• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of rac-α-aryl propionaldehydes via branched-selective hydroformylation of terminal arylalkenes using water-soluble Rh-PNP catalyst

    2022-06-18 03:00:28PengGoMiolinKeTongRuGunfengLingFenErChen
    Chinese Chemical Letters 2022年2期

    Peng Go, Miolin Ke, Tong Ru, Gunfeng Ling,*, Fen-Er Chen,,*

    a Department of Chemistry, Sichuan University, Chengdu 610064, China

    b Department of Chemistry, Fudan University, Shanghai 200433, China

    c Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Fudan University, Shanghai 200433, China

    ABSTRACT This work detailed the preparation of a class of water-soluble PNP ligands that differed by the nature of the substitute on phenyl ring of ligands.These ligands were incorporated into water-soluble rhodium-PNP complex catalysts that were used to regioselective hydroformylation of a series of terminal arylalkenes,providing efficient access to rac-α-aryl propionaldehydes in good to excellent yield (up to 97%) and branched-regioselectivity (up to 40:1 b/l ratio).Furthermore, gram-scale and diverse synthetic transformation demonstrated synthetic application of this methodology for non-steroidal antiinflammatory drugs.

    Keywords:Aryl propionaldehydes Hydroformylation Water-soluble PNP ligands Regioselectivity Rhodium

    rac-α-Arylaldehydes have been extensively used as important synthetic precursors for the profen family (α-arylpropionic acid derivatives), a class of non-steroidal anti-inflammatory drugs(NSAIDs) in pharmaceutical chemistry [1-5].At present, more than 20 profen NSAIDs has been used in clinical for treating the heat of inflammation, pain, swelling and fever [6,7].Some representative examples are illustrated in Fig.1, such as ibuprofen (1) [8], ketoprofen (2) [9], flurbiprofen (3) [10], naproxen (4) [11] and loxoprofen (5) [12].Undoubtedly, the development of efficient approaches towardsrac-α-arylaldehydes is always a popular topic in both academic and industrial laboratories [13-17].Traditional methods for synthesis ofrac-α-arylaldehydes include the rearrangementviaDarzen’s glycidic esters [18,19] and Corey-Chaykovsk’s epoxides [20] from aryl methylketones (Schemes 1a and b).However,these processes suffer from several drawbacks such as more complicated synthetic operations, harsh reaction conditions, and functional group incompatibility.Attractive alternatives have been developed using 1,1-arylmethyl alkenes as feedstocks (Scheme 1c)[21-23], including Che’s Ru(IV) porphyrin-catalyzed aerobic oxidationviaan epoxidation/isomerization tandem pathway [21], and Lahiri’s catalytic PhIO oxidation by applying iron(II) dipic catalyst,in situformed from Fe(BF4)2·6H2O and pyridine-2,6-dicarboxylic acid [22], and Lei’s anti-markovnikov oxygenation with H2O as oxidant by a photoredox-metal dual catalysis [23].However, protocols currently lack broad substrate scope due to the difficulties for access to 1,1-arylmethyl alkenes as special substrates.

    Fig.1.Representative examples for synthesis of rac-profen family (1-5) from the corresponding rac-α-aryl propionaldehydes.

    The transition metal-catalyzed hydroformylation of terminal arylalkenes to arylaldehydes could provide an alternative, however typically only a small percent of theβ-arylaldehyde products was formed alongside theα-arylaldehyde products.There are remarkable exception of Rh phosphine catalysts [24-35] including Wink’s a cationic bis(dioxaphospholane)rhodium complex [24], Marchetti’s Rh/pyridylphosphines pydiphos P-oxide complex [25], Amer’s Rh/amino phosphine complex [26], Alper’s Rh/diphenylphosphinoyl)phenylmethanol catalysis [27], B?rner’s Rh/diphosphate catalysis[28], Lerous’s Rh/dibenzophosphole catalysisetc.[29], which form theβ-aldehyde products with a good level of selectivity, but only for very limited substrates (Scheme 1d).Recent branched-selective hydroformylation of terminal arylalkenes has been reported using PPh3-modified Fe as catalyst [30], but the limited success has been achieved toward this hydroformylation (Scheme 1d).Hydroformylations of terminal olefins were independently reported by Nozaki’s group and Clarke’s group, but the two methods were limited to the preparation ofα-alkylaldehyde products [31,32].Apart from this class of homogeneous catalysis, significant breakthrough have been achieved toward synthesis ofβ-arylaldehydesviabiphasic Rhcatalyzed hydroformylation of terminal olefin using water-soluble poly(4-pentenoic acid (PPA)/bis(2-diphenylphosphino)ethyl) (DPPEA) or tri-meta-sulfonatophenylphosphine (TPPTS), or phenyl-β-D-glucopyranoside catalyst as ligands (Scheme 1e) [36-38].Despite the obtained achievements in this field, the developing of a practical and efficient approach to access therac-α-aryl propionaldehydes is still highly desirable from the perspective of green, step and atom economy [39].Herein, we report the preparation of a series of novel water-soluble PNP ligands and their applications to the Rh-catalyzed branched-selective hydroformylation of terminal arylalkenes for the synthesis ofrac-α-aryl propionaldehydes in aqueous biphasic catalytic system.

    Scheme 1.Strategies to access rac-α-arylaldehydes.

    The known water-soluble PNP ligands L5 and L11 and new ligands L1-L4 and L6-L10 were prepared in high to excellent yields from bis(2-diphenylphosphinoethyl)amine hydrochloride (6) and appropriate carbonyl halides, and diphenic anhydride (9) and 2-sulfobenzoicanhydride (10) following a modified procedure developed by Whiteside and co-workers (Fig.2) [40].

    Fig.2.Synthesis of water-soluble PNP ligands (L1-L11).(i) TEA, THF, r.t., 20-24 h;(ii) NaI, acetone, reflux, 20-30 h, or LiOH, THF/H2O, 4-20 h; (iii) NaOH, THF/H2O,0.5-1 h.

    With this library of water-soluble PNP ligands in hand, we began our studies with an examination of their catalytic performance in Rh-catalyzed branched-selective hydroformylation of styrene 11a as the benchmark substrate.As described in Table 1, all styrene hydrorformylation reactions were completed in 24 h toluene/H2O(1:1) solvent at 3.0 MPa of syngas and 60 °C in the presence of 0.05 mol% [Rh(COD)Cl]2and 0.6 mol% ligand (Rh/L = 1:6).In all the excellent chemoselectivities were observed, and no hydrogenation product was detectedvia1H NMR analysis.The carbonated PNP ligands L1-L6 were first examined.The ligands L1 and L2 bearing COONa at benzene’sortho- ormeta-position, gave the branched aldehyde 12a in moderate yields with good regioselectivities (b/l= 8.5:1 and 8.4:1, entries 1 and 2), respectively.When the ligand L3 substituted withmeta-OMe andmeta-COONa groups on phenyl ring was employed, poor yield of 12a was obtained, however, theb/lratio in this instance was still exceptional (8.4:1, entry 3).Reaction conducted with the ligand L4 possessing COONa group atpara-position of phenyl ring, delivered branched aldehyde 12a in only 42% yield and with lower regioselectivity (b/l= 6.5:1, entry 4).The dicarboxylated PNP ligand L5 gave better yield (75%, entry 5)compared with results of monocarboxylated PNP ligands (L1-L4),but with poor regioselectivity (b/l= 3.0:1).Moreover, the monocarboxylated PNP ligand L6 with a biphenyl ring resulted in much higher yield (84%), albeit with a ratio of 12a/13a of 5.4:1 (entry 6).The sulfonated PNP ligand L7 withmeta-SO3Na gave poor yield and regioselectivity (26%,b/l= 3.8:1, entry 7) under identical conditions.The ligand L8 bearingmeta-SO3Na andpara-MeO groups of phenyl ring was shown to give superior yield of 12a, but much worse regioselectivity (12a/13a = 3.2:1) was obtained (entry 8).A change of the position of SO3Na group on ligand L7 frommeta- topara-position resulted in similar yield (entry 9), but high regioselectivity compared with the results of the corresponding sulfonated PNP ligand L7-L10.The use of ligand L11 withortho-SO3Na group on phenyl ring afforded branched aldehyde 12a in 92% yield with high regioselectivity (b/l= 11.3:1, entry 11).The well-known TPPTS only gave 74% yield of 12a, with poor regioselectivity (b/l= 2.8:1,entry 12) under identical conditions.Other common Rh catalysts for hydroformylation, such as Rh(acac)(CO)2) and RhCl3, low regioselectivities and reactivities were respectively obtained (entries 13 and 14).Addition of SDBS (0.86 mol%) as the surfactant could short reaction time to 12 h, and provide branched 12a in 91% yield and a 10.1:1 ratio ofb/l(entry 15).Branched product was obtained in 72% yield with 10.0:1 ratio ofb/lin absence of SDBS (Table 1,entry 16).The control experiment of absence of ligand was also carried out to give the product in 74% yield with 2.8:1 ratiob/l(entry 17).These results revealed the crucial role of these two types of ligand structures in controlling of yield and regioselectivity for this Rh-catalyzed hydroformylation reaction.

    Table 1 Ligands screening for the Rh-catalyzed branched-selective hydroformylation of styrene.a

    With the best ligand L11, a series of Rh-catalyzed styrene hydroformylation parameters were examined, including temperature,Rh/ ligand L11 molar ratio, organic/aqueous biphasic system, and CO/H2pressure (Table 2).First, the temperature impacted on theactivity and regioselectivity of the Rh-catalyzed styrene hydroformylation was investigated.Notably, the activity and regioselectivity of the reaction had obvious temperature effect.Lowering the temperature from 60 °C to 25 °C under standard condition(toluene/H2O (1:1), 3.0 MPa CO/H2(1:1), 0.86 mol% SDBS) dramatically reduced the yield to 8% within 12 h (entry 1vs.2).Performing the reaction at 50 °C revealed an improved yield of 70% with good regioselectivity (b/l= 11.1:1, entry 3) with full conversion in 12 h.At temperature over 60 °C, the regioselectivity and yield for the branched 12a was also significantly reduced (68%,b/l= 2.1:1 at 70 °C; 60%,b/l= 1.6:1 at 80 °C; entries 4 and 5).Increasing or decreasing the molar ratio of Rh/ligand L11 distinctly impaired the yield and regioselectivity for this transformation.A decrease of the Rh ligand L11 molar ratio from 1:6 to 1:3 led to low regioselectivity (b/l= 3.7:1, entry 1vs.6).Moreover, further increasing the molar ratio of Rh/ligand L11 to 1:8 produced a significant rise in regioselectivity (b/l= 9.7:1), but with poor yield (47%, entry 7).Varying pressure of syngas (CO/H2= 1:1) did not retard the rate but did alter the selectivity towards branched-selective product.Reducing the syngas pressure to 2.0 MPa resulted in a decrease in branched aldehyde 12a fromb/l= 10.9:1 to 7.9:1 (entry 1vs.8).A slightly increase in yield and regioselectivity was observed when 4.0 MPa syngas pressure was used for this transformation (entry 9).In addition, the use of other organic/aqueous biphasic systems,suh as DCM/H2O, MTBE/H2O, hexane/H2O, cyclohexane/H2O, was found to be less effective than toluene/H2O (entries 10-14).After reaction conditions were screened, the Rh-catalyzed hydroformylation reaction was performed using L11 as a ligand under 4.0 MPa of syngas (CO/H2, 1:1) at 60 °C in toluene/H2O (1:1) biphasic system in the presence of 0.86 mol% SDBS.Optimized conversion, yield for branched aldehyde 12a, and regioselectivity were achieved under this reaction conditions.The water-soluble Rh/L11 catalyst can be readily recycled by simple phase separation and still gave 88% yield of 12a in the second run (entry 15).

    Table 2 Optimization of the Rh-catalyzed hydroformylation of styrene using L11 as the ligand.a

    Scheme 2.Scope for the hydroformylation catalyzed by Rh/L11.Reaction conditions: Substrate (0.5 mmol), [Rh(COD)Cl]2 (0.2 mol%), L11 (2.4 mol%), toluene (1 mL), H2O (1 mL), 60 °C, 18-48 h, syngas (CO/H2 = 1), SDBS (0.86 mol%), all yields were isolated yield.

    With the optimized reaction conditions, the suitability of this protocol was investigated with a range of terminal arylalkenes.As shown in Scheme 2, the mono-substituted phenyl terminal alkenes bearing electron-donating (methyl (11b-11d),iso-butyl (11e),tertbutyl (11f), hydroxyl (11g), methoxy (11h)), electron-withdrawing(fluro (11i-11k), chloro (11l-11n), bromo (11o-11q), and nitro (11r))groups at any of the position of phenyl ring were hydroformylated efficiently to give the branched aldehydes (12b-12r) in 83%-94% yield withb/l= 6.9:1-26:4) with full conversion within 24-48 h.Generally, the mono-substituted phenyl terminal alkenes bearing electron-withdrawing groups exhibited higher reactivity and regioselectivity than their electron-donating groups (11i-11rvs.11b-11h).Moreover, several sensitive functional groups including chloro (11l-11n), bromo (11o-11q), and nitro (11r) were well tolerated, no hydrogenolysis or hydrogenation products was detected by GC analysis.Similarly, disubstituted phenyl termial alkenes with electron-donating (dimethyl 11s, dimethoxy 11t) groups were also smoothly hydroformylated into the branched products 12s-12t in 86% and 90% yield with good regioselectivity (b/l= 8.1:1 and 9.1:1)resepectively.In addition to phenyl terminal alkenes, 2-naphthyl terminal alkene (11u) was also a suitable substrate for this hydroformylation reaction, delivering the branched product 12u in 89%yield withb/l= 15.1:1.The heterocylcic olefin bearing thienyl ring also smoothly transformed to the corressponding product 12v in 65% yield along with low selectivity (b/l= 3.3:1).

    To further evaluate the efficiency and synthetic utility of this branched selective hydroformylation, we carried out the scale-up experiment using 6 mmol (1.10 g) of 6-methoxy-2-vinylnaphthalene 11w [41], which could be easily prepared in two steps with an overall yield of 50% starting from commercially available 6-methoxy-2-acetonaphthalene (14).The branchedselectivehydroformylation of 11w could be achieved using 0.2 mol%of the Rh/L11 catalyst within 24 h under standard reaction conditions (4.0 MP of CO/H2(1:1)) at 60 °C in tulene/H2O (1:1) to give the aldehyde 12w in 97% yield withb/l= 40:1.Oxidation of crude product 12w under Pinnick reaction conditions (NaClO2, KHPO2,2-methyl-2-butene,t-BuOH, H2O, 0 °C to r.t., 1 h) providedracnaproxen (4) in 90% isolated yield (Scheme 3) [42].

    Scheme 3.Gram-scale synthesis of rac-naproxen (4).

    In conclusion, we prepared a series of new water-soluble PNP rhodium catalysts and screened their catalytic performance in biphasic aqueous hydroformylation of vinyl arenes.A benzenesulfonates-containing PNP ligand L11 gave the most effi-cient Rh complex catalyst, affording high regioselectivities towardsα-aryl propionaldehydes from the branched-selective hydroformylation of various terminal arylalkenes.The exploration of substrate scope showed that the vinyl arenes with electron-withdrawing groups were usually more branched selective than those bearing electron-donating groups.Finally we demonstrated an aqueous route to the synthesis of anti-inflammatory drugsrac-naproxen in an efficient and green manner.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We are grateful for financial support from the National Natural Science Foundation of China (No.21902032).G.Liang acknowledges the funding support from Fudan University.

    国产精品99久久99久久久不卡| 国产成+人综合+亚洲专区| 18禁裸乳无遮挡免费网站照片| 久久久成人免费电影| 日韩精品中文字幕看吧| 日韩欧美在线二视频| 性色avwww在线观看| 99在线人妻在线中文字幕| 婷婷精品国产亚洲av在线| netflix在线观看网站| 亚洲人成伊人成综合网2020| 国产av不卡久久| 好男人电影高清在线观看| 99热这里只有是精品50| 狠狠狠狠99中文字幕| 女人高潮潮喷娇喘18禁视频| 在线国产一区二区在线| 国产97色在线日韩免费| 狠狠狠狠99中文字幕| 九九久久精品国产亚洲av麻豆 | 精品久久久久久久久久免费视频| 亚洲成av人片免费观看| 国产一区二区在线av高清观看| 欧美一区二区精品小视频在线| 中文资源天堂在线| 久久精品影院6| 国产欧美日韩精品一区二区| 欧美丝袜亚洲另类 | 色哟哟哟哟哟哟| 人妻丰满熟妇av一区二区三区| 亚洲国产色片| 国内毛片毛片毛片毛片毛片| 他把我摸到了高潮在线观看| 国产野战对白在线观看| 一二三四在线观看免费中文在| 啦啦啦韩国在线观看视频| 麻豆av在线久日| 一个人免费在线观看的高清视频| 女人高潮潮喷娇喘18禁视频| 免费一级毛片在线播放高清视频| 99久久国产精品久久久| 日日干狠狠操夜夜爽| 18禁黄网站禁片免费观看直播| 麻豆久久精品国产亚洲av| 少妇熟女aⅴ在线视频| 蜜桃久久精品国产亚洲av| 99久久精品国产亚洲精品| 狠狠狠狠99中文字幕| 久久久久久久久久黄片| 亚洲成人精品中文字幕电影| 白带黄色成豆腐渣| 免费观看精品视频网站| 日本撒尿小便嘘嘘汇集6| 亚洲欧美日韩卡通动漫| 久久香蕉国产精品| 啦啦啦免费观看视频1| 中文亚洲av片在线观看爽| 久久精品国产综合久久久| 高潮久久久久久久久久久不卡| e午夜精品久久久久久久| 母亲3免费完整高清在线观看| 麻豆国产97在线/欧美| 国产又色又爽无遮挡免费看| 精品一区二区三区视频在线观看免费| 欧美乱色亚洲激情| 人妻丰满熟妇av一区二区三区| 校园春色视频在线观看| 两性夫妻黄色片| 亚洲七黄色美女视频| 亚洲熟妇熟女久久| 九九久久精品国产亚洲av麻豆 | a级毛片在线看网站| 国产真人三级小视频在线观看| 熟女电影av网| 在线观看舔阴道视频| 级片在线观看| 国产亚洲欧美98| a在线观看视频网站| 嫩草影院精品99| 亚洲国产欧洲综合997久久,| 男女下面进入的视频免费午夜| 亚洲自偷自拍图片 自拍| 一卡2卡三卡四卡精品乱码亚洲| 丝袜人妻中文字幕| 男女床上黄色一级片免费看| 此物有八面人人有两片| 国产精品亚洲一级av第二区| 可以在线观看毛片的网站| 可以在线观看的亚洲视频| 午夜亚洲福利在线播放| 国产精品,欧美在线| 国产av在哪里看| 岛国在线观看网站| 亚洲国产中文字幕在线视频| 一进一出抽搐动态| 九九热线精品视视频播放| 精品久久久久久久毛片微露脸| 国产午夜福利久久久久久| 看黄色毛片网站| 老司机福利观看| 中亚洲国语对白在线视频| 国产一区二区激情短视频| 国产又色又爽无遮挡免费看| 亚洲人成网站在线播放欧美日韩| 国内精品久久久久精免费| 国产69精品久久久久777片 | 在线观看舔阴道视频| 怎么达到女性高潮| 国内久久婷婷六月综合欲色啪| 最新在线观看一区二区三区| 操出白浆在线播放| 精品一区二区三区视频在线 | 少妇裸体淫交视频免费看高清| 精品乱码久久久久久99久播| 久久精品国产亚洲av香蕉五月| 五月伊人婷婷丁香| av中文乱码字幕在线| 亚洲av成人不卡在线观看播放网| 精品国产亚洲在线| 黑人巨大精品欧美一区二区mp4| 色综合婷婷激情| 亚洲 欧美一区二区三区| 校园春色视频在线观看| 很黄的视频免费| 毛片女人毛片| 亚洲黑人精品在线| 黄频高清免费视频| 噜噜噜噜噜久久久久久91| 99精品欧美一区二区三区四区| 热99在线观看视频| 麻豆久久精品国产亚洲av| 免费看光身美女| 精品久久久久久久人妻蜜臀av| 久久久久精品国产欧美久久久| 免费看日本二区| 18美女黄网站色大片免费观看| 亚洲国产欧洲综合997久久,| 国产精品一区二区精品视频观看| 亚洲成av人片在线播放无| 久久久久精品国产欧美久久久| 麻豆国产av国片精品| 精品久久久久久久末码| 一个人免费在线观看电影 | 两性夫妻黄色片| 亚洲精品中文字幕一二三四区| 99在线人妻在线中文字幕| 99精品欧美一区二区三区四区| 国产高清视频在线观看网站| 一级a爱片免费观看的视频| 我的老师免费观看完整版| 天天一区二区日本电影三级| 成人精品一区二区免费| 婷婷丁香在线五月| 色视频www国产| 性欧美人与动物交配| 午夜精品久久久久久毛片777| 欧美成人性av电影在线观看| 少妇裸体淫交视频免费看高清| 亚洲无线在线观看| 国产高清激情床上av| 黄色丝袜av网址大全| 国产亚洲精品一区二区www| 五月玫瑰六月丁香| 伦理电影免费视频| 美女免费视频网站| 亚洲国产精品合色在线| 老司机深夜福利视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 在线十欧美十亚洲十日本专区| 一个人看的www免费观看视频| 亚洲人成网站在线播放欧美日韩| 三级国产精品欧美在线观看 | 18禁美女被吸乳视频| 淫秽高清视频在线观看| 久久久精品欧美日韩精品| 99在线人妻在线中文字幕| 麻豆国产97在线/欧美| 国产黄a三级三级三级人| 成人特级av手机在线观看| 国产一区二区三区在线臀色熟女| АⅤ资源中文在线天堂| 男女床上黄色一级片免费看| av视频在线观看入口| 国产精品久久视频播放| 天天添夜夜摸| 亚洲狠狠婷婷综合久久图片| 久久久精品欧美日韩精品| 岛国在线免费视频观看| 久久久久国内视频| 给我免费播放毛片高清在线观看| 国产精华一区二区三区| 18禁黄网站禁片午夜丰满| 亚洲第一欧美日韩一区二区三区| 又爽又黄无遮挡网站| 亚洲精品乱码久久久v下载方式 | 99精品久久久久人妻精品| 黄片大片在线免费观看| 99riav亚洲国产免费| 丝袜人妻中文字幕| 久9热在线精品视频| 狂野欧美白嫩少妇大欣赏| 久久这里只有精品19| 国产v大片淫在线免费观看| www国产在线视频色| 特大巨黑吊av在线直播| 最新在线观看一区二区三区| 亚洲欧美精品综合久久99| 99热这里只有精品一区 | 久久国产精品人妻蜜桃| 成人精品一区二区免费| 韩国av一区二区三区四区| 香蕉久久夜色| 又黄又爽又免费观看的视频| 国产乱人伦免费视频| 国产精品99久久久久久久久| 白带黄色成豆腐渣| 国产99白浆流出| 国产99白浆流出| 国产三级中文精品| 在线观看一区二区三区| 十八禁网站免费在线| 岛国视频午夜一区免费看| 变态另类丝袜制服| 丰满的人妻完整版| 欧美性猛交黑人性爽| 最近最新中文字幕大全免费视频| 两个人视频免费观看高清| 18禁美女被吸乳视频| 夜夜爽天天搞| 三级毛片av免费| 国产精品永久免费网站| 久久久精品大字幕| 亚洲午夜理论影院| 国产精品亚洲美女久久久| 亚洲午夜精品一区,二区,三区| 中文亚洲av片在线观看爽| 国产精品综合久久久久久久免费| 欧美日本亚洲视频在线播放| 国内揄拍国产精品人妻在线| 国产欧美日韩精品亚洲av| av在线天堂中文字幕| 亚洲五月婷婷丁香| 在线观看日韩欧美| 亚洲avbb在线观看| 亚洲av中文字字幕乱码综合| 亚洲最大成人中文| 黄色 视频免费看| 久久人人精品亚洲av| 国产欧美日韩精品亚洲av| 舔av片在线| 午夜亚洲福利在线播放| 国产伦人伦偷精品视频| 精品久久久久久久末码| 操出白浆在线播放| 亚洲第一欧美日韩一区二区三区| 淫妇啪啪啪对白视频| 美女午夜性视频免费| 午夜福利在线观看免费完整高清在 | 国产成人精品无人区| 色播亚洲综合网| 欧美乱妇无乱码| 给我免费播放毛片高清在线观看| 国产成人aa在线观看| 欧美中文综合在线视频| 欧美高清成人免费视频www| 日本熟妇午夜| 欧美一区二区精品小视频在线| 一区福利在线观看| 变态另类丝袜制服| 51午夜福利影视在线观看| 亚洲五月婷婷丁香| 欧美一级毛片孕妇| 免费在线观看日本一区| 亚洲va日本ⅴa欧美va伊人久久| 一个人看的www免费观看视频| 又粗又爽又猛毛片免费看| 国产欧美日韩一区二区三| 久久天堂一区二区三区四区| 亚洲精品美女久久av网站| 麻豆av在线久日| 亚洲人成伊人成综合网2020| 国产成人啪精品午夜网站| 99久久99久久久精品蜜桃| 99久久久亚洲精品蜜臀av| 2021天堂中文幕一二区在线观| 亚洲国产精品999在线| 国产91精品成人一区二区三区| 国产一区二区三区在线臀色熟女| 中亚洲国语对白在线视频| 亚洲欧美激情综合另类| 真实男女啪啪啪动态图| 黑人操中国人逼视频| 亚洲欧美精品综合一区二区三区| 欧美又色又爽又黄视频| 国产不卡一卡二| 亚洲熟妇中文字幕五十中出| av视频在线观看入口| 午夜激情欧美在线| 国产高清三级在线| 日韩欧美在线乱码| 精品不卡国产一区二区三区| 成人av一区二区三区在线看| 午夜福利在线在线| 宅男免费午夜| 欧美日韩乱码在线| 麻豆国产av国片精品| 最新美女视频免费是黄的| 亚洲午夜精品一区,二区,三区| 日韩欧美国产一区二区入口| 亚洲美女视频黄频| 免费观看人在逋| 麻豆成人午夜福利视频| 国产av一区在线观看免费| 香蕉久久夜色| 中文亚洲av片在线观看爽| 91av网一区二区| 久久久久久国产a免费观看| 久久亚洲真实| x7x7x7水蜜桃| 高潮久久久久久久久久久不卡| 婷婷亚洲欧美| 日韩人妻高清精品专区| 久久中文看片网| 亚洲黑人精品在线| aaaaa片日本免费| 精品久久久久久久久久免费视频| 国产伦在线观看视频一区| 国产99白浆流出| 亚洲成人中文字幕在线播放| 国产一区二区激情短视频| 麻豆国产av国片精品| 欧美一级a爱片免费观看看| 黑人巨大精品欧美一区二区mp4| 美女大奶头视频| 天天添夜夜摸| 国产成人一区二区三区免费视频网站| 啦啦啦观看免费观看视频高清| 成人特级黄色片久久久久久久| 国产一区二区在线观看日韩 | 白带黄色成豆腐渣| 无遮挡黄片免费观看| 亚洲精品国产精品久久久不卡| 亚洲成av人片免费观看| 久久伊人香网站| 欧美日韩瑟瑟在线播放| 亚洲国产精品sss在线观看| 19禁男女啪啪无遮挡网站| 91久久精品国产一区二区成人 | 亚洲国产精品sss在线观看| 欧美黑人欧美精品刺激| 亚洲成av人片免费观看| 夜夜躁狠狠躁天天躁| 日韩中文字幕欧美一区二区| 国产欧美日韩一区二区三| 久久久久国内视频| 制服人妻中文乱码| 精品国产亚洲在线| 亚洲,欧美精品.| 亚洲欧美日韩高清专用| 欧美一级a爱片免费观看看| 悠悠久久av| 亚洲精品国产精品久久久不卡| 男插女下体视频免费在线播放| 亚洲av成人精品一区久久| 国产视频一区二区在线看| 日韩欧美一区二区三区在线观看| 免费搜索国产男女视频| 99久久精品国产亚洲精品| 成人一区二区视频在线观看| 欧美一区二区精品小视频在线| 国产精品日韩av在线免费观看| 99精品久久久久人妻精品| 真人做人爱边吃奶动态| 亚洲 国产 在线| www.999成人在线观看| 后天国语完整版免费观看| 亚洲天堂国产精品一区在线| 欧美日韩黄片免| 久久久水蜜桃国产精品网| bbb黄色大片| 91在线观看av| 久久久久亚洲av毛片大全| 我要搜黄色片| 亚洲国产中文字幕在线视频| 又紧又爽又黄一区二区| 欧美午夜高清在线| 麻豆国产av国片精品| 91在线观看av| 久久人人精品亚洲av| 亚洲aⅴ乱码一区二区在线播放| 99久国产av精品| 757午夜福利合集在线观看| 搡老岳熟女国产| 嫩草影院入口| 国产综合懂色| 999久久久精品免费观看国产| 麻豆国产97在线/欧美| 非洲黑人性xxxx精品又粗又长| 成人永久免费在线观看视频| 亚洲成人精品中文字幕电影| 91久久精品国产一区二区成人 | 免费人成视频x8x8入口观看| 黄色丝袜av网址大全| 国产一区二区三区视频了| 搡老妇女老女人老熟妇| 亚洲avbb在线观看| 国产免费男女视频| 亚洲国产精品sss在线观看| 免费看美女性在线毛片视频| 欧美极品一区二区三区四区| 国产亚洲精品久久久久久毛片| 岛国视频午夜一区免费看| 亚洲成av人片免费观看| 欧美中文综合在线视频| 99久国产av精品| 亚洲国产欧美一区二区综合| 亚洲专区中文字幕在线| www.精华液| 观看美女的网站| www.www免费av| 制服人妻中文乱码| 身体一侧抽搐| 波多野结衣高清作品| 日本黄色片子视频| 又紧又爽又黄一区二区| 长腿黑丝高跟| 日本撒尿小便嘘嘘汇集6| 亚洲av五月六月丁香网| 中文字幕人妻丝袜一区二区| 精品熟女少妇八av免费久了| 免费一级毛片在线播放高清视频| 无遮挡黄片免费观看| 国内精品美女久久久久久| 99在线人妻在线中文字幕| 国产成人aa在线观看| 亚洲欧美日韩东京热| 黄片小视频在线播放| 精品熟女少妇八av免费久了| 欧美绝顶高潮抽搐喷水| 色吧在线观看| 一进一出抽搐动态| 国产免费男女视频| 久久久成人免费电影| 别揉我奶头~嗯~啊~动态视频| 国产熟女xx| 久久婷婷人人爽人人干人人爱| 国模一区二区三区四区视频 | 少妇人妻一区二区三区视频| 99久久无色码亚洲精品果冻| 淫妇啪啪啪对白视频| 亚洲真实伦在线观看| 欧美zozozo另类| 久久人妻av系列| 婷婷精品国产亚洲av在线| 国产高清有码在线观看视频| 真实男女啪啪啪动态图| 岛国在线观看网站| 国产欧美日韩一区二区三| 好男人在线观看高清免费视频| 真人做人爱边吃奶动态| 巨乳人妻的诱惑在线观看| 午夜免费激情av| 好看av亚洲va欧美ⅴa在| 精品国产美女av久久久久小说| 最近在线观看免费完整版| 成人永久免费在线观看视频| 久久久成人免费电影| 99在线视频只有这里精品首页| 成人永久免费在线观看视频| 18禁国产床啪视频网站| 老司机午夜十八禁免费视频| 国产探花在线观看一区二区| 巨乳人妻的诱惑在线观看| 毛片女人毛片| 两性午夜刺激爽爽歪歪视频在线观看| 免费电影在线观看免费观看| 可以在线观看的亚洲视频| 亚洲最大成人中文| 午夜福利高清视频| 国产成人精品久久二区二区91| 老司机午夜福利在线观看视频| 夜夜看夜夜爽夜夜摸| 久久久精品欧美日韩精品| 成人18禁在线播放| 嫩草影视91久久| 欧美xxxx黑人xx丫x性爽| 91在线观看av| 男女床上黄色一级片免费看| 亚洲第一欧美日韩一区二区三区| 欧美一区二区精品小视频在线| 啪啪无遮挡十八禁网站| 麻豆一二三区av精品| 九九久久精品国产亚洲av麻豆 | 精品午夜福利视频在线观看一区| 欧美一区二区精品小视频在线| 天天躁日日操中文字幕| 欧美高清成人免费视频www| 在线观看一区二区三区| 麻豆国产av国片精品| 成年版毛片免费区| 噜噜噜噜噜久久久久久91| 色尼玛亚洲综合影院| 亚洲真实伦在线观看| 久久午夜亚洲精品久久| 一个人看视频在线观看www免费 | 国产91精品成人一区二区三区| 老司机午夜十八禁免费视频| 一区二区三区激情视频| 国产伦人伦偷精品视频| 一级毛片女人18水好多| av欧美777| 99久久精品国产亚洲精品| 日本黄色视频三级网站网址| 免费人成视频x8x8入口观看| 国产伦精品一区二区三区四那| 免费av毛片视频| 老司机午夜福利在线观看视频| 又粗又爽又猛毛片免费看| 欧美乱妇无乱码| 婷婷精品国产亚洲av| 日韩欧美免费精品| 成人一区二区视频在线观看| 久久天堂一区二区三区四区| 色综合欧美亚洲国产小说| 国产av在哪里看| 久9热在线精品视频| 亚洲专区国产一区二区| 亚洲欧美日韩卡通动漫| 好看av亚洲va欧美ⅴa在| 国产一区二区在线av高清观看| 国产精品久久电影中文字幕| 搡老岳熟女国产| xxxwww97欧美| 日韩人妻高清精品专区| 成年人黄色毛片网站| 又紧又爽又黄一区二区| 亚洲国产精品成人综合色| 欧美乱色亚洲激情| 波多野结衣高清作品| 久久国产精品人妻蜜桃| 久久婷婷人人爽人人干人人爱| 少妇的丰满在线观看| 久久久国产欧美日韩av| 热99re8久久精品国产| 色哟哟哟哟哟哟| 一边摸一边抽搐一进一小说| 国产伦在线观看视频一区| 一个人免费在线观看的高清视频| 国产激情偷乱视频一区二区| 国产av不卡久久| 亚洲在线自拍视频| 国产私拍福利视频在线观看| 国产久久久一区二区三区| 国产一区在线观看成人免费| xxxwww97欧美| 亚洲av成人不卡在线观看播放网| 国产精华一区二区三区| 亚洲专区国产一区二区| 免费搜索国产男女视频| 免费看光身美女| 欧美日韩乱码在线| 国产精品99久久久久久久久| 国产精品爽爽va在线观看网站| 国产精品电影一区二区三区| 亚洲av美国av| 国产久久久一区二区三区| 国产不卡一卡二| 老司机午夜福利在线观看视频| 亚洲成人精品中文字幕电影| 国产视频内射| 人人妻人人澡欧美一区二区| av片东京热男人的天堂| 免费看a级黄色片| 国产精品亚洲av一区麻豆| 亚洲自拍偷在线| 国产单亲对白刺激| 午夜福利在线在线| bbb黄色大片| 国产三级中文精品| 国产成人一区二区三区免费视频网站| 国产99白浆流出| 黄片大片在线免费观看| 一二三四在线观看免费中文在| 麻豆av在线久日| 亚洲成人免费电影在线观看| 黄片大片在线免费观看| 亚洲 欧美 日韩 在线 免费| 日本一二三区视频观看| 亚洲中文字幕日韩| 久久性视频一级片| 精品国产超薄肉色丝袜足j| 欧美成狂野欧美在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产精华一区二区三区| 麻豆久久精品国产亚洲av| 国产欧美日韩一区二区精品| 两个人的视频大全免费| 欧美日韩一级在线毛片| 在线观看免费视频日本深夜| 成年人黄色毛片网站| 两个人的视频大全免费| 国产精品美女特级片免费视频播放器 | 日韩人妻高清精品专区| 精品无人区乱码1区二区| 国产一区在线观看成人免费| 又爽又黄无遮挡网站| 国产又色又爽无遮挡免费看| 亚洲精品乱码久久久v下载方式 | 2021天堂中文幕一二区在线观| 99久久精品国产亚洲精品| 国产三级在线视频| 少妇的丰满在线观看| 精品国产三级普通话版| 蜜桃久久精品国产亚洲av| 91麻豆精品激情在线观看国产|