• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxygen-vacancy-rich phenanthroline/TiO2 nanocomposites: An integrated adsorption, detection and photocatalytic material for complex pollutants remediation

    2022-06-18 03:00:40PinghuaChenHuitaoZhengHualinJiangJunLiuXinmanTuWeiboZhangBaileyPhillipsLeiFangJianPingZou
    Chinese Chemical Letters 2022年2期

    Pinghua Chen, Huitao Zheng, Hualin Jiang,*, Jun Liu, Xinman Tu,Weibo Zhang, Bailey Phillips, Lei Fang,*, Jian-Ping Zou,*

    a Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China

    b Department of Applied Chemistry, College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China

    c Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States

    d School of Resources, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China

    ABSTRACT To address the challenge of treating complex pollutants containing heavy metals and organic compounds,a phenanthroline/TiO2 nanocomposite with rich oxygen vacancy defects was synthesized to integrate the functions of pollutant detection, adsorption, and photocatalytic degradation.The results showed that the nanocomposite could adsorb Cr3+ and the process could be transduced into a colorimetric signal for qualitative and quantitative detection.The adsorbed heavy metal also exhibited a synergistically enhanced photocatalytic degradation of a model organic pollutant under visible light.The simultaneous adsorption, detection, and photocatalysis could reduce the multifarious operations and high cost of traditional environmental remediation methods, indicating a strong application potential for the nanocomposite.

    Keywords:Heavy metals Organic contaminants Adsorption Detection Photocatalytic degradation Oxygen vacancy

    With the rapid development of human society, the increasing discharge of pollutants into the environment poses a serious hazard to all living things.Organic pollutants and heavy metals are among the most concerning contemporary contaminants due to their high toxicity and persistence in the environment.Consequently, methods for the detection and removal of these pollutants are important.Colorimetric detection has attracted much attention because it is intuitive and requires relatively simple instrumentation.Adsorption is widely used to remove heavy metals, and its low-cost and practicality make it suitable for use in rural and remote areas [1,2].The photocatalytic removal of organic pollutants has seen rapid development in recent years due to its low cost,environmental-friendliness, and ease of operation [3-6].

    Organic pollutants and heavy metals are two important classes of contaminants [7-9], and remediation strategies that only target one type of them are usually ineffective in treating complex pollution systems.Consequently, different methods are typically coupled together as a broad treatment strategy.However, the multiple treatment steps and materials employed result in tedious operations and high costs [10-12].In this context, the emergence of novel multifunctional materials that couple high performance adsorption, detection and photocatalysis are exciting prospects for the future of environmental remediation technology.Oxygen vacancy defects can confer materials with beneficial properties, such as plentiful adsorption active sites, enhanced conductivity and suppression of electron-hole pair (e--h+) recombination.Accordingly,they have been widely engineered into adsorbents [13], detectors[14] and photocatalysts [15].With this potential in mind, we envisaged that the introduction of oxygen vacancies could endow a material with the multifunctionality of adsorption, detection and photocatalysis.

    With the aim to effectively treat organic and heavy metal contaminants, an oxygen-vacancy-rich nanocomposite of phenanthroline (Phen) modified TiO2(Phen/TiO2) was synthesized by a facile single-step hydrothermal method.Methyl orange (MO) and Cr3+were selected as the organic and heavy metal model contaminants due to their toxicity and ubiquity.

    Scanning electron microscopy and transmission electron microscopy were used to analyze the nanoparticle morphology of Phen/TiO2(Figs.S2a and b in Supporting information).The elemental mapping analysis (Figs.S2c-g in Supporting information)demonstrated that C, N, O and Ti were evenly distributed on the Phen/TiO2surface, suggesting the successful integration of Phen and TiO2.The high-resolution X-ray photoelectron spectroscopy(XPS) spectra of the Ti 2p and O 1s regions of TiO2and Phen/TiO2exhibited a significant binding energy decrease in both Ti 2p and Ti-O of Phen/TiO2(Figs.1a and b).This phenomenon indicated the existence of oxygen vacancies in Phen/TiO2[16].The additional e-remaining after the O atoms were removed from the surface of TiO2increases the e-cloud density around the Ti and O atoms close to the oxygen vacancies, thus decreasing the binding energies of Ti and O [16].The N 1s high-resolution XPS spectrum of Phen/TiO2could be resolved into three peaks at 397.49,399.27 and 400.20 eV, corresponding to Ti–N, C=N and N–O, respectively (Fig.1c) [17-18].The N–O and C=N originated from adventitious organic compounds and phenanthroline, respectively.The N-Ti bond energies of Phen/TiO2indicate that the N atoms in phenanthroline were coordinated with the Ti atoms of TiO2.This interaction between N and Ti may reduce the strength of the O-Ti bond in TiO2, allowing the O atoms to leave, thereby promoting the formation of oxygen vacancies.To further confirm the existence of oxygen vacancies in Phen/TiO2, an electron paramagnetic resonance (EPR) spectroscopy investigation was carried out.Fig.1d shows the EPR spectra of Phen/TiO2and TiO2.The EPR spectrum of Phen/TiO2exhibited a strong signal atg= 2.003, which was absent for TiO2.This signal could be attributed to the e-trapped in the oxygen vacancies and is strong evidence of their existence [19-20].

    Fig.1.High-resolution of XPS in the (a) Ti 2p, (b) O 1s regions of TiO2 and Phen/TiO2.(c) High-resolution of XPS in the N 1s region of Phen/TiO2.(d) EPR spectra of Phen/TiO2 and TiO2.

    It was anticipated that Phen/TiO2would adsorb Cr3+viachelation with the Lewis base N centers of Phen along with the electrostatic attraction from hydroxyl groups on the surface of TiO2.The coordination event could be transduced into a colorimetric signalviametal-ligand charge transfer allowing the nanocomposite to operate as a chemosensor and an adsorbent.The isothermal and kinetic studies of Cr3+adsorption by Phen/TiO2are given in Figs.S3 and S4 (Supporting information), and Tables S1 and S2 (Supporting infromation); the experimental details are given in Supporting information.The maximum adsorption capacity of Cr3+was calculated to be 12.76 mg/g based on the Langmuir isotherm model, which is comparable with those of reported benchmark adsorbents for Cr3+(Table S3 in Supporting Infromation).The kinetic study revealedpseudo-first order kinetic behavior (rate constant,k= 1 × 10-2g mg-1min-1) depending on the concentrations of Cr3+and Phen/TiO2.In mixture of co-existing ions, Phen/TiO2exhibited high adsorption ability towards Cr3+, indicating its highly selective adsorption performance (Fig.S8 in Supporting infromation).

    To demonstrate the qualitative detection capability of Phen/TiO2towards Cr3+, the nanocomposite was used to adsorb different metal ions, and its color-change was observed visually.Fig.2a shows that the color of the Phen/TiO2nanocomposite was light yellow.When it captured Cr3+, its color rapidly changed to green.The color-change was highly specific to Cr3+.Other metal ions,such as Mn2+, Zn2+, Pb2+, Co2+, Ag+, Cd2+, Bi2+, Ce2+, Hg2+,In2+, Ni2+, and Zr2+did not induce a color change, while Fe3+and Cr2O72-induced color changes of red and bright yellow, respectively, even at concentrations five times than that of Cr3+.These results demonstrated that Cr3+could be visually and qualitatively detected by Phen/TiO2.In order to quantitatively detect Cr3+, Phen/TiO2was used to adsorb varying concentrations of Cr3+.The chroma of Cr3+adsorbed on Phen/TiO2was analyzed using visible-light difference diffuse reflectance spectroscopy (DRS).Fig.2b shows the absorbance peak atλ= 621 nm from the diffuse reflectance spectra (DRS) of Cr3+adsorbed Phen/TiO2at pH 7 and a temperature of 30 °C; the intensity of the peak at 621 nm increased with increasing concentration of Cr3+.The intensity of the peak at 621 nm in the difference DRS was plotted against the Cr3+concentration (Fig.2c) and a linear relationship (calibration curve) was obtained over the concentration range 1-20 mg/L(insert in Fig 2c).Using this method, the Cr3+concentration could be quantitatively determined from the color change of Phen/TiO2measured with DRS.The limit of detection (LD) for Cr3+was estimated to be 0.42 mg/L from the blank response according to Eq.1:

    Fig.2.(a) Photographic images of Phen/TiO2 powders after being treated with different metal ions.Mn2+, Zn2+, Pb2+, Co2+, Ag+, Bi2+, Ce2+, Hg2+, In2+, Ni2+, Zr2+, Fe3+,Cr2O72- and Cd2+: 100 mg/L; Cr3+: 20 mg/L; Adsorbent dosage: 1 g/L.(b) Concentration-dependent changes in visible difference DRS of Phen/TiO2 during the detection of Cr3+.(c) Concentration-dependent changes at λ = 621 nm (Adsorbent dosage was 1 g/L; The concentrations of Cr3+ were from 1 mg/L to 100 mg/L.Temperature was 30°C, pH was 7.The experiments were performed in triple and the related error bars are indicated).(d) Photocatalytic degradation of MO over the bare TiO2, Phen/TiO2 and Phen/TiO2-Cr3+ (The photocatalyst dosage was 1 g/L and the concentration of MO was 10 mg/L, room temperature.).

    whereK= 3,Sbwas the standard deviation (SD) for the blank, andmwas the slope of the linear calibration curve.The influence of pH, temperature and co-existing ions towards Phen/TiO2detecting Cr3+are shown in Figs.S14-S16 (Supporting infromation).

    To verify the accuracy of the colorimetric Cr3+analysis obtained using the Phen/TiO2nanomaterial, the results were compared with those obtained by atomic absorption spectrometry (AAS) (Table S4 in Supporting Infromation).The relative standard deviation (SD)of the difference between the absolute values obtained by each method were<3%, confirming the accuracy of the Phen/TiO2-based method.

    The bright color exhibited by the Cr3+adsorbed Phen/TiO2(Phen/TiO2-Cr3+) indicated that the nanomaterial may possess enhanced light absorption capacity.It was envisioned that this feature could be exploited to enhance the photocatalytic activity,which could be applied to the degradation of organic pollutants.In this way, the adsorbed Cr3+could act as a synergistic photocatalyst for the remediation of organic pollutants.To test this hypothesis, Phen/TiO2was pre-adsorbed with 1, 20, 50 and 100 mg/L of Cr3+and used to photocatalytically degrade MO under visible light irradiation (Fig.2d).Phen/TiO2exhibited higher photocatalytic capacity than TiO2, indicating that the nanomaterial had enhanced visible light activity.Adsorption of Cr3+onto Phen/TiO2further improved the photocatalytic activity.The photocatalytic degradation of MO increased as the Cr3+concentration increased from 1 mg/L to 50 mg/L, reaching a plateau beyond 50 mg/L.Presumably the hyperchromic effect resulting from Cr3+adsorption was almost saturated at a Cr3+concentration of 50 mg/L, so further adsorption of Cr3+had no additional influence.At an optimum Cr3+adsorption of 50 mg/L, Phen/TiO2-Cr3+could degrade ~98% of 10 mg/L MO solution within 100 min.

    The X-ray diffraction (XRD) patterns of the crystal phases of TiO2, Phen/TiO2, and Phen/TiO2-Cr3+are shown in Fig.S5 (Supporting infromation).The results showed that the incorporation of Phen changed the crystal phase of TiO2from pure anatase to mixed phases of anatase, rutile and brookite.Mixtures of different crystal phases of TiO2were shown to enhance visible light absorption due to the increased probability of forming heterojunctions in the TiO2, thereby boosting the related photocatalytic performance [21].To understand the mechanism of the increased photocatalytic activity demonstrated by the nanomaterial, the photoelectric properties of Phen/TiO2and Phen/TiO2-Cr3+were characterized.Fig.3a shows that the dimensions of the light absorption edges of Phen/TiO2, Phen/TiO2-Cr3+(1), Phen/TiO2-Cr3+(20),Phen/TiO2-Cr3+(50) and Phen/TiO2-Cr3+(100) were 408, 417, 423,431 and 428 nm, respectively; (1), (20), (50) and (100) refer to the concentrations (mg/L) of adsorbed Cr3+.The hyperchromicity resulting from the adsorption of Cr3+produced a redshift of the absorption edge of Phen/TiO2.However, when the concentration of Cr3+was>50 mg/L the hyperchromicity was saturated and the redshift of the adsorption edge ceased.These observations were consistent with the results of the photocatalytic degradation experiments.The nanomaterials were additionally characterized by electrochemical impedance spectroscopy (EIS) (Fig.3b).Phen/TiO2exhibited the highest impedance.The impedance decreased with the addition of Cr3+over the concentration range 1-50 mg/L but increased at concentrations>50 mg/L Cr3+.In other words, Phen/TiO2in the presence of 50 mg/mL Cr3+exhibited the smallest impedance among the samples, suggesting that the adsorption of Cr3+significantly decreased the impedance of Phen/TiO2[22].The photocurrent (PC) spectroscopy responses and photoluminescence (PL) spectra of the samples are shown in Figs.3c and d.Compared with EIS, the PC responses and PL spectra exhibited similar trends following Cr3+adsorption by Phen/TiO2.The corresponding photo-electronic properties of the samples increased with the increasing Cr3+adsorption to reach maximum values at a Cr3+concentration of 50 mg/L and decreased thereafter.The magnitude of the current density in PC spectra reflects the number of e-produced in the sample by light irradiation[23].In PL spectra, a low fluorescence intensity is indicative of the slow recombination rate of photo-generated charge carriers [24].Phen/TiO2-Cr3+(50) had the highest PC density and lowest PL intensity.

    Fig.3.(a) DRS of Phen/TiO2 and Phen/TiO2-Cr3+.(b) Electrochemical impedance spectroscopy of Phen/TiO2 and Phen/TiO2-Cr3+.(c) Photocurrent responses of Phen/TiO2 and Phen/TiO2-Cr3+ under visible light.(d) Photoluminescence spectra of Phen/TiO2 and Phen/TiO2-Cr3+.The values in the brackets mean the feeding concentration (mg/L) of Cr3+ in the materials preparation.

    To determine the active species in the degradation of MO, various scavengers were added to the photocatalysis system.The results given in Fig.S6 (Supporting infromation) indicated that h+and·O2-are the important active species in the degradation of MO while e-and·OH play a minor role.

    Based on these results, a mechanism for the photocatalytic degradation of MO by Phen/TiO2-Cr3+under visible light was proposed: Although pure anatase TiO2cannot be excited under visible light, the incorporation of Phen modified the crystal phase of TiO2from pure anatase to mixed phases of anatase, rutile and brookite;visible light absorbed by the modified phase could now excite efrom the valence band (VB) to the conduction band (CB) leaving h+(on the VB) [21,25].Furthermore, the hyperchromic effect resulting from the N-chelation of Cr3+by Phen enhanced the absorption of visible light, while also decreasing the impedance, which facilitated the photo-generation of charge carriers and depressed the recombination of charge carriers, all boosting the photocatalytic performance [26].The photo-generated e-in the CB could then react with O2to produce·O2-, which oxidized and degraded MO.The photo-generated h+on the VB could also oxidize and degrade the pollutant.

    An oxygen-vacancy-rich nanocomposite of Phen/TiO2, integrating the functions of detection, adsorption, and photocatalytic degradation of pollutants, was successfully prepared by a facile one-step hydro-thermal method.Phen/TiO2could simultaneously adsorb and detect Cr3+while the adsorbed heavy metal could synergistically enhance the photocatalytic degradation of MO under visible light irradiation.The integrated multi-functionality of the Phen/TiO2demonstrated that these nanomaterials may offer a credible and efficient alternative to traditional adsorbents used for the remediation of complex pollutants.The strategy developed here may also provide a new outlook for the design of functional materials for practical applications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The project is supported by the National Natural Science Foundation of China (Nos.51978323, 42077162), the Key Research and Development Project of Jiangxi Province (No.20203BBGL73229),and the Natural Science Foundation of Jiangxi Province (No.20192ACBL20042).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.07.002.

    99久久精品热视频| av在线app专区| 成人午夜精彩视频在线观看| 日本-黄色视频高清免费观看| 午夜福利网站1000一区二区三区| av天堂中文字幕网| 日韩av不卡免费在线播放| 国产午夜精品久久久久久一区二区三区| av国产免费在线观看| 婷婷色综合大香蕉| 国产精品国产三级国产av玫瑰| 中国国产av一级| 一区二区三区免费毛片| 久久国产亚洲av麻豆专区| 久久国产亚洲av麻豆专区| 天天躁日日操中文字幕| 一级毛片久久久久久久久女| 久久精品久久精品一区二区三区| 亚洲,一卡二卡三卡| 超碰av人人做人人爽久久| 一级毛片久久久久久久久女| 色视频在线一区二区三区| 日本av手机在线免费观看| 大片免费播放器 马上看| 最后的刺客免费高清国语| 春色校园在线视频观看| 视频中文字幕在线观看| 一区二区三区四区激情视频| 色视频www国产| 免费看不卡的av| 欧美精品人与动牲交sv欧美| 久久久久人妻精品一区果冻| 婷婷色av中文字幕| 少妇高潮的动态图| 少妇丰满av| 久久97久久精品| 精品人妻熟女av久视频| 久久久久性生活片| 伊人久久国产一区二区| 午夜福利在线观看免费完整高清在| www.色视频.com| 好男人视频免费观看在线| 亚洲国产成人一精品久久久| 久久国产精品大桥未久av | 国产欧美另类精品又又久久亚洲欧美| 国产老妇伦熟女老妇高清| 国产成人a区在线观看| 99精国产麻豆久久婷婷| 国产精品国产三级专区第一集| 高清av免费在线| 嫩草影院入口| 毛片女人毛片| 乱系列少妇在线播放| 亚洲国产成人一精品久久久| 丝袜喷水一区| 国产在线视频一区二区| 国产乱人视频| 成人国产av品久久久| 91久久精品电影网| 日产精品乱码卡一卡2卡三| 亚洲欧洲国产日韩| 多毛熟女@视频| 国精品久久久久久国模美| 久久国产亚洲av麻豆专区| 日日摸夜夜添夜夜爱| 校园人妻丝袜中文字幕| 嫩草影院新地址| 国产淫片久久久久久久久| 免费少妇av软件| 我的老师免费观看完整版| 大码成人一级视频| av不卡在线播放| 一个人免费看片子| 91午夜精品亚洲一区二区三区| 91久久精品国产一区二区三区| 少妇 在线观看| 91精品一卡2卡3卡4卡| 国产亚洲5aaaaa淫片| 欧美性感艳星| 免费黄网站久久成人精品| 日韩,欧美,国产一区二区三区| av网站免费在线观看视频| 欧美日韩精品成人综合77777| www.色视频.com| 亚洲va在线va天堂va国产| 亚洲图色成人| 精品人妻一区二区三区麻豆| 国产免费又黄又爽又色| 国产精品人妻久久久久久| av网站免费在线观看视频| 精品人妻视频免费看| 激情 狠狠 欧美| 欧美成人a在线观看| 97精品久久久久久久久久精品| 午夜免费男女啪啪视频观看| 久久精品人妻少妇| 日本爱情动作片www.在线观看| 香蕉精品网在线| 亚洲国产精品999| 纵有疾风起免费观看全集完整版| 国产爱豆传媒在线观看| 国产爱豆传媒在线观看| 看非洲黑人一级黄片| 久久精品久久久久久噜噜老黄| 嫩草影院新地址| 欧美成人午夜免费资源| 欧美区成人在线视频| 亚洲精品色激情综合| 国产片特级美女逼逼视频| 午夜免费观看性视频| 亚洲av中文av极速乱| 国产精品精品国产色婷婷| 国产精品伦人一区二区| 你懂的网址亚洲精品在线观看| 亚洲自偷自拍三级| 久久99热6这里只有精品| 在线播放无遮挡| 我的老师免费观看完整版| 日韩伦理黄色片| 亚洲国产最新在线播放| 特大巨黑吊av在线直播| 最近最新中文字幕大全电影3| 欧美变态另类bdsm刘玥| 精品人妻偷拍中文字幕| 最近中文字幕高清免费大全6| 免费黄网站久久成人精品| 熟女电影av网| 中国国产av一级| 亚洲国产成人一精品久久久| 国产女主播在线喷水免费视频网站| 亚洲精品国产成人久久av| 干丝袜人妻中文字幕| 女人久久www免费人成看片| 高清日韩中文字幕在线| 日本欧美国产在线视频| 99国产精品免费福利视频| 又大又黄又爽视频免费| 99久久综合免费| 一个人免费看片子| 国产午夜精品久久久久久一区二区三区| 啦啦啦视频在线资源免费观看| 老师上课跳d突然被开到最大视频| 亚洲欧美一区二区三区黑人 | 亚洲欧美中文字幕日韩二区| 色5月婷婷丁香| 在线观看一区二区三区| 熟女人妻精品中文字幕| 亚洲av二区三区四区| 各种免费的搞黄视频| 国产精品99久久99久久久不卡 | 尤物成人国产欧美一区二区三区| 伊人久久精品亚洲午夜| 国内少妇人妻偷人精品xxx网站| 精华霜和精华液先用哪个| 欧美精品国产亚洲| 成人影院久久| 精品人妻熟女av久视频| 一级爰片在线观看| 免费看不卡的av| 国产成人精品久久久久久| 精品久久久久久久久亚洲| 国产精品三级大全| 啦啦啦视频在线资源免费观看| 日韩免费高清中文字幕av| 亚洲欧洲日产国产| 国产人妻一区二区三区在| 亚洲国产精品999| 视频区图区小说| 亚洲四区av| 国产又色又爽无遮挡免| 99热网站在线观看| 成年人午夜在线观看视频| 伦精品一区二区三区| 亚洲国产精品专区欧美| 妹子高潮喷水视频| 我的老师免费观看完整版| 18禁在线播放成人免费| 九九爱精品视频在线观看| 午夜福利在线观看免费完整高清在| 国产精品一区二区在线不卡| 国产成人精品一,二区| 亚洲av国产av综合av卡| 最近手机中文字幕大全| 九草在线视频观看| 91久久精品国产一区二区三区| 午夜精品国产一区二区电影| 大话2 男鬼变身卡| 观看美女的网站| 精品亚洲乱码少妇综合久久| av播播在线观看一区| 18禁在线无遮挡免费观看视频| 国产欧美日韩精品一区二区| 草草在线视频免费看| 黄色视频在线播放观看不卡| 国产男女超爽视频在线观看| 少妇裸体淫交视频免费看高清| 久久精品国产a三级三级三级| av网站免费在线观看视频| 久久97久久精品| 久久国产精品男人的天堂亚洲 | 亚洲精品国产av蜜桃| 日本-黄色视频高清免费观看| 美女xxoo啪啪120秒动态图| 国产精品一二三区在线看| 国产伦理片在线播放av一区| 婷婷色麻豆天堂久久| 2018国产大陆天天弄谢| 丰满少妇做爰视频| 亚洲精品中文字幕在线视频 | 国产乱人偷精品视频| 亚洲在久久综合| 亚洲av国产av综合av卡| 舔av片在线| 特大巨黑吊av在线直播| 亚洲av中文av极速乱| 99久久综合免费| 国产精品国产av在线观看| 亚洲av成人精品一二三区| 狂野欧美激情性bbbbbb| 你懂的网址亚洲精品在线观看| 深爱激情五月婷婷| 中文字幕久久专区| 国产成人免费观看mmmm| 国产精品蜜桃在线观看| 男人舔奶头视频| 好男人视频免费观看在线| 97超碰精品成人国产| 久久久久久伊人网av| 色视频www国产| 午夜福利在线观看免费完整高清在| 久久久久久久精品精品| 国产成人午夜福利电影在线观看| 啦啦啦在线观看免费高清www| 免费看日本二区| 午夜福利网站1000一区二区三区| 18禁裸乳无遮挡免费网站照片| 国产毛片在线视频| 亚洲av福利一区| 欧美 日韩 精品 国产| 男女免费视频国产| 精品久久久精品久久久| 看十八女毛片水多多多| 天美传媒精品一区二区| a级一级毛片免费在线观看| 少妇人妻久久综合中文| 国产v大片淫在线免费观看| av在线蜜桃| 女人十人毛片免费观看3o分钟| 午夜视频国产福利| 精品午夜福利在线看| 国产爽快片一区二区三区| 日日啪夜夜撸| 2021少妇久久久久久久久久久| 亚洲在久久综合| 精品久久久久久久久av| 国产 一区 欧美 日韩| 亚洲美女黄色视频免费看| 在线 av 中文字幕| 欧美日韩综合久久久久久| 久久影院123| 一个人免费看片子| 久久久久久伊人网av| 一级av片app| 国内少妇人妻偷人精品xxx网站| 最后的刺客免费高清国语| 精品少妇黑人巨大在线播放| 久久ye,这里只有精品| 国产 一区 欧美 日韩| 婷婷色综合大香蕉| 99热这里只有是精品在线观看| 亚洲欧美一区二区三区黑人 | 国产日韩欧美亚洲二区| 国产伦精品一区二区三区视频9| 日韩一区二区三区影片| 亚洲精品自拍成人| 在线免费十八禁| 欧美最新免费一区二区三区| 久久人人爽av亚洲精品天堂 | 亚洲精品乱码久久久久久按摩| 亚洲国产日韩一区二区| 寂寞人妻少妇视频99o| 激情五月婷婷亚洲| 精品99又大又爽又粗少妇毛片| 亚洲欧美日韩东京热| 99热国产这里只有精品6| 丰满少妇做爰视频| 日韩电影二区| 国产精品国产三级专区第一集| 一二三四中文在线观看免费高清| tube8黄色片| 免费高清在线观看视频在线观看| 亚洲婷婷狠狠爱综合网| 国产成人a区在线观看| 男女边摸边吃奶| 男女国产视频网站| 国产黄色视频一区二区在线观看| 久久精品熟女亚洲av麻豆精品| 纵有疾风起免费观看全集完整版| 成人国产av品久久久| 久久精品夜色国产| av网站免费在线观看视频| 婷婷色综合www| 大香蕉久久网| 国产免费视频播放在线视频| 亚洲国产日韩一区二区| 最新中文字幕久久久久| 热re99久久精品国产66热6| 欧美精品人与动牲交sv欧美| 下体分泌物呈黄色| 中文天堂在线官网| 五月天丁香电影| 大陆偷拍与自拍| 久久精品久久精品一区二区三区| 伊人久久精品亚洲午夜| 久久精品久久精品一区二区三区| 国产一区二区三区综合在线观看 | 免费av不卡在线播放| 综合色丁香网| 亚洲欧美成人精品一区二区| av一本久久久久| 一级毛片aaaaaa免费看小| 日韩三级伦理在线观看| 免费少妇av软件| av免费在线看不卡| 精品人妻一区二区三区麻豆| 十分钟在线观看高清视频www | 成年女人在线观看亚洲视频| 一边亲一边摸免费视频| 99热这里只有是精品50| 777米奇影视久久| 久久久a久久爽久久v久久| 日本vs欧美在线观看视频 | .国产精品久久| 国产成人免费无遮挡视频| 亚洲无线观看免费| 中国国产av一级| 久久久欧美国产精品| 国国产精品蜜臀av免费| 久久久精品免费免费高清| 国产精品人妻久久久影院| 亚洲精品一区蜜桃| 国产成人免费观看mmmm| 国产色爽女视频免费观看| 色婷婷av一区二区三区视频| 亚洲国产精品国产精品| av免费在线看不卡| 亚洲av成人精品一区久久| 中国三级夫妇交换| 一级爰片在线观看| 少妇的逼好多水| 99热这里只有是精品50| 一级片'在线观看视频| 国产日韩欧美在线精品| 九色成人免费人妻av| 亚洲三级黄色毛片| 色哟哟·www| 日韩视频在线欧美| 男女边吃奶边做爰视频| 国产在线男女| 国产精品一区二区在线不卡| 人人妻人人爽人人添夜夜欢视频 | 王馨瑶露胸无遮挡在线观看| 国产熟女欧美一区二区| 亚洲婷婷狠狠爱综合网| 高清午夜精品一区二区三区| 老司机影院成人| 免费观看在线日韩| 国产精品久久久久久精品电影小说 | 久久久久人妻精品一区果冻| 亚洲,欧美,日韩| 午夜免费鲁丝| www.av在线官网国产| 一区二区三区四区激情视频| .国产精品久久| 国产免费一区二区三区四区乱码| 欧美日韩一区二区视频在线观看视频在线| 老司机影院成人| 纵有疾风起免费观看全集完整版| 51国产日韩欧美| 精品人妻偷拍中文字幕| a级毛色黄片| 亚洲美女黄色视频免费看| 成人二区视频| 亚洲欧洲国产日韩| 老师上课跳d突然被开到最大视频| 国产精品一及| 国产日韩欧美在线精品| 多毛熟女@视频| 免费看不卡的av| 丰满迷人的少妇在线观看| 亚洲无线观看免费| 噜噜噜噜噜久久久久久91| 精品亚洲成国产av| 亚洲成人中文字幕在线播放| 国产片特级美女逼逼视频| 九草在线视频观看| 99久久综合免费| 精品国产一区二区三区久久久樱花 | 久久韩国三级中文字幕| 夜夜爽夜夜爽视频| 男女下面进入的视频免费午夜| 久久久久国产精品人妻一区二区| 午夜福利在线观看免费完整高清在| 99久国产av精品国产电影| 人妻夜夜爽99麻豆av| 欧美精品亚洲一区二区| 蜜臀久久99精品久久宅男| 热re99久久精品国产66热6| 精华霜和精华液先用哪个| 亚洲人成网站在线播| 亚洲欧美成人综合另类久久久| 亚洲不卡免费看| 一级毛片 在线播放| 国产日韩欧美在线精品| 激情五月婷婷亚洲| 国产探花极品一区二区| 91精品伊人久久大香线蕉| 黑丝袜美女国产一区| 日韩免费高清中文字幕av| 大话2 男鬼变身卡| 99热全是精品| 国产成人精品久久久久久| 丰满少妇做爰视频| 国产精品一区二区三区四区免费观看| 777米奇影视久久| 亚洲欧美一区二区三区国产| 欧美激情极品国产一区二区三区 | 国产成人aa在线观看| 精品国产露脸久久av麻豆| 啦啦啦中文免费视频观看日本| 日韩欧美一区视频在线观看 | 久久久成人免费电影| 日韩一区二区三区影片| 夫妻性生交免费视频一级片| 亚洲av福利一区| 久久久久久人妻| av免费观看日本| 欧美高清性xxxxhd video| 亚洲综合色惰| 大又大粗又爽又黄少妇毛片口| 久久久精品94久久精品| 伊人久久精品亚洲午夜| 一本久久精品| 亚洲精品乱码久久久久久按摩| 少妇人妻 视频| 国产乱人偷精品视频| 精品午夜福利在线看| 少妇的逼水好多| 超碰av人人做人人爽久久| 女人久久www免费人成看片| 国产黄片视频在线免费观看| 亚洲无线观看免费| 国产视频首页在线观看| 黄色欧美视频在线观看| 成人国产麻豆网| 久久精品久久久久久久性| 久久久亚洲精品成人影院| 2021少妇久久久久久久久久久| av天堂中文字幕网| 国产av国产精品国产| 在线精品无人区一区二区三 | 欧美区成人在线视频| 久久久久精品性色| 少妇人妻一区二区三区视频| 亚洲精品一区蜜桃| 精品久久国产蜜桃| 国产一区二区三区综合在线观看 | 久久99精品国语久久久| 丝瓜视频免费看黄片| 日韩三级伦理在线观看| 欧美日本视频| 久久韩国三级中文字幕| 纵有疾风起免费观看全集完整版| 国产精品久久久久久精品古装| 亚洲伊人久久精品综合| 成人一区二区视频在线观看| 22中文网久久字幕| 国产精品久久久久久精品古装| 亚洲国产av新网站| 在线观看免费视频网站a站| 在线观看美女被高潮喷水网站| 老司机影院毛片| a 毛片基地| 日本av免费视频播放| 亚洲国产精品国产精品| 一级毛片电影观看| 亚洲中文av在线| 在现免费观看毛片| 日本av免费视频播放| 极品少妇高潮喷水抽搐| 伦理电影免费视频| 国产黄片美女视频| 黄色视频在线播放观看不卡| 亚洲精品视频女| 国产美女午夜福利| 欧美最新免费一区二区三区| 精品熟女少妇av免费看| 毛片一级片免费看久久久久| 国产成人freesex在线| 国产精品爽爽va在线观看网站| 欧美高清性xxxxhd video| 日本色播在线视频| 少妇人妻精品综合一区二区| av在线蜜桃| 亚洲成人手机| 亚洲精品一二三| 有码 亚洲区| 国产大屁股一区二区在线视频| 一本色道久久久久久精品综合| 成人午夜精彩视频在线观看| 毛片一级片免费看久久久久| 日韩av不卡免费在线播放| 国产91av在线免费观看| 国产精品免费大片| 内射极品少妇av片p| 婷婷色综合www| 一区二区三区精品91| 99久久人妻综合| 国国产精品蜜臀av免费| 亚洲经典国产精华液单| 五月天丁香电影| av网站免费在线观看视频| 毛片女人毛片| 成年美女黄网站色视频大全免费 | 99视频精品全部免费 在线| 亚洲婷婷狠狠爱综合网| 国产高清不卡午夜福利| 亚洲国产最新在线播放| 高清午夜精品一区二区三区| 午夜福利影视在线免费观看| 男女免费视频国产| 久久久久网色| av在线蜜桃| 国产精品99久久99久久久不卡 | 尾随美女入室| 18禁裸乳无遮挡免费网站照片| 免费高清在线观看视频在线观看| 国产亚洲av片在线观看秒播厂| 亚洲av电影在线观看一区二区三区| 色网站视频免费| 午夜激情福利司机影院| 99热网站在线观看| 亚洲国产精品999| 夜夜骑夜夜射夜夜干| av在线观看视频网站免费| 精品亚洲乱码少妇综合久久| 成人漫画全彩无遮挡| 亚洲国产高清在线一区二区三| 啦啦啦啦在线视频资源| 亚洲自偷自拍三级| 久久久久国产网址| 精品人妻熟女av久视频| 精品久久久久久电影网| 中文资源天堂在线| 亚洲四区av| 欧美日韩精品成人综合77777| 国产淫语在线视频| 国产精品久久久久久av不卡| 亚洲精品久久久久久婷婷小说| 极品少妇高潮喷水抽搐| 一级毛片久久久久久久久女| 亚洲av日韩在线播放| 午夜精品国产一区二区电影| 成人特级av手机在线观看| 欧美日韩综合久久久久久| 色视频www国产| xxx大片免费视频| 岛国毛片在线播放| 久久精品夜色国产| 十分钟在线观看高清视频www | 精品熟女少妇av免费看| 欧美 日韩 精品 国产| 色哟哟·www| 国产高清不卡午夜福利| 欧美3d第一页| 少妇的逼好多水| 亚洲成色77777| 国产精品一二三区在线看| 国产一区亚洲一区在线观看| 精品酒店卫生间| 亚洲精品成人av观看孕妇| 一本—道久久a久久精品蜜桃钙片| 午夜免费男女啪啪视频观看| 国产黄片视频在线免费观看| 美女脱内裤让男人舔精品视频| 久久久久网色| 亚洲av国产av综合av卡| 国产一级毛片在线| 精品久久久久久电影网| 国产色婷婷99| 国产精品一区二区在线不卡| 免费大片黄手机在线观看| 亚洲va在线va天堂va国产| 日韩欧美 国产精品| 久久久久久久国产电影| 久久ye,这里只有精品| 午夜福利在线观看免费完整高清在| 在线亚洲精品国产二区图片欧美 | 一边亲一边摸免费视频| av天堂中文字幕网| 国产精品久久久久久精品古装| 日本猛色少妇xxxxx猛交久久| 久久国产精品大桥未久av | 人妻制服诱惑在线中文字幕| 97精品久久久久久久久久精品| 免费不卡的大黄色大毛片视频在线观看| www.av在线官网国产| 99热全是精品| 自拍欧美九色日韩亚洲蝌蚪91 | 一本色道久久久久久精品综合| 大香蕉久久网| 99热这里只有是精品在线观看| 国产亚洲欧美精品永久| h日本视频在线播放| 欧美3d第一页|