• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced photocatalytic CO2 hydrogenation with wide-spectrum utilization over black TiO2 supported catalyst

    2022-06-18 03:00:24BinbinJinXinYeHengZhongFngmingJinYunHngHu
    Chinese Chemical Letters 2022年2期

    Binbin Jin, Xin Ye, Heng Zhong,b,c, Fngming Jin,b,c,*, Yun Hng Hu

    a School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China

    b Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China

    c Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

    d Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, United States

    ABSTRACT Light-driven conversion of CO2 into chemicals/fuels is a desirable approach for achieving carbon neutrality using clean and sustainable energy.However, its scale-up application is restricted due to insufficient efficiency.Herein, we present a photothermal catalytic hydrogenation of CO2 into CH4 over Ru/black TiO2 catalysts, aiming to achieve the synergistic use of light and heat in solar energy during CO2 conversion.Owing to the desirable spectral response ability and photothermal conversion performance of black TiO2,an efficient combination of photocatalysis and thermocatalysis has been established.The CO2 hydrogenation was significantly accelerated because of the increased catalyst surface temperature enabled by the photothermal effect of black TiO2.Simultaneously, through the in situ X-ray photoelectron spectroscopy(XPS) observation, electron-rich Ru nanoparticles was achieved based on the photo-induced excitation,thereby providing more negative hydride to improve nucleophilic attack to the CO2, obtaining the CH4 yield of 93.8%.

    Keywords:Photothermal Black TiO2 CO2 Electron-rich Hydrogenation

    To alleviate the climate change caused by carbon cycle imbalance and reduce the dependence on fossil fuels, conversion of CO2into value added chemicals and fuels is one promising choice [1-4].Considering that solar energy is clean and inexhaustible to a certain extent, photocatalysis is thought to play a crucial role in the future industry system and has been widely investigated [5,6].Thus, photocatalytic CO2conversion is a desirable approach for CO2utilization.However, insufficient efficiency limits the application of photocatalytic CO2conversion in large-scale industrial production.Although various strategies have been applied to improve the photocatalytic performance, the efficient CO2conversion is still a vital challenge.

    Photothermal catalysis, which has the potential to utilize the whole solar spectrum, is one desirable choice for this issue [7,8].During the photothermal catalysis, while the short-wavelength light could be converted into photogenerated electron-hole pairs to drive the photochemical reactions, the long-wavelength light could be converted into heat, accelerating the reaction, especially for the surface endothermic reaction [9,10].Considering the high efficiency of thermochemical method, the combination of photocatalysis and thermocatalysis could strike a balance between energy consumption and conversion efficiency, which has a broad application prospect in CO2methanation [11-15].

    To achieve desirable synergy between photochemical and thermochemical, the construction design of catalyst is crucial.TiO2has been widely applied in photocatalysis [16,17].However, the photocatalytic activity of TiO2is greatly limited due to its poor response ability to visible light [18,19].To solve this issue, Chenet al.prepared TiO2-x(black TiO2) from TiO2by strong reduction treatment,and black TiO2exhibits excellent spectral response range and photocatalytic activity [20,21].Thus, black TiO2has attracted increasing attention and been widely applied in photocatalysis such as photocatalytic water splitting.Additionally, because of its inherent black color, black TiO2could perform high photothermal conversion ability.Considering the broad spectral response range and excellent photothermal conversion efficiency of black TiO2[22-25], it is reasonable to speculate that black TiO2could balance the photoelectric conversion and photothermal conversion during the photothermal catalytic CO2conversion, giving promising catalytic activity.Therefore, in the present work, supported black TiO2was synthesized for light-driven catalytic hydrogenation of CO2to CH4using ruthenium as the active metal, and the synergic mechanism between photocatalysis and thermocatalysis in the CO2conversion was investigated.

    Table 1 The CH4 yield from catalytic conversion of CO2 over different catalysts (reaction conditions: 0.4 MPa mixture gas-N2:H2:CO2 = 4:5:1, 20 mg catalyst, 1 h).

    Firstly, as shown in Table 1, no CH4was detected in all entries without irradiation.Considering the high thermodynamic stability of CO2, it is difficult to drive the hydrogenation of CO2without additional energy input at low temperature.Subsequently, the introduction of irradiation brought significant increase in CH4yield(Table 1, entries 3 and 4).Most importantly, the CH4yield achieved over 2 wt% Ru/black TiO2under irradiation was 40.1%, which was 2 times higher than that achieved over 2 wt% Ru/TiO2.Additionally, small amount of CO was also produced in entries 3 and 4.CO species are commonly considered as the important intermediate during the CO2hydrogenation.Additionally, we performed the experiments without CO2and no carbon containing products were detected, indicating that the injected CO2is the sole carbon source.There are two possible reasons for the remarkable improvement of the catalytic activity of Ru/black TiO2: (1) The enhancement of CO2adsorption capacity; (2) the improvement of spectral response capacity and photothermal conversion efficiency.In order to verify the above conjectures, the CO2adsorption capacity and spectral response ability of the catalysts were investigated, and the photothermal conversion performances of the catalysts were evaluated.

    Firstly, the light response characteristics of the prepared materials were investigated and Fig.1a shows the UV-vis diffuse reflectance spectra (DRS) of TiO2and black TiO2.The spectral response ability of black TiO2in long wavelength range is much higher than that of TiO2.It is possible that, after the hydrogenation at high temperature, the intrinsic symmetry of TiO2crystal was broken, forming an amorphous shell on the TiO2surface[26,27].Thus, a secondary narrow bandgap would be introduced into TiO2, enhancing the light absorption.Additionally, considering the more significant thermal effect of long wavelength light,the enhanced long wavelength light response ability of black TiO2can make black TiO2perform better photothermal conversion efficiency under the broad wavelength irradiation.Subsequently, the CO2adsorption observation was conducted.As shown in Fig.S1(Supporting information), the CO2adsorption amount of both TiO2and black TiO2increased with the increase of pressure and the CO2adsorption ability of black TiO2was better than that of TiO2.The enhanced CO2adsorption ability of black TiO2gives the prepared catalysts better catalytic activity.Furthermore, nitrogen adsorption/desorption isotherms of TiO2and black TiO2were compared.The Brunauer-Emmett-Teller (BET) specific surface areas of TiO2and black TiO2are 99.8 m2/g and 100.1 m2/g, respectively(Figs.S2a and b in Supporting information).The hydrogenation treatment has not brought significant change of specific surface area to black TiO2.Thus, it is reasonable to speculate that the enhanced CO2adsorption capacity can be attributed to the formation of oxygen vacancy in black TiO2[28,29].

    Fig.1.(a) UV-vis DRS of TiO2 and black TiO2.(b) XRD patterns of TiO2, black TiO2,2 wt% Ru/TiO2 and 2 wt% Ru/black TiO2.(c) EPR spectra of TiO2 and black TiO2.(d,e) HRTEM images of 2 wt% Ru/TiO2 and 2 wt% Ru/black TiO2.

    Then, the textural properties were characterized by X-ray diffraction (XRD).As shown in Fig.1b, the XRD patterns of the catalysts displayed no obvious differences in crystal form compared to the original TiO2.However, it is worth noting that the peak intensity of black TiO2is significantly lower than that of TiO2and the(101) plane characteristic peak of black TiO2shifts to larger diffraction angle, which can be owing to the decrease of the intrinsic material crystallinity and formation of lattice defects [30].Subsequently, X-ray photoelectron spectroscopy analysis was applied to investigate the 2 wt% Ru/black TiO2(Figs.S3 and S4 in Supporting information).In the XPS diagram of O 1s (Fig.S4), it can be seen that the O 1s can be divided into two peaks, among which the peak at 529.52 eV is attributed to the lattice oxygen (OL), while the peak at 530.73 eV can be attributed to the oxygen vacancy (OV) in black TiO2[31,32].During the high temperature reduction of TiO2,part of the oxygen atoms were deprived, causing the decrease of the electron cloud density and thereby increasing the binding energy of O 1s.Additionally, the existence of oxygen vacancies was proved by electron paramagnetic resonance (EPR) measurements.As shown in Fig.1c, a strong EPR signal (centering atg= 2.003)can be observed in black TiO2EPR spectra while TiO2only exhibits an extremely weak EPR signal [33].It indicates that lots of oxygen vacancies were produced in black TiO2, which accords with the XPS analysis results.

    To further investigate the morphology and structure of the catalysts, high-resolution transmission electron microscopy (HRTEM)were conducted.The measured average particle sizes of TiO2and black TiO2are 22.5 ± 3.0 nm and 28.1 ± 4.7 nm, respectively(Fig.S5 in Supporting information).The agglomeration of the catalysts after calcination at high temperature is one possible reason for the increase of average particle size.Additionally, as shown in Figs.1d and e, Ru nanoparticles in the 2 wt% Ru/TiO2and 2 wt%Ru/black TiO2catalysts are loaded on the support surface in the form of small particle and the contact interface between Ru and support can be clearly observed.The lattice fringes belonged to the Ru (002) crystal facet are clearly observed [34].Owing to the well-contacted interface, efficient photogenerated carriers transferring can be constructed during the reaction.In addition, the lattice fringes of TiO2in 2 wt% Ru/TiO2catalyst are orderly arranged,and the lattice spacing is 0.355 nm, belonging to (101) crystal facet of anatase TiO2[35].However, it is difficult to observe continuous lattice fringes in 2 wt% Ru/black TiO2.The removal of O during reduction treatment broke the stoichiometric balance of TiO2, forming amorphous phase [20,36].This result also agrees with the XRD analysis result that the crystallinity of black TiO2has been weakened structurally.

    As aforementioned that the increase of catalytic activity of Ru/black TiO2can also be attributed to the enhanced photothermal conversion ability, therefore, the photothermal conversion performances of Ru/TiO2and Ru/black TiO2were compared.Firstly,surface temperatures of the prepared catalysts under irradiation were directly observed based on IR temperature measuring device.As shown in Fig.S6 (Supporting information), the rising rate of the surface temperature of 2 wt% Ru/black TiO2was significantly higher than that of 2 wt% Ru/TiO2under irradiation.After 300 s,the surface temperature of 2 wt% Ru/black TiO2reached 283.7 °C,while the temperature of 2 wt% Ru/TiO2was only 223.1 °C.It can be seen from Fig.S7 (Supporting information) that the overall temperature of reaction system raised gradually during the reaction due to the photothermal conversion effect of the catalyst.

    Furthermore, the photothermal conversion efficiency of 2 wt%Ru/black TiO2was evaluated.The materials were dispersed in aqueous solution with water as the negative control.Initial temperature of the solution and room temperature were controlled at 20 °C.The solutions were irradiated under the Xe lamp and the lamp was turned off after 1200 s, and the temperature change was observed for 3000 s (Figs.2a and b).The highest temperature of 2 wt% Ru/black TiO2aqueous solution is 79.6 °C while the temperature of TiO2aqueous solution is only 53.8 °C (Fig.2a).It is worth noting that the highest temperature of 2 wt% Ru/black TiO2solution is slightly lower than that of black TiO2.Considering that near-infrared (NIR) absorption ability has marked impact on photothermal conversion [37], UV-vis-NIR DRS of the catalysts were conducted.As shown in Fig.S8, TiO2displays poor NIR response and the loading of Ru improve its NIR absorption.However, there is no significant difference between the spectra of black TiO2and Ru/black TiO2, which means that the intrinsic NIR absorption of black TiO2is higher than that of Ru NPs.Therefore, the photothermal conversion capacity of black TiO2is slightly higher than that of Ru/black TiO2.The photothermal conversion efficiency (η) can be calculated based on Eq.1 [37-39]:

    Fig.2.(a) Temperature curves of pure water, TiO2, black TiO2 and 2 wt% Ru/black TiO2 aqueous solution (200 μg/mL) under irradiation.(b) The temperature curve of the 2 wt% Ru/black TiO2 aqueous solution (200 μg/mL) for 3000 s.(c) Linear time data versus -lnθ obtained from the cooling period.

    whereh, A, I,ΔTmax,mixandΔTmax,H2Orepresent the heat transfer coefficient, the container surface area, the total energy Ru/black TiO2nanoparticles absorbed, the temperature change of the 2 wt%Ru/black TiO2suspension and water at the maximum stable temperature, respectively.Based on the fitting parameters of the cooling period in Fig.2c, theηvalue of 2 wt% Ru/black TiO2is calculated to be 37.9%.The calculation details can be seen in the Supporting Information.Owing to the efficient photothermal conversion based on black TiO2, strong heat center can be produced on the catalyst surface under irradiation, improving the substances(CO2and H2) activation and accelerating the reaction [40].

    Subsequently, to verify the participation of photogenerated carriers during the CO2conversion, the irradiation intensity was decreased to 1 sun (100 mW/cm2) and a series of experiments at different temperatures were conducted.The experiments were carried out at 180, 200, 220 and 240 °C, respectively.As shown in Fig.3, the methane yield increased with the increase of temperature, which indicates that the increase of reaction temperature is conducive to the methanation of CO2.Most importantly, the CH4yields increased at all temperatures after the introduction of light and highest synergy was obtained at 220 °C, which means that intrinsic excitation process of the catalysts may played an important role during the reaction.

    Considering the large band gap of Al2O3, Ru/Al2O3was prepared to avoid the excitation of catalyst and its catalytic performance was observed to further confirm the effect of photogenerated carriers.As displayed in the Fig.3, the CH4yield showed no significant increase over Ru/Al2O3after the introduction of light.Thus, it is reasonable to speculate that, during the hydrogenation of CO2over Ru/black TiO2, not only the heat input generated from photothermal conversion but also the photogenerated carriers promote the conversion of CO2.The role photogenerated carriers played during CO2conversion were investigated in mechanism discussion section.

    Fig.3.The yield of CH4 from catalytic conversion of CO2 at different temperatures (reaction conditions: 0.4 MPa mixture gas-N2:H2:CO2 = 4:5:1, 20 mg 2 wt%Ru/black TiO2, 1 h, 100 mW/cm2).

    According to the above results and the reported CO2hydrogenation mechanism, the functionary mechanism of photogenerated carrier was proposed (Fig.S9 in Supporting information).Due to the low Fermi level of Ru and the well-contacted interface between Ru nanoparticle and black TiO2nanoparticle (Fig.1f), it is reasonable to speculate that the photogenerated electrons would be gathered in Ru nanoparticles, forming electron-rich Ru surface.Furthermore, to monitor the electron density variation of Ru nanoparticles,in situhigh-resolution XPS was carried out.As displayed in Fig.4, the binding energy of Ru 3d5/2shows a significant decrease after the introduction of light.In addition, with the gradual increase of irradiation intensity and irradiation time, the binding energy of Ru 3d5/2displayed a further shifting tendency.

    Fig.4. In situ high-resolution XPS spectrum of 2 wt% Ru/black TiO2.(a) Ru 3d5/2 of 2 wt% Ru/black TiO2 obtained under irradiation (100 mW/cm2); (b) survey spectrum;(c) Ru 3d5/2 of 2 wt% Ru/black TiO2 obtained under irradiation (1000 mW/cm2).

    Considering that the increase of electron density can enhance the shielding effect of electron clouds, which would decrease the binding energy of Ru 3d core level, it is reasonable to speculate that an electron injection process is achieved during the reaction.In contrast, the introduction of light caused the increase of O 1s binding energy (Fig.S10 in Supporting information), indicating that oxygen is in electron deficient state, which could be owing to the photogenerated holes.It is worth noting that the activation of H2is essential for the CO2hydrogenation.The formation of electron-rich Ru surface can provide more negative hydride, thus enhancing the nucleophilic attack reactivity of the hydride to the carbon center of CO2[41,42].Besides, the light with larger wavelength could be converted into heat due to the photothermal conversion, further improving the CO2conversion.It is one promising way to achieve efficient hydrogenation of CO2using light as the only driving force based on the synergy between photocatalysis and thermocatalysis.

    Additionally, a series of Ru/black TiO2catalysts with different Ru loading amount were prepared and the circulation stability test was carried out.The CH4yield increased with the increase of Ru loading amount and 93.8% of CH4yield was achieved within 2 h over 5 wt% Ru/black TiO2(Fig.S11 in Supporting information).The H2-temperature programmed desorption (TPD) was carried out to investigate the adsorption strength between the adsorbed hydrogen and catalysts.As displayed in Fig.S12 (Supporting information), all tested catalysts displayed two significant hydrogen desorption peaks.The desorption peaks around 270 °C could be ascribed to the weakly adsorbed hydrogen on Ru surface and the peaks at high temperature (around 340 °C) could be ascribed to the strongly adsorbed hydrogen on the surface of black TiO2caused by hydrogen spillover [43-45].Such spillover could do contribution to the hydrogenation of CO2.Additionally, no significant decrease in CH4yield was observed during the stability test of 5 wt% Ru/black TiO2(Fig.S13 in Supporting information).The XRD patterns of the collected catalysts after stability test display similar XRD patterns (Fig.S14 in Supporting information) and no high temperature phases such as rutile TiO2were produced after reaction, indicating that the catalyst can maintain desirable stability under the current reaction conditions.

    In summary, a black TiO2supported catalyst was constructed for the photothermal catalytic CO2hydrogenation.Owing to the introduction of oxygen vacancies, the CO2adsorption ability of the black TiO2supported catalyst was significantly enhanced, improving the CO2conversion.The wide spectral response range and high photothermal conversion efficiency of black TiO2brought desirable catalytic performance for photocatalytic hydrogenation of CO2to the prepared Ru/black TiO2.Additionally, based on the well-contacted interface between Ru nanoparticle and black TiO2nanoparticle, an electron injection process was achieved to form electron-rich Ru metal nanoparticles, further improving the hydrogenation of CO2.This study opens the step for full wavelength range utilization of solar energy in light-driven conversion of CO2.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors gratefully acknowledge the support from the National Natural Science Foundation of China (No.21978170), the National Key R&D Program of China (No.2017YFC0506004), the Natural Science Foundation of Shanghai (No.19ZR1424800), and the Center of Hydrogen Science, Shanghai Jiao Tong University, China.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.07.046.

    国产免费福利视频在线观看| 自线自在国产av| 久久狼人影院| 边亲边吃奶的免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 国精品久久久久久国模美| 午夜激情福利司机影院| 国产成人午夜福利电影在线观看| 男女边摸边吃奶| 又粗又硬又长又爽又黄的视频| 国产成人免费无遮挡视频| 成人二区视频| www.av在线官网国产| 国产一区二区三区av在线| 亚洲av福利一区| 精品久久久久久电影网| 大片电影免费在线观看免费| 王馨瑶露胸无遮挡在线观看| 乱码一卡2卡4卡精品| 成人亚洲精品一区在线观看| 日韩不卡一区二区三区视频在线| 在线观看免费高清a一片| 国产亚洲一区二区精品| 在线播放无遮挡| 美女脱内裤让男人舔精品视频| 九九在线视频观看精品| 国产伦理片在线播放av一区| 亚洲欧美成人综合另类久久久| 日韩,欧美,国产一区二区三区| 亚洲久久久国产精品| 欧美日韩一区二区视频在线观看视频在线| 欧美人与性动交α欧美精品济南到 | 18禁动态无遮挡网站| 国产av一区二区精品久久| 日本黄大片高清| 我的女老师完整版在线观看| 最近手机中文字幕大全| tube8黄色片| 色94色欧美一区二区| 日本色播在线视频| 国产成人a∨麻豆精品| 如何舔出高潮| videosex国产| 十分钟在线观看高清视频www| 美女内射精品一级片tv| 亚洲国产毛片av蜜桃av| 母亲3免费完整高清在线观看 | 亚洲第一区二区三区不卡| 日日撸夜夜添| 丝袜脚勾引网站| 老女人水多毛片| 夫妻性生交免费视频一级片| 九九久久精品国产亚洲av麻豆| 男男h啪啪无遮挡| 成年av动漫网址| 国产在线免费精品| 99久久中文字幕三级久久日本| 精品国产国语对白av| 蜜桃久久精品国产亚洲av| 少妇高潮的动态图| 99热国产这里只有精品6| 国产av国产精品国产| 亚洲国产成人一精品久久久| 欧美日韩一区二区视频在线观看视频在线| 国产精品国产三级国产av玫瑰| 午夜福利影视在线免费观看| 丝瓜视频免费看黄片| 久久久久久久久久久免费av| 黑人高潮一二区| 亚洲四区av| 久久99热6这里只有精品| 乱人伦中国视频| 又黄又爽又刺激的免费视频.| 成人亚洲欧美一区二区av| 九九久久精品国产亚洲av麻豆| 午夜91福利影院| av在线app专区| 国产有黄有色有爽视频| 多毛熟女@视频| 国产黄色视频一区二区在线观看| 久久毛片免费看一区二区三区| 亚洲精品自拍成人| 最近中文字幕高清免费大全6| 婷婷成人精品国产| 大陆偷拍与自拍| 美女国产视频在线观看| 国产老妇伦熟女老妇高清| 久久狼人影院| 男人操女人黄网站| 一级毛片我不卡| 久久久a久久爽久久v久久| 插逼视频在线观看| 中文精品一卡2卡3卡4更新| 国内精品宾馆在线| 国产成人午夜福利电影在线观看| 久久精品国产自在天天线| 在线观看免费高清a一片| av黄色大香蕉| 最近中文字幕2019免费版| 中国三级夫妇交换| 少妇熟女欧美另类| 国产精品.久久久| 日韩制服骚丝袜av| 精品一区二区三区视频在线| 亚洲精华国产精华液的使用体验| 久久精品国产自在天天线| 嫩草影院入口| 黄色欧美视频在线观看| 国产精品成人在线| 免费观看无遮挡的男女| 成人综合一区亚洲| 男人操女人黄网站| 春色校园在线视频观看| 欧美变态另类bdsm刘玥| 少妇丰满av| 大片免费播放器 马上看| videos熟女内射| 在线看a的网站| 97在线视频观看| 久久99热6这里只有精品| 人妻制服诱惑在线中文字幕| 美女国产视频在线观看| 少妇熟女欧美另类| 成人亚洲欧美一区二区av| 国产成人精品婷婷| 丝袜在线中文字幕| 寂寞人妻少妇视频99o| 精品久久久久久久久av| 在线亚洲精品国产二区图片欧美 | 国产老妇伦熟女老妇高清| 午夜免费男女啪啪视频观看| 欧美bdsm另类| 亚洲欧美中文字幕日韩二区| 一个人看视频在线观看www免费| 国产欧美日韩综合在线一区二区| av女优亚洲男人天堂| 国产精品人妻久久久久久| 日本色播在线视频| 国产在视频线精品| 午夜视频国产福利| 精品一区二区免费观看| 老司机影院成人| 少妇的逼水好多| 哪个播放器可以免费观看大片| 好男人视频免费观看在线| 亚洲三级黄色毛片| 久久精品国产自在天天线| 午夜福利影视在线免费观看| 久久这里有精品视频免费| 只有这里有精品99| 美女福利国产在线| 日韩一区二区视频免费看| 免费人妻精品一区二区三区视频| 久久韩国三级中文字幕| 久久精品熟女亚洲av麻豆精品| 欧美日韩成人在线一区二区| 一本久久精品| 欧美人与善性xxx| 搡女人真爽免费视频火全软件| 丰满少妇做爰视频| 97超碰精品成人国产| 高清午夜精品一区二区三区| 免费久久久久久久精品成人欧美视频 | www.色视频.com| 五月天丁香电影| 亚洲丝袜综合中文字幕| 国产精品国产三级专区第一集| 国产成人av激情在线播放 | 制服诱惑二区| 国产精品熟女久久久久浪| 欧美老熟妇乱子伦牲交| 久久久久久久久大av| 下体分泌物呈黄色| videosex国产| 国产高清国产精品国产三级| 国产在线一区二区三区精| 男的添女的下面高潮视频| 亚洲精品久久午夜乱码| 在线观看人妻少妇| 91午夜精品亚洲一区二区三区| 亚洲色图综合在线观看| 青春草视频在线免费观看| 黄片无遮挡物在线观看| 男男h啪啪无遮挡| 免费人成在线观看视频色| 街头女战士在线观看网站| 丝袜美足系列| 在线播放无遮挡| 精品一区二区免费观看| 久久久久国产精品人妻一区二区| 精品酒店卫生间| 亚洲国产欧美在线一区| 中文字幕免费在线视频6| 欧美日韩一区二区视频在线观看视频在线| 日本av手机在线免费观看| 国产亚洲av片在线观看秒播厂| 日韩av不卡免费在线播放| 国产高清有码在线观看视频| 午夜视频国产福利| 免费不卡的大黄色大毛片视频在线观看| 久久精品夜色国产| 国产熟女欧美一区二区| xxxhd国产人妻xxx| 久久婷婷青草| 日日撸夜夜添| 中文字幕亚洲精品专区| 亚洲精品aⅴ在线观看| 久久99热这里只频精品6学生| tube8黄色片| 黄片无遮挡物在线观看| 人妻少妇偷人精品九色| 五月开心婷婷网| 久久人人爽人人爽人人片va| 亚洲不卡免费看| 亚洲av中文av极速乱| 亚洲成人手机| 麻豆成人av视频| 亚洲一级一片aⅴ在线观看| 麻豆精品久久久久久蜜桃| 色网站视频免费| av一本久久久久| 新久久久久国产一级毛片| 2022亚洲国产成人精品| 成人无遮挡网站| 少妇被粗大的猛进出69影院 | 国产精品三级大全| 丁香六月天网| 国产欧美日韩综合在线一区二区| 国产乱来视频区| 人体艺术视频欧美日本| av国产精品久久久久影院| 日韩视频在线欧美| 久久久久久久久大av| 国产亚洲一区二区精品| a级毛片在线看网站| 亚洲婷婷狠狠爱综合网| 欧美激情 高清一区二区三区| 日日撸夜夜添| 国产爽快片一区二区三区| 精品人妻偷拍中文字幕| 中文字幕精品免费在线观看视频 | 哪个播放器可以免费观看大片| 国产老妇伦熟女老妇高清| 日韩熟女老妇一区二区性免费视频| 欧美国产精品一级二级三级| 精品亚洲成国产av| 婷婷色综合大香蕉| 在线免费观看不下载黄p国产| 插逼视频在线观看| 嫩草影院入口| 欧美激情极品国产一区二区三区 | 韩国av在线不卡| 99国产综合亚洲精品| 99九九线精品视频在线观看视频| 国产av一区二区精品久久| 亚洲av男天堂| 精品99又大又爽又粗少妇毛片| 亚洲精品亚洲一区二区| 美女cb高潮喷水在线观看| 精品人妻熟女毛片av久久网站| 在线观看三级黄色| 精品亚洲成a人片在线观看| 国产精品成人在线| 亚洲精品成人av观看孕妇| 九九在线视频观看精品| 亚洲高清免费不卡视频| 亚洲国产日韩一区二区| 欧美性感艳星| 少妇的逼水好多| 亚洲精品乱久久久久久| 欧美成人午夜免费资源| 3wmmmm亚洲av在线观看| 美女视频免费永久观看网站| 免费人妻精品一区二区三区视频| 99热6这里只有精品| 欧美日韩一区二区视频在线观看视频在线| 亚洲婷婷狠狠爱综合网| 久久鲁丝午夜福利片| 亚洲精品国产色婷婷电影| 丝袜喷水一区| 少妇人妻久久综合中文| 久久精品国产亚洲av天美| 只有这里有精品99| 国产乱来视频区| 国产女主播在线喷水免费视频网站| 午夜91福利影院| 久久鲁丝午夜福利片| 国产亚洲最大av| 久久久久久久亚洲中文字幕| 七月丁香在线播放| 欧美成人午夜免费资源| 日本色播在线视频| 亚洲精品456在线播放app| 久久热精品热| 国产片特级美女逼逼视频| 国产男女超爽视频在线观看| 美女福利国产在线| 看十八女毛片水多多多| 国产日韩一区二区三区精品不卡 | 最近最新中文字幕免费大全7| 中文字幕亚洲精品专区| 国产精品一国产av| 狂野欧美激情性bbbbbb| 大话2 男鬼变身卡| 亚洲四区av| 色网站视频免费| 久久 成人 亚洲| 国产伦理片在线播放av一区| 久久午夜综合久久蜜桃| a级片在线免费高清观看视频| 午夜激情久久久久久久| 男女无遮挡免费网站观看| 亚洲国产精品专区欧美| av线在线观看网站| 草草在线视频免费看| 免费看av在线观看网站| 国产精品一国产av| 国产精品久久久久久久久免| 一区在线观看完整版| 少妇熟女欧美另类| 只有这里有精品99| 啦啦啦啦在线视频资源| 制服诱惑二区| 妹子高潮喷水视频| 国产一区二区三区av在线| 少妇熟女欧美另类| av在线观看视频网站免费| 午夜激情av网站| 免费观看在线日韩| 色婷婷久久久亚洲欧美| 亚洲欧美一区二区三区黑人 | 日日摸夜夜添夜夜爱| 国产在线一区二区三区精| 日韩中字成人| 91精品国产九色| 亚洲精品,欧美精品| 少妇人妻精品综合一区二区| 亚洲一区二区三区欧美精品| 一边摸一边做爽爽视频免费| 超色免费av| 亚洲五月色婷婷综合| 纵有疾风起免费观看全集完整版| a级毛片黄视频| 在线看a的网站| 国产精品熟女久久久久浪| av.在线天堂| 日韩免费高清中文字幕av| 色网站视频免费| 亚洲高清免费不卡视频| 国产熟女欧美一区二区| 日本欧美国产在线视频| 亚洲欧美一区二区三区黑人 | 国产av国产精品国产| 亚洲在久久综合| 成人漫画全彩无遮挡| 亚洲欧美成人精品一区二区| 亚洲国产精品一区三区| 人妻一区二区av| 久久午夜综合久久蜜桃| 亚洲久久久国产精品| 久久人人爽av亚洲精品天堂| 精品人妻熟女毛片av久久网站| 国产成人av激情在线播放 | 97在线视频观看| 午夜免费观看性视频| 2018国产大陆天天弄谢| 一区二区日韩欧美中文字幕 | 免费观看无遮挡的男女| .国产精品久久| 亚洲高清免费不卡视频| 高清午夜精品一区二区三区| 色婷婷久久久亚洲欧美| 男女啪啪激烈高潮av片| 国产亚洲一区二区精品| 观看av在线不卡| 嘟嘟电影网在线观看| 午夜av观看不卡| 妹子高潮喷水视频| 国产极品粉嫩免费观看在线 | 成人手机av| 国产视频内射| 亚洲熟女精品中文字幕| 中文字幕亚洲精品专区| 亚洲伊人久久精品综合| 精品亚洲成国产av| 少妇的逼好多水| 精品一品国产午夜福利视频| 国产亚洲最大av| 国产精品不卡视频一区二区| 国产精品女同一区二区软件| 欧美日本中文国产一区发布| 美女福利国产在线| 中文字幕人妻丝袜制服| a级毛片黄视频| 伊人亚洲综合成人网| 亚洲欧美中文字幕日韩二区| 蜜臀久久99精品久久宅男| 国产精品国产三级国产专区5o| 国产黄频视频在线观看| 晚上一个人看的免费电影| 又大又黄又爽视频免费| 新久久久久国产一级毛片| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美在线精品| 免费av中文字幕在线| 18+在线观看网站| 黄片播放在线免费| 国产成人精品福利久久| 精品国产国语对白av| 你懂的网址亚洲精品在线观看| 中文字幕精品免费在线观看视频 | 精品久久久久久久久av| 国产精品国产av在线观看| 欧美性感艳星| 成人免费观看视频高清| 婷婷色综合www| 国产成人精品无人区| 水蜜桃什么品种好| av播播在线观看一区| 亚洲av不卡在线观看| 成人国产麻豆网| 国产乱人偷精品视频| 国产精品国产三级国产av玫瑰| 久久国产精品男人的天堂亚洲 | 精品人妻熟女av久视频| av在线观看视频网站免费| 婷婷成人精品国产| 少妇人妻久久综合中文| 成年女人在线观看亚洲视频| 中国国产av一级| 伊人久久精品亚洲午夜| 午夜老司机福利剧场| 国产免费福利视频在线观看| 一边摸一边做爽爽视频免费| av福利片在线| tube8黄色片| 有码 亚洲区| 欧美激情 高清一区二区三区| 最近中文字幕高清免费大全6| 日韩熟女老妇一区二区性免费视频| av电影中文网址| 纵有疾风起免费观看全集完整版| 韩国高清视频一区二区三区| 搡女人真爽免费视频火全软件| 日本91视频免费播放| 少妇的逼好多水| a级片在线免费高清观看视频| 亚洲色图综合在线观看| 国产精品久久久久久久电影| 水蜜桃什么品种好| 日本午夜av视频| av线在线观看网站| 一边亲一边摸免费视频| 久久久久久久久久成人| 欧美日韩国产mv在线观看视频| 高清黄色对白视频在线免费看| 亚洲欧美日韩另类电影网站| 看非洲黑人一级黄片| 乱码一卡2卡4卡精品| 国产男女内射视频| 一个人看视频在线观看www免费| a级毛色黄片| 69精品国产乱码久久久| 精品人妻一区二区三区麻豆| 男女边吃奶边做爰视频| 亚洲在久久综合| 一区二区三区免费毛片| 纵有疾风起免费观看全集完整版| 免费看av在线观看网站| 亚洲av.av天堂| 一区二区日韩欧美中文字幕 | av电影中文网址| 美女大奶头黄色视频| 亚洲av综合色区一区| 成人国产麻豆网| 亚洲第一av免费看| 一级二级三级毛片免费看| 免费大片黄手机在线观看| 精品久久久精品久久久| 母亲3免费完整高清在线观看 | 久久青草综合色| 亚洲人成77777在线视频| 老司机亚洲免费影院| 一区二区三区精品91| 熟妇人妻不卡中文字幕| 九色成人免费人妻av| 欧美人与善性xxx| 国模一区二区三区四区视频| 男女边摸边吃奶| 亚洲av不卡在线观看| 亚州av有码| 午夜免费男女啪啪视频观看| av卡一久久| 大话2 男鬼变身卡| 国产精品久久久久久精品古装| 99热网站在线观看| 国产精品人妻久久久久久| 男男h啪啪无遮挡| 永久免费av网站大全| 欧美亚洲日本最大视频资源| 亚州av有码| a级片在线免费高清观看视频| 精品少妇内射三级| 日韩一本色道免费dvd| 亚洲av不卡在线观看| 大码成人一级视频| 伦精品一区二区三区| 精品久久久精品久久久| 亚洲精品久久久久久婷婷小说| 精品99又大又爽又粗少妇毛片| 亚洲综合色网址| 久久av网站| 国语对白做爰xxxⅹ性视频网站| 日韩人妻高清精品专区| 久久久久久久国产电影| 有码 亚洲区| 国产成人精品福利久久| 亚洲欧美中文字幕日韩二区| 日韩伦理黄色片| 日韩电影二区| 中国国产av一级| 大陆偷拍与自拍| 99热6这里只有精品| 亚洲国产av新网站| 精品人妻在线不人妻| 久久 成人 亚洲| 欧美精品一区二区大全| 欧美 日韩 精品 国产| 啦啦啦在线观看免费高清www| 伦精品一区二区三区| 国产亚洲精品久久久com| 亚洲美女黄色视频免费看| 十八禁高潮呻吟视频| 一级毛片电影观看| 国产高清不卡午夜福利| 三级国产精品片| 99热网站在线观看| 久久综合国产亚洲精品| 99视频精品全部免费 在线| 人妻系列 视频| 亚洲av.av天堂| 国产伦理片在线播放av一区| 春色校园在线视频观看| 欧美精品人与动牲交sv欧美| 最近的中文字幕免费完整| 欧美三级亚洲精品| 久久99精品国语久久久| 简卡轻食公司| 99精国产麻豆久久婷婷| 毛片一级片免费看久久久久| 免费高清在线观看日韩| 美女cb高潮喷水在线观看| 中文字幕人妻丝袜制服| 女性被躁到高潮视频| 制服丝袜香蕉在线| 国语对白做爰xxxⅹ性视频网站| 精品国产露脸久久av麻豆| 国产老妇伦熟女老妇高清| 国产一区二区在线观看日韩| 在线观看免费视频网站a站| 国产免费视频播放在线视频| 午夜日本视频在线| 久久精品国产a三级三级三级| 国产亚洲最大av| 人体艺术视频欧美日本| 超碰97精品在线观看| 又粗又硬又长又爽又黄的视频| 岛国毛片在线播放| 亚洲人与动物交配视频| 色婷婷av一区二区三区视频| 高清视频免费观看一区二区| 老司机亚洲免费影院| 日韩伦理黄色片| 热99久久久久精品小说推荐| 高清欧美精品videossex| 日本午夜av视频| 人妻 亚洲 视频| 亚洲婷婷狠狠爱综合网| av播播在线观看一区| 亚洲三级黄色毛片| 毛片一级片免费看久久久久| 久久99精品国语久久久| 久久国产精品男人的天堂亚洲 | 老司机影院成人| 最新中文字幕久久久久| 久久毛片免费看一区二区三区| 插阴视频在线观看视频| 午夜av观看不卡| 日韩一区二区视频免费看| 欧美日韩国产mv在线观看视频| 欧美日韩在线观看h| 久久国产精品男人的天堂亚洲 | 亚洲精品一区蜜桃| 久久人人爽av亚洲精品天堂| 国产免费一级a男人的天堂| 免费黄网站久久成人精品| 久久午夜综合久久蜜桃| 男女免费视频国产| 国产深夜福利视频在线观看| 黄片播放在线免费| 欧美精品人与动牲交sv欧美| videos熟女内射| 国产黄片视频在线免费观看| 日韩av在线免费看完整版不卡| 精品亚洲成a人片在线观看| 免费观看性生交大片5| 午夜日本视频在线| 在线观看一区二区三区激情| 一二三四中文在线观看免费高清| 国产黄色免费在线视频| 日本欧美视频一区| 精品少妇内射三级| 国产一区二区三区av在线| 国产av一区二区精品久久| 一本大道久久a久久精品|