• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enantioselective synthesis of indenopyrazolopyrazolones enabled by dual directing groups-assisted and rhodium(III)-catalyzed tandem C-H alkenylation/[3 + 2] stepwise cycloaddition

    2022-06-18 03:00:30MinWuHuiGaoHuiyingXuWeiYiZhiZhou
    Chinese Chemical Letters 2022年2期

    Min Wu, Hui Gao, Huiying Xu, Wei Yi, Zhi Zhou

    Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology,State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China

    ABSTRACT The CpXRh(III)-catalyzed asymmetric cascade C-H coupling/intramolecular cyclization of azomethine imines with propargyl carbonates has been developed, affording a variety of chiral tetracyclic indenopyrazolopyrazolone frameworks with good substrate/functional group tolerance and enantioselectivity (up to 97:3 er).Combined experimental studies and DFT calculations revealed the Rh(III)-catalyzed stepwise annulation process and clarified the synergy coordination mode of dual directing groups in tuning the selectivity.

    Keywords:Indenopyrazolopyrazolone Azomethine imine Enantioselective synthesis DFT calculations Rhodium(III) catalysis

    In terms of the high efficiency and good atom-/step-economy,transition metal (TM)-catalyzed C-H functionalization strategy has been demonstrated as a practical protocol in synthetic chemistry[1-3].Up to date, diversified directing groups (DGs) and coupling partners (CPs) have been developed to achieve challenging reaction modes in this field [4-11].On the other hand, the cascade reaction involving multiple new bonds formationviaa simple one-pot operation has drawn continuous interest due to its superiority in assembling complex molecules, consequently, the combination of TM-catalyzed C-H functionalization and the cascade strategy has been proven to be a powerful approach for the rapid synthesis of polycyclic ring-fused motifs [12-18].Azomethine imines, equipped with a dipolar fragment, had been developed as versatile reactants to participate in diverse C-H functionalization/dipolar cycloaddition cascades, which provided reliable synthetic methods to afford various ring-fused skeletons (Scheme 1a) [19-24].Despite these remarkable advances, there is still room for improvement,e.g., developing novel reaction manifold and realizing asymmetric synthesis of intriguing complex structures.

    Scheme 1.Diversified assembly of ring-fused motifs via TM-catalyzed C-H functionalization of azomethine imines.

    More recently, by appropriately modifying the atropchiral cyclopentadiene (Cp) ligands, a variety of CpX-coordinated rhodium(III) (CpXRh(III)) complexes have been developed as competent catalysts to fulfill asymmetric C-H functionalization reactions [25-28].Compared with precedented CpXRh(III)-catalyzed C-H couplings [29-36], it is changeling, but extremely attractive to explore the versatility of this strategy for constructing chiral polycyclic ring-fused frameworksviacascade transformations.To address this issue: 1) a TM-catalyzed cascade process is typically involved in forming the chiral center; 2) proper coordinated environments should be engaged in balancing the reactivity and stereoselectivity.Taking advantage of chiral CpXRh(III)-catalyzed asymmetric C-H functionalization in fulfilling intriguing enantioenriched skeletons, herein, we would like to disclose the enantioselective CH couplings of azomethine imines with propargyl carbonates [37-41] for the construction of chiral tetracyclic indenopyrazolopyrazolone derivatives (Scheme 1b).This transformation was rationally designed on the basis of Rh(III)-catalyzed stepwise cycloaddition process, which was probed by detailed DFT calculations.Further rationalization of the enantioselectivity and the role of dual directing groups (DDGs, azomethine imine and the –OBoc moiety)in tuning the selectivity were also clarified.

    At the outset of our investigation, the racemic C-H coupling of azomethine imine 1a with propargyl carbonate 2a was successfully realized in the presence of diverse TM catalysts, giving access to the specific assembly of tetracyclic indenopyrazolopyrazolone framework 3aa (Table S1 in Supporting information) [42].Both ruthenium(II)- and Rh(III)-catalytic systems were demonstrated to be ideal for this transformation, while iridium(III) catalyst gave relatively inferior efficiency.Encouraged by these results and in consideration of the Cp*Rh(III)-enabled diverse novel reaction manifolds, we were next intrigued to gain more insight into the reaction mechanism, in particular, to clarify the potential synergy directing mode of azomethine imine and the -OBoc moiety with the catalyst metal in tuning both the reactivity and regioselectivity, thus providing an opportunity to realize the enantioselective synthesis of the corresponding ring-fused motifs.

    In continuation of our work on exploring the synergistic coordination mode of DDGs in Rh(III)-catalyzed C-H functionalization[43-45], therefore, a set of density functional theory (DFT) studies were first carried out by selecting the rhodacycle INT-0 as the starting point with TFE being the solvent.Initially, the coordination of propargyl carbonate with rhodium metal (INT-1) followed by regioselective insertion of the alkyne into C-Rh bondviathe transition state TS-1 (ΔG/== 21.4 kcal/mol) led to the formation of INT-3, which facilely converted into a more stable intermediate INT-4 bearing distinct coordination affinity between -OBoc and the rhodium metal center (Fig.1).Thereafter, theβ-Oelimination from INT-4 proceededviaTS-3 with an energy barrier of 7.6 kcal/mol,giving the allene intermediate INT-5 with an exothermic process(path I).Different possible pathways for the following [3 + 2] cycloaddition were then calculated.In path Ia, a metal-free annulation from INT-6c proceeded through TS-4c with an energy barrier of 24.6 kcal/mol (from INT-5 to TS-4c), affording the final tetracyclic indenopyrazolopyrazolone PC with an overall exothermicity by 33.8 kcal/mol.As a comparison, the Rh(III)-catalyzed [3 + 2] cycloadditionviaTS-4 (ΔG/== -1.8 kcal/mol) and TS-5 (ΔG/== -9.8 kcal/mol) led to the formation of PC with a relatively lower energy barrier of 13.7 kcal/mol (path Ib, from INT-5 to TS-4), implying the rhodium metal might be involved in the annulation process.On the other hand, removal of the -OBoc moiety from INT-3 resulted in the coordination of the allene double bond with rhodium metal(INT-6b), followed by the annulation through TS-4b with an energy barrier of 24.5 kcal/mol (path Ic).Obviously, path Ibinvolving the Rh(III)-catalyzed stepwise C-C/C-N bond formations was more reasonable based on the reaction energy profile, and -OBoc played a key role in tuning the regioselectivity and reactivity by the coordination interaction.An alternative Rh(III)-catalyzed stepwise C-N/CC formation process involving 8-membered rhodacycle species was ruled out due to the high energy barriers (Fig.S1 in Supporting information).

    Fig.1.Computed Gibbs free energy changes of the reaction pathways.

    Alternatively, the intramolecular nucleophilic addition of the vinyl C-Rh bond in INT-4 onto the iminiumviaTS-3a led to the formation of INT-5a with an energy barrier of 15.8 kcal/mol (path II), further C-O bond cleavageviaTS-4a (ΔG/== -15.1 kcal/mol)offered the intermediate INT-6.Overall, the comparison of the energy barriers in different reaction pathways revealed that the cascadeβ-Oelimination/Rh(III)-catalyzed stepwise annulationviapath Ibwas more favorable rather than that of path II (13.7vs.15.8 kcal/mol), nevertheless, the relatively small energy difference of 2.1 kcal/mol dropped a hint that both two paths might be involved in the developed transformation as a competitive process.In addition, the Ru(II)-catalyzed reaction paths were also calculated andfeatured a similar energy barrier of 13.0 kcal/mol for the cascadeβ-Oelimination/intramolecular annulation, while relatively higher energy barrier (ΔG/== 24.1 kcal/mol, from INT-4Ruto TS-3aRu)was involved for the nucleophilic addition process in comparison with Rh(III) catalysis (Fig.S2 in Supporting information).The results demonstrated that different reaction pathways might be involved varying with the catalyst metal, in which the cascade CH activation/β-Oelimination/annulation process was more reasonable for Ru(II)-catalyzed transformation.

    Table 1 Optimization of asymmetric reaction.a

    On the basis of the DFT calculation results and taking advantage of the revealed Cp*Rh(III)-catalyzed [3 + 2] stepwise cycloaddition process, we envisioned that the rational design of a chiral CpXRh(III) catalyst may enable the enantioselective pattern of the developed C-H cascades to furnish enantioenriched tetracyclic indenopyrazolopyrazolones.The asymmetric reaction of 1a with 2a was tested using a commercially available chiral (R)-Rh1 catalyst.As predicted, the desired enantioenriched product 3aa was obtained smoothly albeit with less satisfactory enantioselectivity(Table 1, entry 1).Further examination of other chiral Rh(III) catalysts revealed that the -OiPr substituted (R)-Rh2 and the spiro Cp coordinated (S)-Rh6 resulted in relatively high er values, while chiral Ir(III) catalyst (R)-Ir1 showed no reactivity under the similar conditions (entries 2-8).A screening of diverse reaction solvent indicated that TFE was optimal.Variation of diverse silver salts,additives and reaction concentrations demonstrated that the (R)-Rh2/AgNTf2and (S)-Rh6/AgF2system worked equally to furnish both enantiomers of 3aa with 92:8 er.Additionally, no more enhancement of the enantioselectivity was achieved by further reducing the reaction temperature down to -30 °C or employing the chiral Br?nsted acid as a co-catalyst (Table S4 in Supporting information).

    The scope of the chiral Rh(III)-catalyzed asymmetric C-H coupling/[3 + 2] stepwise cycloaddition reaction was then examined under the optimal conditions in the presence of (S)-Rh6,giving a direct access to a variety of enantioenriched tetracyclic indenopyrazolopyrazolone products.As shown in Scheme 2, the chiral Rh(III)-catalyzed C-H cascades were compatible to various azomethine imines regardless of the electronic properties and positions of the substitution on the phenyl ring, affording the corresponding indenopyrazolopyrazolones in good to excellent enantioselectivities (range from 81:19 to 97:3 er).The absolute configuration of the chiral carbon center was determined to be (S) by the Xray crystallographic analysis of compound 3ha.Further exploration of the scope with regard to propargyl carbonates showed comparably good compatibility with aryl-, heteroaryl- or alkyl-substituted substrates, which reacted smoothly with 1a to provide the desired C-H alkenylation/[3 + 2] stepwise cycloaddition products (3ab-ao)in an enantioselective manner.Nevertheless, terminal alkyne and ester or pyridyl tethered propargyl carbonates were not compatible, thus illustrating the substrate limitation of this transformation.Of note, the use of asymmetrical propargyl carbonates (rac)-2p and(rac)-2q resulted in the formation of the tetracyclic indenopyrazolopyrazolone bearing two chiral centers, and the dr value was determined to be 5/1 and 4/1.Whentert-butyl(1-phenylbut-2-yn-1-yl)carbonate was used, two diastereomers were also successfully obtained albeit with relatively moderate enantioselectivity (3ar and 3ar’).

    In combination with the computational mechanistic studies and the chiral CpXRh(III)-enabled enantioselective pattern of the developed protocol, we were next intrigued to carry out a set of experimental mechanistic studies for deeper understanding of the DDGsassisted strategy.Initially, diverse propargyl carbonate analogs were subjected to the (S)-Rh6 catalyzed conditions.The results showed that -OH, -OAc and –NHTs were all compatible coordinated DGs to enable the observed C-H alkenylation/[3 + 2] cycloaddition cascade, while er values varied with different steric hindrances.These results implied that the -OBoc moiety was essential in realizing high enantioselectivity of this reaction (Scheme 3a).Subsequently, deuterium-labeling experiment was conducted to figure out the reversibility of the C-H bond cleavage process.With CD3OD being the deuterium source, obvious deuterium incorporation at theortho-position of DG in both recovered 1a and the tetracyclic indenopyrazolopyrazolone 3aa was detected, suggesting a reversible and fast C-H metalation process (Scheme 3b) [46].In addition, the alternative asymmetric C-H alkenylation/[3 + 3] cycloaddition process occurred under the catalysis of (R)-Rh6/AgF, furnishing the corresponding tetracyclic indenopyrazolopyridazinone derivative 4 in an enantioselective manner, which provided a circumstantial evidence to support the formation of the allene intermediate followed by the allylic C-H bond cleavage mediated by Rh(III) catalyst (Scheme 3c).In a comparison with precedented Ru(II)-catalyzed C-H coupling of azomethine imine with allylic acetal [21], we tested the chiral CpXRh(III) catalytic system for this transformation and delivered the desired product 6 with 68:32 er (Scheme 3d).This result demonstrated that the Rh(III) catalyst should be involved in the [3 + 2] dipolar cycloaddition process rather than the previously reported metal-free annulation, which was in good line with our DFT calculations.

    Scheme 2.Scope for the enantioselective synthesis of tetracyclic indenopyrazolopyrazolone derivatives.Reaction conditions: 1 (0.1 mmol), 2 (0.1 mmol), (S)-Rh6 (2.5 mol%)and AgF2 (20 mol%) in TFE (0.1 mol/L) at room temperature for 24 h, isolated yields were reported, the er values were determined by HPLC with a chiral stationary phase.aThe reaction was conducted in the presence of (R)-Rh2 (2.5 mol%) and AgNTf2 (20 mol%). bThe dr value was determined by 1H NMR analysis of crude products, the yield and the er value of the major isomer was reported.

    Scheme 3.Experimental mechanistic studies.

    Further rationalization of the enantioselectivity in (S)-Rh6 catalyzed (S)-selective C-H coupling/[3 + 2] stepwise cycloaddition was carried out by DFT studies.On the basis of the computed Gibbs free energy change profiles shown in Fig.1, the Rh(III)-catalyzed annulationviaTS-4 constituted the stereo-determining step of path Ib, while the neucleophilic addition through TS-3a constituted the stereo-determining step of path II.Accordingly, the transition states TS-4R/TS-4Sand TS-3aR/TS-3aSwith respect to both (R)- and (S)-enantiomersviadifferent reaction pathways were investigated and the differences of free energies were listed in Fig.2.The calculations using different levels of theoretical studies showed consistent results that the free energy of TS-4R/TS-3aRwas higher than that of the corresponding (S)-enantiomer, with the energy difference ranged from 1.6 kcal/mol to 2.3 kcal/mol, which accounted for our experimental observation that the enantioenriched (S)-3 were formed enantioselectively.The energy barriers for the assembly of (S)-3aaviaboth (S)-Rh6-catalyzed paths were also calculated (Fig.S3 in Supporting information) and resulted in a value of 15.2 kcal/mol for path Ib(from INT-5Sto TS-4S) and 14.1 kcal/mol for path II (from INT-4Sto TS-3aS).The small energy difference of 1.1 kcal/mol illustrated a competitive process in this transformation, which might be the origin of relatively moderate er values for some substrates due to the difficulty in tuning both reaction paths enantioselectively.

    Fig.2.Optimized geometries and energy differences of the transition states in the stereo-determining step for chiral (S)-Rh6 catalyzed tandem C-H alkenylation/[3 + 2] stepwise cycloaddition.

    Scheme 4.Proposed catalytic cycle.

    On the basis of combined DFT calculations and experimental mechanistic studies, the catalytic cycle is tentatively proposed for the developed chiral CpXRh(III)-catalyzed enantioselective transformation (Scheme 4).Initially, the cationic Rh(III) species is formed as an active catalyst, followed by the azomethine imine-assisted reversible C-H bond activation to afford the six-membered rhodacycle A.Subsequent regioselective migratory insertion of the alkyne moiety delivers intermediate B, which features distinct coordination affinity between -OBoc and the rhodium metal center.Thereafter, two competitive pathways involvingβ-Oelimination/Rhcatalyzed stepwise intramolecular annulation (path I) or nucleophilic addition/C-N annulation (path II) processes are realized to furnish the tetracyclic indenopyrazolopyridazinone (S)-3aa in a redox-neutral manner.The observed (S)-selectivity was rationalized by the model presented in Fig.2 for both paths, in which the synergistic DDGs-assisted coordination mode plays crucial role in tuning the enantioselectivity.

    In summary, we have developed the Rh(III)-catalyzed and DDGs-assisted enantioselective C-H coupling/intramolecular cycloaddition cascade for the asymmetric synthesis of ring-fused tetracyclic indenopyrazolopyrazolone structures.Through integrated computational and experimental mechanistic studies, the detailed reaction pathway involving a catalyst metal-catalyzed stepwise annulation, the coordination mode and role of DDGs,as well as the origin of regio- and enantioselectivity have been elucidated.Further development of innovative synergistic DDGsenabled C-H functionalization strategy for the construction of intriguing skeletons and biologically important organic building blocks are ongoing in our laboratory.

    Declaration of competing interest

    The authors declare no competing financial interest.

    Acknowledgments

    We thank the National Natural Science Foundation of China(NSFC, Nos.21877020, 22007020), Guangdong Natural Science Funds for Distinguished Young Scholar (No.2017A030306031)and Natural Science Foundation of Guangdong Province (No.2019A1515010935) for financial support on this study.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.08.004.

    香蕉精品网在线| 最新中文字幕久久久久| 丝袜脚勾引网站| 国产高清不卡午夜福利| 人妻少妇偷人精品九色| 97超视频在线观看视频| 欧美最新免费一区二区三区| 97超碰精品成人国产| 老熟女久久久| 国产精品女同一区二区软件| 汤姆久久久久久久影院中文字幕| a级片在线免费高清观看视频| 国产精品久久久久久精品电影小说| 亚洲欧洲日产国产| 寂寞人妻少妇视频99o| 美女内射精品一级片tv| 成人无遮挡网站| 最黄视频免费看| 99久久精品热视频| 中文资源天堂在线| 极品教师在线视频| 亚洲婷婷狠狠爱综合网| 黑人高潮一二区| 一区二区三区精品91| 伦理电影大哥的女人| av天堂中文字幕网| 亚洲av成人精品一区久久| 日韩 亚洲 欧美在线| 亚洲情色 制服丝袜| 久久久久久伊人网av| 欧美xxⅹ黑人| 亚洲精品一二三| 中文字幕亚洲精品专区| 亚洲欧美一区二区三区国产| av国产精品久久久久影院| av免费观看日本| av.在线天堂| 国产伦理片在线播放av一区| 涩涩av久久男人的天堂| 国产乱来视频区| 99九九在线精品视频 | 国产老妇伦熟女老妇高清| 成人影院久久| 国产一区二区在线观看av| av网站免费在线观看视频| 久久久久久久久久久免费av| 亚洲丝袜综合中文字幕| 久热久热在线精品观看| 在线 av 中文字幕| 亚洲欧美日韩卡通动漫| 一级毛片 在线播放| 亚洲熟女精品中文字幕| 高清黄色对白视频在线免费看 | 亚洲av成人精品一二三区| 亚洲电影在线观看av| 免费看不卡的av| 在线观看人妻少妇| 日韩 亚洲 欧美在线| 亚洲欧美清纯卡通| 观看美女的网站| 视频中文字幕在线观看| 在线观看三级黄色| av福利片在线| av在线观看视频网站免费| 日本-黄色视频高清免费观看| 内射极品少妇av片p| 国产精品麻豆人妻色哟哟久久| 国产精品国产三级国产专区5o| 能在线免费看毛片的网站| av在线播放精品| 国产精品一区二区在线不卡| 一本—道久久a久久精品蜜桃钙片| 一区在线观看完整版| 亚洲精品亚洲一区二区| 大陆偷拍与自拍| 国产成人freesex在线| 80岁老熟妇乱子伦牲交| 国产亚洲av片在线观看秒播厂| 一级av片app| 天堂俺去俺来也www色官网| 久久久久精品性色| 一本大道久久a久久精品| 国精品久久久久久国模美| 免费观看a级毛片全部| 成人亚洲精品一区在线观看| 欧美变态另类bdsm刘玥| 国产成人一区二区在线| 老司机影院毛片| 精品酒店卫生间| kizo精华| 精品亚洲成国产av| 丝瓜视频免费看黄片| 亚洲精品国产av蜜桃| 热re99久久精品国产66热6| 人妻系列 视频| 亚洲欧美一区二区三区国产| 一区二区三区乱码不卡18| 美女福利国产在线| av在线播放精品| 搡老乐熟女国产| 大片电影免费在线观看免费| 一本色道久久久久久精品综合| 日韩不卡一区二区三区视频在线| 亚洲美女黄色视频免费看| 欧美日韩视频精品一区| 天天躁夜夜躁狠狠久久av| 永久网站在线| 一个人看视频在线观看www免费| 午夜影院在线不卡| 亚洲第一av免费看| 91成人精品电影| 高清毛片免费看| 熟妇人妻不卡中文字幕| 免费看日本二区| 青春草国产在线视频| 麻豆乱淫一区二区| 狂野欧美白嫩少妇大欣赏| 国产片特级美女逼逼视频| 国内精品宾馆在线| 久久国内精品自在自线图片| 男人和女人高潮做爰伦理| 大片免费播放器 马上看| 免费观看无遮挡的男女| 久久韩国三级中文字幕| videossex国产| 免费观看无遮挡的男女| av卡一久久| 毛片一级片免费看久久久久| 91久久精品国产一区二区成人| 久久6这里有精品| 午夜免费鲁丝| 日日摸夜夜添夜夜爱| 国产精品久久久久久av不卡| 大片免费播放器 马上看| 日韩欧美精品免费久久| 色婷婷久久久亚洲欧美| 国产 精品1| 国产中年淑女户外野战色| 久久久久国产精品人妻一区二区| 国产淫片久久久久久久久| 亚洲精品日本国产第一区| 欧美精品亚洲一区二区| 国产精品99久久99久久久不卡 | 爱豆传媒免费全集在线观看| 日本wwww免费看| 草草在线视频免费看| 国产一区亚洲一区在线观看| 97超视频在线观看视频| 中文精品一卡2卡3卡4更新| 大码成人一级视频| 有码 亚洲区| 亚洲精品国产色婷婷电影| 99九九线精品视频在线观看视频| 9色porny在线观看| 欧美日韩视频高清一区二区三区二| 欧美日韩视频高清一区二区三区二| 日日摸夜夜添夜夜爱| 一区二区三区免费毛片| 亚洲综合精品二区| 男人和女人高潮做爰伦理| 97精品久久久久久久久久精品| 国产视频内射| 18禁动态无遮挡网站| 亚洲精品乱码久久久v下载方式| 国产乱人偷精品视频| av在线app专区| 日韩视频在线欧美| 午夜免费观看性视频| 亚洲无线观看免费| 国产精品.久久久| 高清午夜精品一区二区三区| 永久网站在线| 免费高清在线观看视频在线观看| 观看av在线不卡| 最近最新中文字幕免费大全7| 中文精品一卡2卡3卡4更新| a级毛片免费高清观看在线播放| 国产高清有码在线观看视频| 久久久久久久精品精品| 精品久久久精品久久久| 国产精品久久久久成人av| 一本大道久久a久久精品| 亚洲欧美日韩另类电影网站| 亚洲精品中文字幕在线视频 | 日日摸夜夜添夜夜添av毛片| 久热这里只有精品99| 人人妻人人爽人人添夜夜欢视频 | 三级国产精品欧美在线观看| 亚洲av中文av极速乱| 日韩av不卡免费在线播放| 国产精品福利在线免费观看| 国内揄拍国产精品人妻在线| 99久久中文字幕三级久久日本| 国产男女内射视频| 人人妻人人添人人爽欧美一区卜| 黄色毛片三级朝国网站 | 少妇被粗大的猛进出69影院 | 大话2 男鬼变身卡| 日韩人妻高清精品专区| 自拍偷自拍亚洲精品老妇| 精品国产乱码久久久久久小说| 国产一区二区在线观看av| 夫妻午夜视频| 99九九在线精品视频 | 精品少妇黑人巨大在线播放| 欧美最新免费一区二区三区| 大话2 男鬼变身卡| 免费人妻精品一区二区三区视频| 国产精品福利在线免费观看| 日本午夜av视频| 国产伦精品一区二区三区视频9| 国产成人91sexporn| 五月玫瑰六月丁香| 中国国产av一级| av卡一久久| 丝袜脚勾引网站| 国产精品久久久久久精品古装| 国产精品伦人一区二区| 伊人久久国产一区二区| 秋霞伦理黄片| 日韩,欧美,国产一区二区三区| 亚洲av二区三区四区| 永久网站在线| 午夜日本视频在线| 精品国产一区二区久久| 国产精品三级大全| 久久精品久久精品一区二区三区| 免费观看的影片在线观看| 久久人人爽人人片av| 青春草国产在线视频| 亚洲精品久久午夜乱码| 女人久久www免费人成看片| 国产 精品1| 国产 一区精品| 妹子高潮喷水视频| 国产69精品久久久久777片| 在线观看人妻少妇| 国产探花极品一区二区| 男女免费视频国产| av福利片在线| 精品久久国产蜜桃| 91久久精品国产一区二区成人| 伦理电影大哥的女人| 亚洲精品乱码久久久久久按摩| 亚洲欧美成人综合另类久久久| 久久人人爽人人爽人人片va| 啦啦啦中文免费视频观看日本| 久久国内精品自在自线图片| 韩国av在线不卡| 欧美精品高潮呻吟av久久| 91精品一卡2卡3卡4卡| 大陆偷拍与自拍| 国产精品国产三级专区第一集| 日本vs欧美在线观看视频 | 久久久久久久久久久丰满| 日韩精品免费视频一区二区三区 | 久久久久久久久久久久大奶| 免费播放大片免费观看视频在线观看| 国产成人精品婷婷| 国产成人a∨麻豆精品| 亚洲精品456在线播放app| 欧美97在线视频| 免费大片黄手机在线观看| 久久久久久久久久久久大奶| 亚洲综合色惰| 人人澡人人妻人| 国产精品嫩草影院av在线观看| 免费看av在线观看网站| 黄色欧美视频在线观看| 日本黄色日本黄色录像| 伊人亚洲综合成人网| 极品人妻少妇av视频| 深夜a级毛片| 黄色一级大片看看| 制服丝袜香蕉在线| 欧美日韩精品成人综合77777| 大片电影免费在线观看免费| 啦啦啦视频在线资源免费观看| 亚洲精品第二区| 97在线人人人人妻| 亚洲性久久影院| 寂寞人妻少妇视频99o| 日韩不卡一区二区三区视频在线| 多毛熟女@视频| 亚洲成人手机| 一级黄片播放器| 黄色欧美视频在线观看| 五月开心婷婷网| 久久久亚洲精品成人影院| 99久久精品热视频| 99九九线精品视频在线观看视频| 国产精品熟女久久久久浪| 免费黄网站久久成人精品| h视频一区二区三区| 三级经典国产精品| 亚洲av中文av极速乱| 在线观看三级黄色| 亚洲va在线va天堂va国产| 性色av一级| 男女无遮挡免费网站观看| 欧美激情极品国产一区二区三区 | 最近中文字幕高清免费大全6| 国产 精品1| 新久久久久国产一级毛片| 日韩,欧美,国产一区二区三区| 精品人妻偷拍中文字幕| 一本—道久久a久久精品蜜桃钙片| 国产免费一区二区三区四区乱码| 嘟嘟电影网在线观看| 国产午夜精品一二区理论片| 国产有黄有色有爽视频| 精品国产乱码久久久久久小说| 久久ye,这里只有精品| 女性被躁到高潮视频| 99热这里只有精品一区| 国产伦在线观看视频一区| 久久久亚洲精品成人影院| 一本—道久久a久久精品蜜桃钙片| 亚洲精品久久午夜乱码| 免费看日本二区| 日韩成人伦理影院| 国内少妇人妻偷人精品xxx网站| 99久久中文字幕三级久久日本| 中文字幕av电影在线播放| 人妻系列 视频| av视频免费观看在线观看| av福利片在线观看| 3wmmmm亚洲av在线观看| 综合色丁香网| 亚洲精品成人av观看孕妇| 日本91视频免费播放| 国产白丝娇喘喷水9色精品| 国产极品天堂在线| 免费久久久久久久精品成人欧美视频 | 22中文网久久字幕| 国产精品人妻久久久影院| 男女边吃奶边做爰视频| 国语对白做爰xxxⅹ性视频网站| 国产乱人偷精品视频| 免费大片黄手机在线观看| 国产精品国产三级专区第一集| 成人特级av手机在线观看| 曰老女人黄片| 精品一区二区三卡| 成人毛片a级毛片在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | 不卡视频在线观看欧美| 亚洲av中文av极速乱| 丰满迷人的少妇在线观看| 女性被躁到高潮视频| 国产免费又黄又爽又色| 午夜福利在线观看免费完整高清在| 久久久久视频综合| 午夜福利影视在线免费观看| 精品人妻一区二区三区麻豆| 夫妻性生交免费视频一级片| 精品久久久久久久久亚洲| 日日摸夜夜添夜夜爱| 国产精品蜜桃在线观看| 国产成人freesex在线| 精华霜和精华液先用哪个| 免费观看无遮挡的男女| 内地一区二区视频在线| 女性生殖器流出的白浆| 国产伦精品一区二区三区视频9| 男男h啪啪无遮挡| 亚洲不卡免费看| 九九在线视频观看精品| 亚洲一级一片aⅴ在线观看| 免费观看的影片在线观看| 成人美女网站在线观看视频| 在线看a的网站| 精品一区在线观看国产| 国产乱来视频区| 亚洲性久久影院| 3wmmmm亚洲av在线观看| 一区二区三区四区激情视频| 亚洲精品国产av蜜桃| 亚洲久久久国产精品| 99热国产这里只有精品6| 男男h啪啪无遮挡| 国产深夜福利视频在线观看| 人体艺术视频欧美日本| 亚洲综合色惰| 大香蕉97超碰在线| 大又大粗又爽又黄少妇毛片口| 在线看a的网站| 国产亚洲午夜精品一区二区久久| 久久久久久久大尺度免费视频| 欧美xxⅹ黑人| 2018国产大陆天天弄谢| 亚洲人与动物交配视频| 熟女av电影| 亚洲美女黄色视频免费看| 99热网站在线观看| 毛片一级片免费看久久久久| 国产深夜福利视频在线观看| 国产高清不卡午夜福利| 国产黄频视频在线观看| 爱豆传媒免费全集在线观看| 中文字幕精品免费在线观看视频 | 99久久精品热视频| 国产亚洲一区二区精品| 欧美最新免费一区二区三区| 亚洲美女视频黄频| 亚洲国产最新在线播放| 国产成人精品一,二区| 久久人妻熟女aⅴ| 97超视频在线观看视频| 乱系列少妇在线播放| 另类亚洲欧美激情| 午夜av观看不卡| 久久97久久精品| 亚洲精品一区蜜桃| 最近中文字幕2019免费版| 有码 亚洲区| 国产精品久久久久久久久免| 色网站视频免费| 日本猛色少妇xxxxx猛交久久| 在线观看www视频免费| 成人亚洲欧美一区二区av| 多毛熟女@视频| 国产精品蜜桃在线观看| 夫妻性生交免费视频一级片| 九色成人免费人妻av| 韩国av在线不卡| 国产成人精品福利久久| 七月丁香在线播放| 黄色视频在线播放观看不卡| 亚洲性久久影院| 日韩制服骚丝袜av| 日本欧美国产在线视频| a级片在线免费高清观看视频| 又大又黄又爽视频免费| 国产片特级美女逼逼视频| 久久毛片免费看一区二区三区| 一区在线观看完整版| 高清欧美精品videossex| 国产av一区二区精品久久| 少妇被粗大猛烈的视频| 日韩免费高清中文字幕av| 人人妻人人看人人澡| 中文欧美无线码| 男男h啪啪无遮挡| 美女中出高潮动态图| 亚洲精品,欧美精品| 一区二区三区四区激情视频| 免费少妇av软件| 亚洲av中文av极速乱| 热re99久久国产66热| 男人添女人高潮全过程视频| 国产黄频视频在线观看| 久久午夜福利片| 大又大粗又爽又黄少妇毛片口| 国产精品成人在线| 大香蕉97超碰在线| 欧美激情国产日韩精品一区| 国产成人91sexporn| 免费在线观看成人毛片| 亚洲成人av在线免费| 久久午夜综合久久蜜桃| 丁香六月天网| 亚洲精品,欧美精品| 最后的刺客免费高清国语| h视频一区二区三区| 最新中文字幕久久久久| 狂野欧美激情性bbbbbb| 日本vs欧美在线观看视频 | 午夜福利,免费看| 女人精品久久久久毛片| 乱系列少妇在线播放| av有码第一页| 精品久久国产蜜桃| 国产一级毛片在线| 永久网站在线| 国产av国产精品国产| 国产成人精品一,二区| 少妇人妻一区二区三区视频| 国内精品宾馆在线| 亚洲久久久国产精品| 日韩三级伦理在线观看| 99热这里只有是精品在线观看| 看十八女毛片水多多多| 少妇的逼好多水| 免费黄网站久久成人精品| 日韩av在线免费看完整版不卡| 午夜福利视频精品| 久久国产精品男人的天堂亚洲 | www.色视频.com| 久久影院123| 国产亚洲精品久久久com| 精品99又大又爽又粗少妇毛片| 国产又色又爽无遮挡免| 亚洲熟女精品中文字幕| 国产淫片久久久久久久久| 亚洲国产精品999| 国产成人91sexporn| 久久精品国产亚洲网站| 夜夜看夜夜爽夜夜摸| 久久青草综合色| 久久久精品免费免费高清| 色婷婷av一区二区三区视频| 51国产日韩欧美| 99精国产麻豆久久婷婷| 丰满迷人的少妇在线观看| 亚洲三级黄色毛片| 国产一区二区在线观看日韩| 少妇人妻精品综合一区二区| av天堂中文字幕网| 欧美日韩视频高清一区二区三区二| 精品一品国产午夜福利视频| 精品国产一区二区久久| 国产日韩欧美视频二区| 亚洲av日韩在线播放| 一二三四中文在线观看免费高清| 蜜桃在线观看..| 日韩三级伦理在线观看| 中文字幕制服av| 日日啪夜夜撸| 国内精品宾馆在线| 大陆偷拍与自拍| 能在线免费看毛片的网站| 三级经典国产精品| 日本爱情动作片www.在线观看| 免费黄频网站在线观看国产| 亚洲天堂av无毛| 日韩 亚洲 欧美在线| 肉色欧美久久久久久久蜜桃| 91久久精品国产一区二区成人| 另类亚洲欧美激情| 欧美精品国产亚洲| av黄色大香蕉| 五月伊人婷婷丁香| 精品一区二区免费观看| 国产欧美日韩一区二区三区在线 | 中文资源天堂在线| 大片电影免费在线观看免费| 成年av动漫网址| 久久99蜜桃精品久久| 下体分泌物呈黄色| 精品国产露脸久久av麻豆| 国产av国产精品国产| 国产在线男女| 亚州av有码| 国产乱人偷精品视频| 亚洲熟女精品中文字幕| 99热6这里只有精品| 国产免费一级a男人的天堂| 大片免费播放器 马上看| 亚洲久久久国产精品| av一本久久久久| 午夜免费观看性视频| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩av不卡免费在线播放| 国产淫片久久久久久久久| 肉色欧美久久久久久久蜜桃| 少妇猛男粗大的猛烈进出视频| 免费看光身美女| 狂野欧美激情性xxxx在线观看| 成年女人在线观看亚洲视频| 亚洲美女视频黄频| 在线亚洲精品国产二区图片欧美 | 日本免费在线观看一区| 高清不卡的av网站| 国产成人freesex在线| 综合色丁香网| 日韩成人伦理影院| 日韩强制内射视频| 一级毛片aaaaaa免费看小| 亚洲国产欧美在线一区| 精品亚洲乱码少妇综合久久| 视频区图区小说| 极品教师在线视频| 街头女战士在线观看网站| 国产精品99久久99久久久不卡 | 日韩免费高清中文字幕av| 国产精品.久久久| 久久 成人 亚洲| av有码第一页| 啦啦啦视频在线资源免费观看| 亚洲中文av在线| 亚洲色图综合在线观看| 看免费成人av毛片| 黄色怎么调成土黄色| 十八禁网站网址无遮挡 | a级一级毛片免费在线观看| 国产亚洲午夜精品一区二区久久| 精品一区二区三卡| 有码 亚洲区| a级一级毛片免费在线观看| 午夜久久久在线观看| 久久精品熟女亚洲av麻豆精品| 国产男人的电影天堂91| 国产日韩欧美在线精品| 在线观看三级黄色| 成人综合一区亚洲| 国产男女内射视频| 日韩一区二区视频免费看| 国产亚洲午夜精品一区二区久久| 在线观看免费视频网站a站| 亚洲欧洲日产国产| 久久狼人影院| 夫妻午夜视频| 尾随美女入室| 黄色怎么调成土黄色| 黄色配什么色好看| 男男h啪啪无遮挡| 黄色日韩在线| 能在线免费看毛片的网站| 日本免费在线观看一区| 亚洲四区av| 交换朋友夫妻互换小说| 久久精品夜色国产| av在线观看视频网站免费| 超碰97精品在线观看|