• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of rac-α-aryl propionaldehydes via branched-selective hydroformylation of terminal arylalkenes using water-soluble Rh-PNP catalyst

    2022-06-18 03:00:28PengGoMiolinKeTongRuGunfengLingFenErChen
    Chinese Chemical Letters 2022年2期

    Peng Go, Miolin Ke, Tong Ru, Gunfeng Ling,*, Fen-Er Chen,,*

    a Department of Chemistry, Sichuan University, Chengdu 610064, China

    b Department of Chemistry, Fudan University, Shanghai 200433, China

    c Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Fudan University, Shanghai 200433, China

    ABSTRACT This work detailed the preparation of a class of water-soluble PNP ligands that differed by the nature of the substitute on phenyl ring of ligands.These ligands were incorporated into water-soluble rhodium-PNP complex catalysts that were used to regioselective hydroformylation of a series of terminal arylalkenes,providing efficient access to rac-α-aryl propionaldehydes in good to excellent yield (up to 97%) and branched-regioselectivity (up to 40:1 b/l ratio).Furthermore, gram-scale and diverse synthetic transformation demonstrated synthetic application of this methodology for non-steroidal antiinflammatory drugs.

    Keywords:Aryl propionaldehydes Hydroformylation Water-soluble PNP ligands Regioselectivity Rhodium

    rac-α-Arylaldehydes have been extensively used as important synthetic precursors for the profen family (α-arylpropionic acid derivatives), a class of non-steroidal anti-inflammatory drugs(NSAIDs) in pharmaceutical chemistry [1-5].At present, more than 20 profen NSAIDs has been used in clinical for treating the heat of inflammation, pain, swelling and fever [6,7].Some representative examples are illustrated in Fig.1, such as ibuprofen (1) [8], ketoprofen (2) [9], flurbiprofen (3) [10], naproxen (4) [11] and loxoprofen (5) [12].Undoubtedly, the development of efficient approaches towardsrac-α-arylaldehydes is always a popular topic in both academic and industrial laboratories [13-17].Traditional methods for synthesis ofrac-α-arylaldehydes include the rearrangementviaDarzen’s glycidic esters [18,19] and Corey-Chaykovsk’s epoxides [20] from aryl methylketones (Schemes 1a and b).However,these processes suffer from several drawbacks such as more complicated synthetic operations, harsh reaction conditions, and functional group incompatibility.Attractive alternatives have been developed using 1,1-arylmethyl alkenes as feedstocks (Scheme 1c)[21-23], including Che’s Ru(IV) porphyrin-catalyzed aerobic oxidationviaan epoxidation/isomerization tandem pathway [21], and Lahiri’s catalytic PhIO oxidation by applying iron(II) dipic catalyst,in situformed from Fe(BF4)2·6H2O and pyridine-2,6-dicarboxylic acid [22], and Lei’s anti-markovnikov oxygenation with H2O as oxidant by a photoredox-metal dual catalysis [23].However, protocols currently lack broad substrate scope due to the difficulties for access to 1,1-arylmethyl alkenes as special substrates.

    Fig.1.Representative examples for synthesis of rac-profen family (1-5) from the corresponding rac-α-aryl propionaldehydes.

    The transition metal-catalyzed hydroformylation of terminal arylalkenes to arylaldehydes could provide an alternative, however typically only a small percent of theβ-arylaldehyde products was formed alongside theα-arylaldehyde products.There are remarkable exception of Rh phosphine catalysts [24-35] including Wink’s a cationic bis(dioxaphospholane)rhodium complex [24], Marchetti’s Rh/pyridylphosphines pydiphos P-oxide complex [25], Amer’s Rh/amino phosphine complex [26], Alper’s Rh/diphenylphosphinoyl)phenylmethanol catalysis [27], B?rner’s Rh/diphosphate catalysis[28], Lerous’s Rh/dibenzophosphole catalysisetc.[29], which form theβ-aldehyde products with a good level of selectivity, but only for very limited substrates (Scheme 1d).Recent branched-selective hydroformylation of terminal arylalkenes has been reported using PPh3-modified Fe as catalyst [30], but the limited success has been achieved toward this hydroformylation (Scheme 1d).Hydroformylations of terminal olefins were independently reported by Nozaki’s group and Clarke’s group, but the two methods were limited to the preparation ofα-alkylaldehyde products [31,32].Apart from this class of homogeneous catalysis, significant breakthrough have been achieved toward synthesis ofβ-arylaldehydesviabiphasic Rhcatalyzed hydroformylation of terminal olefin using water-soluble poly(4-pentenoic acid (PPA)/bis(2-diphenylphosphino)ethyl) (DPPEA) or tri-meta-sulfonatophenylphosphine (TPPTS), or phenyl-β-D-glucopyranoside catalyst as ligands (Scheme 1e) [36-38].Despite the obtained achievements in this field, the developing of a practical and efficient approach to access therac-α-aryl propionaldehydes is still highly desirable from the perspective of green, step and atom economy [39].Herein, we report the preparation of a series of novel water-soluble PNP ligands and their applications to the Rh-catalyzed branched-selective hydroformylation of terminal arylalkenes for the synthesis ofrac-α-aryl propionaldehydes in aqueous biphasic catalytic system.

    Scheme 1.Strategies to access rac-α-arylaldehydes.

    The known water-soluble PNP ligands L5 and L11 and new ligands L1-L4 and L6-L10 were prepared in high to excellent yields from bis(2-diphenylphosphinoethyl)amine hydrochloride (6) and appropriate carbonyl halides, and diphenic anhydride (9) and 2-sulfobenzoicanhydride (10) following a modified procedure developed by Whiteside and co-workers (Fig.2) [40].

    Fig.2.Synthesis of water-soluble PNP ligands (L1-L11).(i) TEA, THF, r.t., 20-24 h;(ii) NaI, acetone, reflux, 20-30 h, or LiOH, THF/H2O, 4-20 h; (iii) NaOH, THF/H2O,0.5-1 h.

    With this library of water-soluble PNP ligands in hand, we began our studies with an examination of their catalytic performance in Rh-catalyzed branched-selective hydroformylation of styrene 11a as the benchmark substrate.As described in Table 1, all styrene hydrorformylation reactions were completed in 24 h toluene/H2O(1:1) solvent at 3.0 MPa of syngas and 60 °C in the presence of 0.05 mol% [Rh(COD)Cl]2and 0.6 mol% ligand (Rh/L = 1:6).In all the excellent chemoselectivities were observed, and no hydrogenation product was detectedvia1H NMR analysis.The carbonated PNP ligands L1-L6 were first examined.The ligands L1 and L2 bearing COONa at benzene’sortho- ormeta-position, gave the branched aldehyde 12a in moderate yields with good regioselectivities (b/l= 8.5:1 and 8.4:1, entries 1 and 2), respectively.When the ligand L3 substituted withmeta-OMe andmeta-COONa groups on phenyl ring was employed, poor yield of 12a was obtained, however, theb/lratio in this instance was still exceptional (8.4:1, entry 3).Reaction conducted with the ligand L4 possessing COONa group atpara-position of phenyl ring, delivered branched aldehyde 12a in only 42% yield and with lower regioselectivity (b/l= 6.5:1, entry 4).The dicarboxylated PNP ligand L5 gave better yield (75%, entry 5)compared with results of monocarboxylated PNP ligands (L1-L4),but with poor regioselectivity (b/l= 3.0:1).Moreover, the monocarboxylated PNP ligand L6 with a biphenyl ring resulted in much higher yield (84%), albeit with a ratio of 12a/13a of 5.4:1 (entry 6).The sulfonated PNP ligand L7 withmeta-SO3Na gave poor yield and regioselectivity (26%,b/l= 3.8:1, entry 7) under identical conditions.The ligand L8 bearingmeta-SO3Na andpara-MeO groups of phenyl ring was shown to give superior yield of 12a, but much worse regioselectivity (12a/13a = 3.2:1) was obtained (entry 8).A change of the position of SO3Na group on ligand L7 frommeta- topara-position resulted in similar yield (entry 9), but high regioselectivity compared with the results of the corresponding sulfonated PNP ligand L7-L10.The use of ligand L11 withortho-SO3Na group on phenyl ring afforded branched aldehyde 12a in 92% yield with high regioselectivity (b/l= 11.3:1, entry 11).The well-known TPPTS only gave 74% yield of 12a, with poor regioselectivity (b/l= 2.8:1,entry 12) under identical conditions.Other common Rh catalysts for hydroformylation, such as Rh(acac)(CO)2) and RhCl3, low regioselectivities and reactivities were respectively obtained (entries 13 and 14).Addition of SDBS (0.86 mol%) as the surfactant could short reaction time to 12 h, and provide branched 12a in 91% yield and a 10.1:1 ratio ofb/l(entry 15).Branched product was obtained in 72% yield with 10.0:1 ratio ofb/lin absence of SDBS (Table 1,entry 16).The control experiment of absence of ligand was also carried out to give the product in 74% yield with 2.8:1 ratiob/l(entry 17).These results revealed the crucial role of these two types of ligand structures in controlling of yield and regioselectivity for this Rh-catalyzed hydroformylation reaction.

    Table 1 Ligands screening for the Rh-catalyzed branched-selective hydroformylation of styrene.a

    With the best ligand L11, a series of Rh-catalyzed styrene hydroformylation parameters were examined, including temperature,Rh/ ligand L11 molar ratio, organic/aqueous biphasic system, and CO/H2pressure (Table 2).First, the temperature impacted on theactivity and regioselectivity of the Rh-catalyzed styrene hydroformylation was investigated.Notably, the activity and regioselectivity of the reaction had obvious temperature effect.Lowering the temperature from 60 °C to 25 °C under standard condition(toluene/H2O (1:1), 3.0 MPa CO/H2(1:1), 0.86 mol% SDBS) dramatically reduced the yield to 8% within 12 h (entry 1vs.2).Performing the reaction at 50 °C revealed an improved yield of 70% with good regioselectivity (b/l= 11.1:1, entry 3) with full conversion in 12 h.At temperature over 60 °C, the regioselectivity and yield for the branched 12a was also significantly reduced (68%,b/l= 2.1:1 at 70 °C; 60%,b/l= 1.6:1 at 80 °C; entries 4 and 5).Increasing or decreasing the molar ratio of Rh/ligand L11 distinctly impaired the yield and regioselectivity for this transformation.A decrease of the Rh ligand L11 molar ratio from 1:6 to 1:3 led to low regioselectivity (b/l= 3.7:1, entry 1vs.6).Moreover, further increasing the molar ratio of Rh/ligand L11 to 1:8 produced a significant rise in regioselectivity (b/l= 9.7:1), but with poor yield (47%, entry 7).Varying pressure of syngas (CO/H2= 1:1) did not retard the rate but did alter the selectivity towards branched-selective product.Reducing the syngas pressure to 2.0 MPa resulted in a decrease in branched aldehyde 12a fromb/l= 10.9:1 to 7.9:1 (entry 1vs.8).A slightly increase in yield and regioselectivity was observed when 4.0 MPa syngas pressure was used for this transformation (entry 9).In addition, the use of other organic/aqueous biphasic systems,suh as DCM/H2O, MTBE/H2O, hexane/H2O, cyclohexane/H2O, was found to be less effective than toluene/H2O (entries 10-14).After reaction conditions were screened, the Rh-catalyzed hydroformylation reaction was performed using L11 as a ligand under 4.0 MPa of syngas (CO/H2, 1:1) at 60 °C in toluene/H2O (1:1) biphasic system in the presence of 0.86 mol% SDBS.Optimized conversion, yield for branched aldehyde 12a, and regioselectivity were achieved under this reaction conditions.The water-soluble Rh/L11 catalyst can be readily recycled by simple phase separation and still gave 88% yield of 12a in the second run (entry 15).

    Table 2 Optimization of the Rh-catalyzed hydroformylation of styrene using L11 as the ligand.a

    Scheme 2.Scope for the hydroformylation catalyzed by Rh/L11.Reaction conditions: Substrate (0.5 mmol), [Rh(COD)Cl]2 (0.2 mol%), L11 (2.4 mol%), toluene (1 mL), H2O (1 mL), 60 °C, 18-48 h, syngas (CO/H2 = 1), SDBS (0.86 mol%), all yields were isolated yield.

    With the optimized reaction conditions, the suitability of this protocol was investigated with a range of terminal arylalkenes.As shown in Scheme 2, the mono-substituted phenyl terminal alkenes bearing electron-donating (methyl (11b-11d),iso-butyl (11e),tertbutyl (11f), hydroxyl (11g), methoxy (11h)), electron-withdrawing(fluro (11i-11k), chloro (11l-11n), bromo (11o-11q), and nitro (11r))groups at any of the position of phenyl ring were hydroformylated efficiently to give the branched aldehydes (12b-12r) in 83%-94% yield withb/l= 6.9:1-26:4) with full conversion within 24-48 h.Generally, the mono-substituted phenyl terminal alkenes bearing electron-withdrawing groups exhibited higher reactivity and regioselectivity than their electron-donating groups (11i-11rvs.11b-11h).Moreover, several sensitive functional groups including chloro (11l-11n), bromo (11o-11q), and nitro (11r) were well tolerated, no hydrogenolysis or hydrogenation products was detected by GC analysis.Similarly, disubstituted phenyl termial alkenes with electron-donating (dimethyl 11s, dimethoxy 11t) groups were also smoothly hydroformylated into the branched products 12s-12t in 86% and 90% yield with good regioselectivity (b/l= 8.1:1 and 9.1:1)resepectively.In addition to phenyl terminal alkenes, 2-naphthyl terminal alkene (11u) was also a suitable substrate for this hydroformylation reaction, delivering the branched product 12u in 89%yield withb/l= 15.1:1.The heterocylcic olefin bearing thienyl ring also smoothly transformed to the corressponding product 12v in 65% yield along with low selectivity (b/l= 3.3:1).

    To further evaluate the efficiency and synthetic utility of this branched selective hydroformylation, we carried out the scale-up experiment using 6 mmol (1.10 g) of 6-methoxy-2-vinylnaphthalene 11w [41], which could be easily prepared in two steps with an overall yield of 50% starting from commercially available 6-methoxy-2-acetonaphthalene (14).The branchedselectivehydroformylation of 11w could be achieved using 0.2 mol%of the Rh/L11 catalyst within 24 h under standard reaction conditions (4.0 MP of CO/H2(1:1)) at 60 °C in tulene/H2O (1:1) to give the aldehyde 12w in 97% yield withb/l= 40:1.Oxidation of crude product 12w under Pinnick reaction conditions (NaClO2, KHPO2,2-methyl-2-butene,t-BuOH, H2O, 0 °C to r.t., 1 h) providedracnaproxen (4) in 90% isolated yield (Scheme 3) [42].

    Scheme 3.Gram-scale synthesis of rac-naproxen (4).

    In conclusion, we prepared a series of new water-soluble PNP rhodium catalysts and screened their catalytic performance in biphasic aqueous hydroformylation of vinyl arenes.A benzenesulfonates-containing PNP ligand L11 gave the most effi-cient Rh complex catalyst, affording high regioselectivities towardsα-aryl propionaldehydes from the branched-selective hydroformylation of various terminal arylalkenes.The exploration of substrate scope showed that the vinyl arenes with electron-withdrawing groups were usually more branched selective than those bearing electron-donating groups.Finally we demonstrated an aqueous route to the synthesis of anti-inflammatory drugsrac-naproxen in an efficient and green manner.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We are grateful for financial support from the National Natural Science Foundation of China (No.21902032).G.Liang acknowledges the funding support from Fudan University.

    中国美女看黄片| 午夜福利乱码中文字幕| 亚洲第一av免费看| 国产不卡av网站在线观看| 精品人妻熟女毛片av久久网站| 亚洲精品美女久久久久99蜜臀| 成人免费观看视频高清| 精品国产乱码久久久久久男人| 精品福利永久在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美激情高清一区二区三区| 日韩大码丰满熟妇| 大香蕉久久成人网| 精品无人区乱码1区二区| 99久久精品国产亚洲精品| 人妻久久中文字幕网| 国产aⅴ精品一区二区三区波| 中文字幕av电影在线播放| 国产成+人综合+亚洲专区| 免费在线观看视频国产中文字幕亚洲| 老汉色∧v一级毛片| 黑人巨大精品欧美一区二区蜜桃| 他把我摸到了高潮在线观看| 人人妻人人爽人人添夜夜欢视频| 啦啦啦 在线观看视频| 老司机影院毛片| 精品免费久久久久久久清纯 | 国产精品久久久久久人妻精品电影| 99riav亚洲国产免费| 中文字幕人妻熟女乱码| 国产男女内射视频| 免费不卡黄色视频| 色综合欧美亚洲国产小说| 正在播放国产对白刺激| 久久人妻av系列| 男女高潮啪啪啪动态图| 亚洲国产欧美网| 成年版毛片免费区| 老熟妇仑乱视频hdxx| 免费少妇av软件| 人人妻人人爽人人添夜夜欢视频| 夜夜爽天天搞| 黑人猛操日本美女一级片| 女人精品久久久久毛片| a在线观看视频网站| 免费观看a级毛片全部| 一级,二级,三级黄色视频| 久久精品aⅴ一区二区三区四区| 好男人电影高清在线观看| 国产精品影院久久| 国产无遮挡羞羞视频在线观看| 国产视频一区二区在线看| 国产精品久久久久成人av| 亚洲成人手机| 丰满迷人的少妇在线观看| 在线观看免费午夜福利视频| 色婷婷av一区二区三区视频| 欧美黄色淫秽网站| 久久香蕉激情| 日本a在线网址| 99热国产这里只有精品6| 香蕉国产在线看| 大陆偷拍与自拍| 午夜福利在线免费观看网站| 中国美女看黄片| 日本撒尿小便嘘嘘汇集6| 在线播放国产精品三级| 国产在视频线精品| 日韩精品免费视频一区二区三区| 91精品三级在线观看| 国内毛片毛片毛片毛片毛片| 精品欧美一区二区三区在线| 欧美日韩精品网址| 人人妻,人人澡人人爽秒播| 国产一区二区三区在线臀色熟女 | 亚洲五月婷婷丁香| 中文字幕色久视频| a级毛片黄视频| 中文字幕制服av| 国产欧美日韩一区二区三| 国产av精品麻豆| 制服诱惑二区| 亚洲综合色网址| 国产97色在线日韩免费| 无限看片的www在线观看| 成人av一区二区三区在线看| 一区福利在线观看| a级毛片在线看网站| 日本vs欧美在线观看视频| 最新美女视频免费是黄的| 香蕉久久夜色| 一级a爱视频在线免费观看| 另类亚洲欧美激情| 国产亚洲精品久久久久5区| a级片在线免费高清观看视频| 亚洲人成77777在线视频| 十八禁人妻一区二区| 国产精品亚洲av一区麻豆| 国产99久久九九免费精品| 欧美不卡视频在线免费观看 | 午夜激情av网站| 纯流量卡能插随身wifi吗| 搡老岳熟女国产| 欧美黑人欧美精品刺激| 中文字幕另类日韩欧美亚洲嫩草| 91国产中文字幕| 国产成人一区二区三区免费视频网站| 色尼玛亚洲综合影院| 99久久99久久久精品蜜桃| 亚洲欧美激情在线| 国产在线观看jvid| 日韩欧美免费精品| 天堂中文最新版在线下载| 99国产精品一区二区蜜桃av | 一级黄色大片毛片| 80岁老熟妇乱子伦牲交| 波多野结衣一区麻豆| 日日夜夜操网爽| 国产成人精品久久二区二区免费| 国产淫语在线视频| 男人的好看免费观看在线视频 | 欧美乱妇无乱码| 中出人妻视频一区二区| 亚洲av片天天在线观看| 欧美日韩av久久| 女人高潮潮喷娇喘18禁视频| 露出奶头的视频| 国产区一区二久久| 91精品国产国语对白视频| 亚洲精品在线美女| 亚洲欧美日韩另类电影网站| 在线永久观看黄色视频| 亚洲av第一区精品v没综合| 一级片免费观看大全| 可以免费在线观看a视频的电影网站| 亚洲av成人一区二区三| 欧美成人午夜精品| 久久久久久久午夜电影 | 午夜老司机福利片| 色老头精品视频在线观看| 成人国产一区最新在线观看| 两个人免费观看高清视频| 成年人黄色毛片网站| 丰满人妻熟妇乱又伦精品不卡| 99久久99久久久精品蜜桃| 午夜精品国产一区二区电影| 19禁男女啪啪无遮挡网站| 国产精品亚洲一级av第二区| 成年版毛片免费区| 岛国在线观看网站| 777久久人妻少妇嫩草av网站| 亚洲 欧美一区二区三区| 国产精品永久免费网站| 精品无人区乱码1区二区| 视频在线观看一区二区三区| 丝袜美腿诱惑在线| 丰满饥渴人妻一区二区三| 热re99久久精品国产66热6| 亚洲精品在线美女| 嫩草影视91久久| 国产精品.久久久| 极品教师在线免费播放| 国产av精品麻豆| 黄频高清免费视频| 久久久久久久久久久久大奶| 超色免费av| 精品熟女少妇八av免费久了| 很黄的视频免费| 老司机午夜福利在线观看视频| 亚洲精品国产一区二区精华液| 久久人人爽av亚洲精品天堂| 精品少妇久久久久久888优播| 一级毛片精品| 成人永久免费在线观看视频| 午夜激情av网站| 又黄又爽又免费观看的视频| 一二三四在线观看免费中文在| 亚洲精品在线美女| 亚洲成人免费av在线播放| 热99久久久久精品小说推荐| 亚洲午夜精品一区,二区,三区| 9191精品国产免费久久| 超碰成人久久| 一边摸一边抽搐一进一出视频| 国产精品一区二区在线不卡| 人人澡人人妻人| 色尼玛亚洲综合影院| 欧美大码av| 少妇猛男粗大的猛烈进出视频| 最新美女视频免费是黄的| 成人三级做爰电影| 丰满人妻熟妇乱又伦精品不卡| 国产高清国产精品国产三级| 久久久久精品国产欧美久久久| 久久ye,这里只有精品| 色综合婷婷激情| 欧美乱码精品一区二区三区| 成人18禁高潮啪啪吃奶动态图| 亚洲成人手机| 欧美日韩精品网址| 高清视频免费观看一区二区| 一级,二级,三级黄色视频| 久久精品国产99精品国产亚洲性色 | 少妇 在线观看| 飞空精品影院首页| 国产av一区二区精品久久| 亚洲一码二码三码区别大吗| 最新在线观看一区二区三区| 亚洲成人手机| 一进一出抽搐gif免费好疼 | 精品卡一卡二卡四卡免费| 亚洲午夜精品一区,二区,三区| 精品国产亚洲在线| 老熟妇仑乱视频hdxx| 国产成人欧美| 悠悠久久av| 久久久久精品人妻al黑| 99香蕉大伊视频| 亚洲欧美日韩高清在线视频| 免费在线观看影片大全网站| 国产免费现黄频在线看| 国产单亲对白刺激| 欧美精品亚洲一区二区| 91麻豆精品激情在线观看国产 | 日韩人妻精品一区2区三区| 久久久久国产一级毛片高清牌| 高清欧美精品videossex| 人人妻,人人澡人人爽秒播| 99精国产麻豆久久婷婷| 高清av免费在线| 色老头精品视频在线观看| 午夜福利乱码中文字幕| 成人手机av| 91老司机精品| 天堂俺去俺来也www色官网| 在线观看免费视频网站a站| 亚洲av成人av| 亚洲五月婷婷丁香| 一级毛片高清免费大全| 亚洲全国av大片| 国产一区二区三区在线臀色熟女 | 成人免费观看视频高清| svipshipincom国产片| 黄网站色视频无遮挡免费观看| 美女高潮喷水抽搐中文字幕| 亚洲av电影在线进入| 亚洲男人天堂网一区| 亚洲精品国产一区二区精华液| 久久人妻av系列| 亚洲熟女毛片儿| 精品亚洲成a人片在线观看| 久久久久精品人妻al黑| 久久久久国内视频| 狂野欧美激情性xxxx| 欧美精品av麻豆av| 老司机深夜福利视频在线观看| 大型黄色视频在线免费观看| 国产精品免费一区二区三区在线 | 男人舔女人的私密视频| 少妇被粗大的猛进出69影院| 亚洲精品粉嫩美女一区| 天堂中文最新版在线下载| 亚洲色图 男人天堂 中文字幕| 国产成人av教育| 精品第一国产精品| 欧美精品亚洲一区二区| 乱人伦中国视频| 亚洲久久久国产精品| 免费看a级黄色片| 国产精品久久久av美女十八| 男女床上黄色一级片免费看| 宅男免费午夜| 高清毛片免费观看视频网站 | 欧美 日韩 精品 国产| 日韩三级视频一区二区三区| 精品无人区乱码1区二区| 757午夜福利合集在线观看| 精品国产美女av久久久久小说| 国产av又大| 日日夜夜操网爽| 国产亚洲精品久久久久久毛片 | 狠狠狠狠99中文字幕| 高清在线国产一区| 亚洲va日本ⅴa欧美va伊人久久| tube8黄色片| 国产男女超爽视频在线观看| 亚洲精品乱久久久久久| 下体分泌物呈黄色| 十八禁网站免费在线| 亚洲人成电影免费在线| 国产成人精品久久二区二区免费| 精品视频人人做人人爽| 国产av又大| 国产成人精品久久二区二区免费| 免费少妇av软件| a在线观看视频网站| 久久国产亚洲av麻豆专区| 亚洲专区中文字幕在线| 国产三级黄色录像| 日本vs欧美在线观看视频| 一本大道久久a久久精品| 99re在线观看精品视频| 国产精品.久久久| 成人国语在线视频| 曰老女人黄片| 大型黄色视频在线免费观看| 在线观看免费视频网站a站| 欧美成狂野欧美在线观看| 99国产精品99久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 精品福利永久在线观看| 欧美精品av麻豆av| 久久精品国产a三级三级三级| 国产av精品麻豆| aaaaa片日本免费| 色老头精品视频在线观看| 国产一卡二卡三卡精品| 99香蕉大伊视频| 亚洲午夜理论影院| 精品视频人人做人人爽| 久久中文字幕一级| 国产高清videossex| 一边摸一边做爽爽视频免费| 亚洲精品国产精品久久久不卡| 视频区图区小说| 国产精品乱码一区二三区的特点 | 日韩制服丝袜自拍偷拍| 久久人妻熟女aⅴ| 国产日韩一区二区三区精品不卡| 一区二区三区激情视频| 90打野战视频偷拍视频| 欧美人与性动交α欧美精品济南到| 中文字幕av电影在线播放| 国产精品99久久99久久久不卡| 十八禁网站免费在线| 亚洲免费av在线视频| 激情在线观看视频在线高清 | 婷婷丁香在线五月| 国产成人欧美| 亚洲av日韩在线播放| 中文字幕最新亚洲高清| 一级a爱片免费观看的视频| 99久久精品国产亚洲精品| 自线自在国产av| 久久九九热精品免费| 久久精品国产99精品国产亚洲性色 | 侵犯人妻中文字幕一二三四区| 国产一卡二卡三卡精品| 午夜老司机福利片| 欧美日韩瑟瑟在线播放| 99热只有精品国产| 欧美日韩亚洲国产一区二区在线观看 | av欧美777| 视频区图区小说| 久久香蕉精品热| av超薄肉色丝袜交足视频| 国产在视频线精品| 国产精品自产拍在线观看55亚洲 | 欧美日本中文国产一区发布| 久久久久久久久免费视频了| 国产又色又爽无遮挡免费看| 久久人妻熟女aⅴ| 久久久久国内视频| 久久草成人影院| 国产精品一区二区精品视频观看| 国产av一区二区精品久久| 麻豆av在线久日| √禁漫天堂资源中文www| 亚洲色图综合在线观看| 亚洲精品国产一区二区精华液| 日韩欧美免费精品| 亚洲五月天丁香| 精品第一国产精品| 黄网站色视频无遮挡免费观看| 欧美黄色片欧美黄色片| tocl精华| av电影中文网址| 国产免费av片在线观看野外av| 在线观看午夜福利视频| 精品国内亚洲2022精品成人 | 国产成人系列免费观看| 国产男女超爽视频在线观看| 久久久久国产一级毛片高清牌| 欧美日韩av久久| 国产av一区二区精品久久| 夜夜爽天天搞| 亚洲成国产人片在线观看| 咕卡用的链子| 99国产极品粉嫩在线观看| 啦啦啦 在线观看视频| 美女高潮喷水抽搐中文字幕| 免费观看人在逋| 国产成人影院久久av| 免费不卡黄色视频| 精品午夜福利视频在线观看一区| 精品高清国产在线一区| 9热在线视频观看99| 亚洲国产欧美日韩在线播放| 不卡一级毛片| 日本欧美视频一区| 亚洲一码二码三码区别大吗| 国产成人免费观看mmmm| 国产成人精品久久二区二区免费| 色综合婷婷激情| 国产精品亚洲一级av第二区| 美女午夜性视频免费| 久久香蕉国产精品| 香蕉国产在线看| 人妻丰满熟妇av一区二区三区 | 国产成人欧美| 国产免费av片在线观看野外av| 十八禁人妻一区二区| 色精品久久人妻99蜜桃| 操美女的视频在线观看| 国产99久久九九免费精品| 999久久久精品免费观看国产| 在线观看一区二区三区激情| 人妻一区二区av| 69精品国产乱码久久久| 免费在线观看日本一区| 18禁观看日本| 在线天堂中文资源库| 久久99一区二区三区| 桃红色精品国产亚洲av| 国产精品秋霞免费鲁丝片| 国产激情久久老熟女| 一边摸一边做爽爽视频免费| 大型黄色视频在线免费观看| 两个人免费观看高清视频| 日韩欧美免费精品| 性少妇av在线| 天天躁日日躁夜夜躁夜夜| av中文乱码字幕在线| 成人亚洲精品一区在线观看| 日韩大码丰满熟妇| 国产熟女午夜一区二区三区| 亚洲第一欧美日韩一区二区三区| 亚洲国产中文字幕在线视频| 欧美乱色亚洲激情| 国产xxxxx性猛交| 亚洲aⅴ乱码一区二区在线播放 | 精品久久久久久,| 99在线人妻在线中文字幕 | 国产午夜精品久久久久久| 亚洲成av片中文字幕在线观看| 国产欧美亚洲国产| 久9热在线精品视频| 丝袜美足系列| 成人国产一区最新在线观看| 丰满的人妻完整版| 18禁美女被吸乳视频| 午夜老司机福利片| aaaaa片日本免费| 国产成人免费观看mmmm| 亚洲自偷自拍图片 自拍| 身体一侧抽搐| 国产精品自产拍在线观看55亚洲 | 在线观看www视频免费| 国产不卡av网站在线观看| 国产成人影院久久av| 看黄色毛片网站| 亚洲第一av免费看| 一边摸一边抽搐一进一小说 | 9热在线视频观看99| 欧美在线黄色| 国产精品免费大片| 免费久久久久久久精品成人欧美视频| 热99国产精品久久久久久7| 国产亚洲一区二区精品| 免费在线观看完整版高清| 男女下面插进去视频免费观看| 亚洲第一欧美日韩一区二区三区| 下体分泌物呈黄色| 日韩欧美一区二区三区在线观看 | 99热网站在线观看| 美女国产高潮福利片在线看| 久久精品国产清高在天天线| x7x7x7水蜜桃| 久热爱精品视频在线9| 韩国精品一区二区三区| 欧美日本中文国产一区发布| 精品熟女少妇八av免费久了| 久久精品国产综合久久久| 欧美精品高潮呻吟av久久| 母亲3免费完整高清在线观看| 国产精品久久电影中文字幕 | 丰满的人妻完整版| 精品熟女少妇八av免费久了| 免费日韩欧美在线观看| 身体一侧抽搐| 80岁老熟妇乱子伦牲交| 亚洲性夜色夜夜综合| 777米奇影视久久| 乱人伦中国视频| 午夜精品久久久久久毛片777| 99国产精品一区二区三区| av有码第一页| 久久久久视频综合| 十八禁高潮呻吟视频| 一区在线观看完整版| 亚洲色图av天堂| 国产精品av久久久久免费| 久久影院123| 亚洲国产看品久久| 免费在线观看黄色视频的| 色老头精品视频在线观看| 久久国产精品大桥未久av| 黄色毛片三级朝国网站| 国产欧美亚洲国产| 日日摸夜夜添夜夜添小说| 亚洲精品国产精品久久久不卡| 两个人看的免费小视频| 99国产极品粉嫩在线观看| 在线观看免费午夜福利视频| 亚洲三区欧美一区| 十八禁网站免费在线| 熟女少妇亚洲综合色aaa.| 丁香欧美五月| 亚洲成a人片在线一区二区| 嫩草影视91久久| 久久久久久久精品吃奶| 老司机亚洲免费影院| 免费人成视频x8x8入口观看| 一本综合久久免费| 亚洲人成77777在线视频| 亚洲精品久久午夜乱码| 91麻豆精品激情在线观看国产 | 亚洲精品乱久久久久久| 亚洲欧美色中文字幕在线| 成人黄色视频免费在线看| 免费在线观看影片大全网站| 国产精华一区二区三区| 亚洲熟女毛片儿| 亚洲aⅴ乱码一区二区在线播放 | 99香蕉大伊视频| 丰满饥渴人妻一区二区三| 高清毛片免费观看视频网站 | 国产1区2区3区精品| 欧美日韩中文字幕国产精品一区二区三区 | 丰满迷人的少妇在线观看| 免费看a级黄色片| 成人黄色视频免费在线看| 国产亚洲一区二区精品| 在线观看免费日韩欧美大片| 麻豆乱淫一区二区| 日韩人妻精品一区2区三区| 在线十欧美十亚洲十日本专区| 亚洲av欧美aⅴ国产| 日日爽夜夜爽网站| 国产主播在线观看一区二区| 国产极品粉嫩免费观看在线| 欧美精品亚洲一区二区| 亚洲中文av在线| 免费av中文字幕在线| 日韩制服丝袜自拍偷拍| 人成视频在线观看免费观看| 亚洲中文日韩欧美视频| 精品国产美女av久久久久小说| 大型av网站在线播放| 91精品国产国语对白视频| 亚洲男人天堂网一区| 国产精品欧美亚洲77777| 国产精品久久久人人做人人爽| 午夜久久久在线观看| 80岁老熟妇乱子伦牲交| 欧美日韩福利视频一区二区| 999久久久国产精品视频| 女人精品久久久久毛片| 国产精品久久久av美女十八| 法律面前人人平等表现在哪些方面| 国产一区有黄有色的免费视频| 精品熟女少妇八av免费久了| 无限看片的www在线观看| 99精品欧美一区二区三区四区| 校园春色视频在线观看| av线在线观看网站| 91国产中文字幕| 亚洲午夜精品一区,二区,三区| 国产精品av久久久久免费| 亚洲欧美日韩高清在线视频| 日韩欧美一区视频在线观看| 日韩有码中文字幕| 成人av一区二区三区在线看| 香蕉国产在线看| 日本黄色视频三级网站网址 | 真人做人爱边吃奶动态| 女性生殖器流出的白浆| 女人爽到高潮嗷嗷叫在线视频| 色精品久久人妻99蜜桃| 精品一区二区三区视频在线观看免费 | 久热爱精品视频在线9| 日韩欧美免费精品| 欧美国产精品va在线观看不卡| 国内毛片毛片毛片毛片毛片| 岛国在线观看网站| 母亲3免费完整高清在线观看| 亚洲欧美日韩另类电影网站| 亚洲色图 男人天堂 中文字幕| 精品国产亚洲在线| 在线观看免费午夜福利视频| 嫩草影视91久久| e午夜精品久久久久久久| 国产又爽黄色视频| 欧美大码av| 美女高潮喷水抽搐中文字幕| 首页视频小说图片口味搜索| 一本综合久久免费| 一进一出好大好爽视频| 国产精品一区二区在线不卡| 久久久精品免费免费高清| 熟女少妇亚洲综合色aaa.| 久久精品aⅴ一区二区三区四区| 欧洲精品卡2卡3卡4卡5卡区| 99热只有精品国产| 一区二区三区国产精品乱码|