久久久久久av不卡| 丝袜喷水一区| av免费观看日本| 91久久精品国产一区二区三区| 国产欧美日韩精品一区二区| 18禁黄网站禁片免费观看直播| 国产视频内射| 在线观看66精品国产| 亚洲aⅴ乱码一区二区在线播放| 亚洲成av人片在线播放无| 少妇的逼好多水| 一边摸一边抽搐一进一小说| 亚洲国产精品合色在线| 嫩草影院新地址| 日韩国内少妇激情av| 九九热线精品视视频播放| 成人综合一区亚洲| 长腿黑丝高跟| 亚洲丝袜综合中文字幕| av又黄又爽大尺度在线免费看 | 国产真实乱freesex| 日本熟妇午夜| 哪个播放器可以免费观看大片| 国产三级在线视频| АⅤ资源中文在线天堂| 高清在线视频一区二区三区 | 国产精品一区www在线观看| 97超碰精品成人国产| 国国产精品蜜臀av免费| 国产精品野战在线观看| 欧美一区二区国产精品久久精品| 日韩大尺度精品在线看网址| 99久久精品热视频| 亚洲天堂国产精品一区在线| 欧美+亚洲+日韩+国产| 嫩草影院新地址| 欧美激情国产日韩精品一区| 在线免费观看的www视频| 性插视频无遮挡在线免费观看| 高清毛片免费看| 国产高清激情床上av| 成人鲁丝片一二三区免费| 亚洲av中文av极速乱| 三级毛片av免费| 日产精品乱码卡一卡2卡三| 亚洲精品影视一区二区三区av| 三级经典国产精品| 日本av手机在线免费观看| 搞女人的毛片| 日日摸夜夜添夜夜爱| 国产精品国产高清国产av| 毛片一级片免费看久久久久| 在线观看66精品国产| 插阴视频在线观看视频| 成人特级黄色片久久久久久久| 亚洲av一区综合| 99热全是精品| 国产 一区精品| 免费观看的影片在线观看| 日韩,欧美,国产一区二区三区 | 天天一区二区日本电影三级| 热99在线观看视频| 亚洲av不卡在线观看| 国产不卡一卡二| 国产片特级美女逼逼视频| 亚洲成人久久性| 国产人妻一区二区三区在| 亚洲三级黄色毛片| a级毛片a级免费在线| 国产欧美日韩精品一区二区| 亚洲最大成人av| 精品日产1卡2卡| 看免费成人av毛片| 国产精品女同一区二区软件| 大香蕉久久网| 亚洲精品影视一区二区三区av| 亚洲电影在线观看av| 亚洲国产精品成人久久小说 | 国产高清激情床上av| 99久久人妻综合| 日韩大尺度精品在线看网址| 日韩制服骚丝袜av| 老师上课跳d突然被开到最大视频| 日韩欧美一区二区三区在线观看| 久久久久久久亚洲中文字幕| 国产成人福利小说| 亚洲成av人片在线播放无| 搡老妇女老女人老熟妇| 国产激情偷乱视频一区二区| 两个人的视频大全免费| 人妻少妇偷人精品九色| 赤兔流量卡办理| 最好的美女福利视频网| 亚洲一区高清亚洲精品| 3wmmmm亚洲av在线观看| 亚洲图色成人| 天堂中文最新版在线下载 | 久久久久久国产a免费观看| 久久中文看片网| 精品无人区乱码1区二区| 99久久久亚洲精品蜜臀av| 日本爱情动作片www.在线观看| 禁无遮挡网站| 欧美激情国产日韩精品一区| 18禁黄网站禁片免费观看直播| 麻豆精品久久久久久蜜桃| 91av网一区二区| 欧美精品国产亚洲|