• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ni nanoparticles encapsulated within H-type ZSM-5 crystals for upgrading palmitic acid to diesel-like fuels

    2022-06-18 03:00:24YnchunShiChenGoEnhuiXingJimeiZhngFengDunHeZhoYongingXie
    Chinese Chemical Letters 2022年2期

    Ynchun Shi, Chen Go, Enhui Xing, Jimei Zhng, Feng Dun, He Zho,Yonging Xie,*

    a CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

    b State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China

    ABSTRACT Meso-Ni@HZSM-5 bi-functional catalysts were successfully post-encapsulated with about 3–7 nm Ni nanoparticles within HZSM-5 crystals, which exhibited significantly efficient conversion activity (67.4 g[palmitic acid] g[Ni]-1 h-1) of palmitic acid and 100% selectivity of hydrocarbons with the outstanding stability during recycling application, compared to the impregnated Ni/HZSM-5 catalyst (14.0 g[palmitic acid] g[Ni]-1 h-1).

    Keywords:Post-encapsulation Ni@HZSM-5 Ni nanoparticles Palmitic acid Hydrodeoxygenation Hydrocarbons

    The increasingly environmental requirements and the dwindling fossil resources have highly encouraged researchers to develop renewable and sustainable energy resources, such as waste oils and fats, vegetable oils, microalgae oils,etc.[1,2].These oleaginous feedstocks generally consist of C16–C20triglycerides and fatty acids (palmitic and stearic acids as main components) with high oxygen contents (10–40 wt%), which lead to the low energy density, the inferior chemical, the inferior thermal stability and so on.Catalytic deoxygenation is considered as the necessary and effi-cient method for producing high quality biodiesel-like fuels, and three deoxygenation routes are summarized in Scheme S1 (Supporting information) with C15–C18n-alkanes as main products as follows: decarboxylation (DCX) (route 1 - DCX: R-COOH →R-H+ CO2), hydro-decarbonylation (HDC) (route 2 - HDC: R-COOH +H2→R-H + CO + H2O) and hydrodeoxygenation (HDO) (route 3 -HDO: R-COOH + 3H2→R-CH3+ 2H2O) [3-6].The design of effective and stable catalysts is the challenge to determine the deoxygenation performance.Impregnation and ion-exchange methods usually lead to the almost un-restriction of metal leaching, migration and aggregation supports, which are deactivated quickly during recycle runs and regeneration, like Ni/HZSM-5 and Ni/HBeta bifunctional catalysts [7,8].Recently, encapsulation of metal within zeolites has been reported as the absolutely effective method to synthesize high activity and stability catalysts in many publications[9-11].Therefore, in this paper, we primarily attempted to encapsulate Ni nanoparticles within H-type ZSM-5 crystals (Ni@HZP-5)viathe post-encapsulation method derived from the identical parent zeolite (HZ-5-80), which produced a series of meso-Ni@HZSM-5 bi-functional catalysts with similar morphology and further upgraded palmitic acid (PA, as model compound).The detailed information for catalysts synthesis, characterization and catalytic performance was provided in Supporting information.

    Physicochemical property of Ni@HZP-5: All Ni@HZP-5 bifunctional were post-encapsulated without/with Al addition to produce the Si/Al gradient descent from 80 to 45 and 30.Larger surface areas and volumes of 4Ni@HZP-5-n and 2Ni@HZP-5-n were obtained (n= 80, 45 or 30, Table S1 in Supporting information)than compared to impregnated 4Ni/HZ-5-80, which were obvious hysteresis loops of the adsorption-desorption curves (Fig.S1A for 4Ni@HZP-5-n and Fig.S1B for 2Ni@HZP-5-n in Supporting information) to suggest the formation of mesopores.The distribution of pore diameters was centered at 3.8 nm based upon Barrett-Joiner-Halenda (BJH) curves (Fig.S1C for 4Ni@HZP-5-n and Fig.S1D for 2Ni@HZP-5-n in Supporting information).As shown in Fig.S2 (Supporting information), all Ni@HZP-5 showed similar diffraction peaks like parent zeolite HZ-5 with well crystallinity in Figs.S2A and B, without any new diffraction peaks with 2θ= 44°and 52° for Ni [111] and Ni [200] planes (4Ni/HZ-5-80, Figs.S2A and B) [7,8], which may indicate the small Ni sizes and the uniform dispersion of Ni nanoparticles within HZP-5 crystals.Additionally, more acid sites particularly for medium/strong acid cites were obtained for 4Ni@HZP-5-n (Fig.S2C) and 2Ni@HZP-5-n (Fig.S2D) than those of 4Ni/HZ-5-80.On the one hand, it could be seen that the lower Si/Al ratios, the number of acid sites were increased with similar Ni contents; on the other hand, the more Ni contents could improve the strong acid sites with similar Si/Al ratios.

    Fig.1.SEM images, TEM images and Ni size distribution of bi-functional catalysts: (a, d, g, j) 2Ni@HZP-5-30, (b, e, h, k) 2Ni@HZP-5-45 and (c, f, i, l) 2Ni @HZP-5-80.

    The chemical states of Ni species over Ni@HZP-5 were analyzed in Fig.S3 (Supporting information) by X-ray photoelectron spectroscopy (XPS).The fitting peaks of Ni 2p region could be divided into two/three peaks about Ni0(854.7–856.1 eV for Ni 2p3/2and 872.5–874.3 eV for Ni 2p1/2), Ni2+(857.1–860.8 eV for Ni 2p3/2and 875.0–878.5 eV for Ni 2p1/2) and/or satellite peaks (862.2–864.0 eV for Ni 2p3/2and 880.8–882.5 eV for Ni 2p1/2) [12-14].Binding energies of Ni0for all Ni@HZP-5 were shifted about 1.7–3.1 eV for Ni 2p3/2and 2.5–4.3 eV for Ni 2p1/2toward higher values, compared to 853 eV for Ni 2p3/2and 870 eV for Ni 2p1/2of nickel metal [12], which may be ascribed to both the quantum size effect of Ni0nanoparticles and the electronic properties of zeolite matrix [13,14].The similar phenomenon has also been reported by zeolites encapsulation Pt [14] and Ni [15].On the one hand,the more Ni encapsulation, the higher values of Ni0binding energies were observed between 2Ni@HZP-5-n and 4Ni@HZP-5-n at similar Si/Al ratios; on the other hand, the higher Si/Al ratios, the more Ni2+species were reduced to form Ni0centers especially for 4Ni@HZP-5-n (Figs.S3d-f).Significantly, there was no detection of Ni2+species for 2Ni@HZP-5-80 (Fig.S3c), which indicated that all Ni2+species were reduced to Ni0.

    Fig.1 gives scanning electron microscopy (SEM) images, transmission electron microscope (TEM) images and Ni size distribution of 2Ni@HZP-5-n (n= 30, 45 or 80).There was no obvious difference in the morphology of 2Ni@HZP-5-30 (Fig.1a), 2Ni@HZP-5-45(Fig.1b) and 2Ni@HZP-5-80 (Fig.1c), which may be ascribed to the identical parent zeolite.While there existed significant differences in these three 2Ni@HZP-5-n (n= 30, 45 or 80) with the increase of Si/Al ratios by TEM.Firstly, many mesopores were absolutely observed (Figs.1d–i), which was in agreement with BET analysis (Fig.S1B).Secondly, more and smaller Ni nanoparticles were exhibited by the increase of Si/Al ratios, with distributed mainly in 4–11 nm for 2Ni@HZP-5-30, 5–8 nm for 2Ni@HZP-5-45 and 3–7 nm for 2Ni@HZP-5-80.Similar results of 4Ni@HZP-5-n (n= 30,45 or 80) were obtained in Fig.S4 (Supporting information), which were different in those of 4Ni/HZ-5-80 (Fig.S5 in Supporting information).Thus, the less Ni contents and the higher Si/Al ratios usually led to the weaker interaction between Ni and Al, which was not only beneficial for the reduction of Ni2+to Ni0(Fig.S3),but also for the formation of smaller Ni nanoparticles.The observation of small Ni nanoparticles especially for 2Ni@HZP-5-80 with 3–7 nm, was also accordance with in X-ray diffraction (XRD) results with no obvious diffraction peaks of Ni speciesviathe postencapsulation method.

    Hydrodeoxygenation performances: As shown in Fig.2,Ni@HZP-5 bi-functional catalysts catalyzed PA at identical reaction conditions (260 °C and 4.0 MPa H2) as function of reaction time.With prolonging reaction time (Fig.2A), PA conversion increased to demonstrate that enough reaction time would bring PA into contact with active centers.At 240 min, 2Ni@HZP-5-80 exhibited higher conversion (99.7%, Fig.2A-e) than 2Ni@HZP-5-45 (93.0%,Fig.2A-c) and 2Ni@HZP-5-30 (84.3%, Fig.2A-a, with error bar); the similar results were obtained over 4Ni@HZP-5-80 (91.4%, Fig.2Af), 4Ni@HZP-5-45 (69.9%, Fig.2A-d) and 4Ni@HZP-5-30 (57.5%,Fig.2A-b).The higher conversion was obtained over 2Ni@HZP-5-n bi-functional catalysts with low Ni contents than those over 4Ni@HZP-5-n at similar Si/Al ratios, especially for 2Ni@HZP-5-80.To further evaluate the activity, turn over frequency (TOF, g[PA]g[Ni]-1h-1) of Ni@HZP-5 bi-functional catalysts were calculated at initial 1 h in Table 1 [16], as comparison of impregnated 4Ni/HZ-5-80.The corresponding TOF were 33.8 g[PA] g[Ni]-1h-1for 4Ni@HZP-5-80, 32.1 g[PA] g[Ni]-1h-1for 4Ni@HZP-5-45, 29.4 g[PA] g[Ni]-1h-1for 4Ni@HZP-5-30, 67.4 g[PA] g[Ni]-1h-1for 2Ni@HZP-5-80, 45.0 g[PA] g[Ni]-1h-1for 2Ni@HZP-5-45 and 31.6 g[PA] g[Ni]-1h-1for 2Ni@HZP-5-30, which were all much higher than those for 4Ni/HZ-5-80 (14.0 g[PA] g[Ni]-1h-1).These results directly disclose that Ni@HZP-5 synthesized by the postencapsulation could possess high hydrogenation and dehydration activity, especially for high Si/Al ratios in spite of low Ni contents.The corresponding concentration of each component was shown in Table S2 (Supporting information).

    Fig.2.Conversion of PA (A) and yield of products (B, C, D, E, F) over mNi@HZP-5-n (m = 2 or 4 wt% Ni, n = 30, 45 or 80 of Si/Al ratios) bi-functional catalysts with similar Ni contents (0.5 g PA in 50 mL n-decane; 0.2 g 2Ni@HZP-5-n and 0.1 g 4Ni@HZP-5-n; P = 4.0 MPa H2; T = 260 °C; 800 rpm).

    Table 1 Turn over frequency (TOF, g[PA] g[Ni]-1 h-1) of Ni@HZP-5 bi-functional catalysts compared to 4Ni/HZ-5-80 catalyst (0.5 g PA, 45 mL n-decane, 260 °C, 4.0 MPa H2,800 rpm).

    The molar yields of main hydrocarbons over all Ni@HZP-5 are shown in Fig.2B (C16alkanes) and Fig.2C (C15alkanes).C16and C15alkanes were the dominant productsviaHDC and HDO routes in presence of H2, and the increase yields of these two hydrocarbons were observed over Ni@HZP-5 with prolonging reaction time, like the various rules of PA conversion (Fig.2A).Taking an example of 240 min, C16and C15alkanes were 57.7% and 37.5%for 2Ni@HZP-5-80, 52.3% and 33.1% for 2Ni@HZP-5-45, 42.2% and 33.5% for 2Ni@HZP-5-30, respectively.With complete conversion of PA, there was no obvious change of products’distribution over 2Ni@HZP-5-80 with prolonging reaction time to 300 min (58.1%C16and 37.8% C15) and 360 min (58.2% C16and 37.9% C15).Besides for C16and C15hydrocarbons, a few C12–14alkanes were observed over all Ni@HZP-5 (Fig.2D), which may be derived from the cracking of C15/C16alkanes [17,18].With increasing the Si/Al ratios,C12–14alkanes were 4.2% for 2Ni@HZP-5-30 (5.6% for 4Ni@HZP-5-30), 4.2% for 2Ni@HZP-5-45 (4.6% for 4Ni@HZP-5-45) and 3.6% for 2Ni@HZP-5-80 (4.0% for 4Ni@HZP-5-80) at 240 min.Slight isoalkanes (below 5%) were also obtained at 240 min during PA conversion despite of prolonging reaction time, which indicated that HZ-5 topology may do not favor isomerization compared to HMCM-49[17,19] and/or HZSM-22 [20].Trace yield of methyl palmitate was observed in Fig.2E, which was formedviathe esterification reaction between PA and 1-hexadecanol, and then was further cracked to C15alkanes [5,17].The slight hexadecanol was detected and could be quickly dehydrated to hydrocarbons, which suggested that dehydration reaction was not the determine step in this system.

    Stability of 2Ni@HZP-5-80: During the deoxygenation process of fatty acids to diesel-like fuels, catalysts deactivation is considered as one of the biggest challenges, especially for impregnated catalysts with problems of metal leaching, migration, aggregation, sintering,etc.The stability of 2Ni@HZP-5-80 was importantly studied as shown in Figs.3a and b.There were no obvious changes both for activity and hydrocarbons selectivity (Fig.3a) over 2Ni@HZP-5-80 during 3 runs at identical conditions, which disclosed the outstanding stability.The hydrogenation activity and hydrocarbons selectivity over 2Ni@HZP-5-80 could recover completely after 3 runs and then regeneration (Fig.3a-Reg.1).However, only 72.3% conversion of PA was obtained over impregnated 0.25 g 4Ni/HZ-5-80-Reg.1 with 50.2% C16and 21.3% C15alkanes in Fig.3b, compared to fresh 4Ni/HZ-5-80 (75.5% conversion of PA, 49.5% C16and 34.9%C15alkanes), which indicated that there was some irreversible deactivation over 4Ni/HZ-5-80.Furthermore, 99.8% conversion of PA and 99.1% selectivity of hydrocarbons were obtained over 0.2 g 2Ni@HZP-5-80-Reg.2 (after 3 runs and 2 regenerations), basically the identical results over 0.2 g fresh 2Ni@HZP-5-80 (99.7% conversion of PA and 99.2% selectivity of hydrocarbons).This result confirmed the excellent stability of 2Ni@HZP-5-80 again, which point out the advantage of this post-encapsulation method.TEM analysis of 2Ni@HZP-5-80-Reg.2 was performed in Figs.3c and d to show the superior stability of Ni nanoparticles about 3–7 nm, as well as the crystallinity of regeneration catalyst by XRD results in Fig.S6 (Supporting information).Additionally, the consecutively lattice fringe of ZSM-5 were observed without interrupted of the Ni nanoparticles both in 2Ni@HZP-5-45 (Fig.1h) and 2Ni@HZP-5-80-Reg.2 (Fig.3c), which directly indicated that Ni nanoparticles were encapsulated within ZSM-5 crystals not distributed in the outer surfaces.It is totally different from 4Ni/HZ-5-80-Reg.1 with obvious increase of Ni particles (Fig.S5-b)viathe impregnation method.

    Fig.3.(a, b) Stability of 2Ni@HZP-5-80 bi-functional catalysts and (c, d) TEM analysis of Reg.2 catalyst (0.5 g palmitic acid in 50 mL n-decane; P = 4.0 MPa H2; T = 260 °C;800 rpm).

    According to above study, Ni encapsulation, Al addition and pores expansion were successfully achieved to synthesize meso-Ni@HZSM-5 bi-functional catalysts.About 3–7 nm Ni nanoparticles were uniformly confined within HZSM-5 crystals.The less Ni contents and the higher Si/Al ratios led to the weaker interaction between Ni and Al, which was beneficial for the improvement of hydrogenation and acid-catalysis activities.All Ni@HZSM-5viathe post-encapsulation method exhibited more superior palmitic acid deoxygenation activity and yielded higher hydrocarbons selectivity than Ni/HZSM-5viathe impregnation method.Especially Ni@HZSM-5 (2 wt% Ni, Si/Al = 80) showed the highest conversion capacity of 67.4 g[PA] g[Ni]-1h-1.Significantly, the outstanding stability of Ni@HZSM-5 were achieved during recycles and regeneration processes.There was no obvious deactivation for Ni@HZSM-5 after 3 runs and 2 regenerations, which was contributed to the excellent stability of Ni nano-particlesviathe post-encapsulation method.Therefore, the post-encapsulation of Ni within acid zeolites would offer a novel strategy to synthesize metal@zeolite bifunctional catalysts, which would effectively catalyze fatty acids to hydrocarbons.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors are grateful for the financial supports from the Natural Science Foundation of China (No.21908225) and the National Key Research and Development Program (No.2018YFC1801501).

    Appendix A.Supplementary data

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.06.086.

    99热6这里只有精品| 丝袜喷水一区| 欧美一级a爱片免费观看看| 国产色婷婷99| 久久久久久久久久成人| 国产视频一区二区在线看| 国产爱豆传媒在线观看| 色综合亚洲欧美另类图片| 亚洲18禁久久av| 久久久精品94久久精品| 一边摸一边抽搐一进一小说| 久久中文看片网| 国产精品人妻久久久影院| 99九九线精品视频在线观看视频| 亚洲国产精品成人久久小说 | 国产亚洲精品久久久com| 51国产日韩欧美| 国产精品久久电影中文字幕| 在线国产一区二区在线| 三级国产精品欧美在线观看| 在线免费观看的www视频| 人人妻人人澡人人爽人人夜夜 | 国产亚洲精品综合一区在线观看| 国产高清不卡午夜福利| 91av网一区二区| 国产亚洲91精品色在线| 中国美女看黄片| 久久精品国产亚洲网站| 成熟少妇高潮喷水视频| 91狼人影院| 国产乱人视频| 国产精品一区二区三区四区久久| 久久午夜福利片| 麻豆乱淫一区二区| 国产精品电影一区二区三区| 国产老妇女一区| 国内少妇人妻偷人精品xxx网站| 精品一区二区三区视频在线观看免费| av国产免费在线观看| 亚洲自偷自拍三级| 97热精品久久久久久| 亚洲不卡免费看| 中文在线观看免费www的网站| 青春草视频在线免费观看| 大香蕉久久网| 日韩人妻高清精品专区| 亚洲综合色惰| 亚洲五月天丁香| 国产91av在线免费观看| 国产视频一区二区在线看| 日韩中字成人| 久久综合国产亚洲精品| 麻豆成人午夜福利视频| 人妻丰满熟妇av一区二区三区| 国产视频一区二区在线看| 久久国产乱子免费精品| 一级毛片久久久久久久久女| 久久精品国产亚洲网站| 午夜视频国产福利| 日韩欧美 国产精品| 日本色播在线视频| 黑人高潮一二区| 女人十人毛片免费观看3o分钟| 国产美女午夜福利| 亚洲三级黄色毛片| 亚洲中文字幕一区二区三区有码在线看| 亚洲成人中文字幕在线播放| a级毛片a级免费在线| 成人av在线播放网站| 国内久久婷婷六月综合欲色啪| 亚洲性久久影院| 亚洲电影在线观看av| 日本色播在线视频| 99国产精品一区二区蜜桃av| 国产亚洲欧美98| 国产探花在线观看一区二区| 国产一级毛片七仙女欲春2| 男女下面进入的视频免费午夜| 国产一区二区激情短视频| 亚洲婷婷狠狠爱综合网| 亚洲精品乱码久久久v下载方式| 在线播放无遮挡| 国产高清视频在线播放一区| 少妇的逼好多水| 久久九九热精品免费| 久久精品国产亚洲av天美| 亚洲无线观看免费| 国产三级在线视频| 美女xxoo啪啪120秒动态图| 精品欧美国产一区二区三| 国产久久久一区二区三区| 伦精品一区二区三区| 日本熟妇午夜| 日本黄大片高清| 久久亚洲精品不卡| 国产高清有码在线观看视频| 老司机午夜福利在线观看视频| 精品久久久噜噜| 国产毛片a区久久久久| 色噜噜av男人的天堂激情| 听说在线观看完整版免费高清| 好男人在线观看高清免费视频| 别揉我奶头 嗯啊视频| 不卡视频在线观看欧美| 婷婷色综合大香蕉| 卡戴珊不雅视频在线播放| 一级黄片播放器| 久久久久久久久久久丰满| 国产探花极品一区二区| 最新中文字幕久久久久| 六月丁香七月| 国产 一区 欧美 日韩| 又黄又爽又刺激的免费视频.| 欧美日韩国产亚洲二区| 老熟妇乱子伦视频在线观看| www.色视频.com| av视频在线观看入口| 国产日本99.免费观看| av专区在线播放| 亚洲电影在线观看av| 亚洲综合色惰| 男人和女人高潮做爰伦理| 久久人人爽人人片av| 中文字幕av在线有码专区| 国产高清视频在线播放一区| 国产一区二区三区在线臀色熟女| 国产精品一区www在线观看| 日本黄色片子视频| 亚洲国产日韩欧美精品在线观看| 久久亚洲精品不卡| 春色校园在线视频观看| 亚洲av成人精品一区久久| 精品不卡国产一区二区三区| 久久这里只有精品中国| 在现免费观看毛片| a级一级毛片免费在线观看| 99久久久亚洲精品蜜臀av| 国产精品一及| 一级毛片我不卡| 精品国内亚洲2022精品成人| 97碰自拍视频| 精品一区二区三区人妻视频| 九九爱精品视频在线观看| 欧美激情久久久久久爽电影| 五月玫瑰六月丁香| 老司机午夜福利在线观看视频| 天天一区二区日本电影三级| 亚洲内射少妇av| 久久99热6这里只有精品| 少妇的逼水好多| 欧美+亚洲+日韩+国产| 久久中文看片网| 午夜精品在线福利| 在线国产一区二区在线| 亚洲av中文av极速乱| 女生性感内裤真人,穿戴方法视频| av女优亚洲男人天堂| 天堂网av新在线| 国产一级毛片七仙女欲春2| 久久精品夜夜夜夜夜久久蜜豆| av视频在线观看入口| 成熟少妇高潮喷水视频| 亚洲av二区三区四区| 在线观看一区二区三区| 免费看美女性在线毛片视频| 亚洲第一电影网av| 国产高清不卡午夜福利| 有码 亚洲区| 久久久国产成人免费| 精品久久久噜噜| 永久网站在线| 国产精品日韩av在线免费观看| 免费看av在线观看网站| 欧美激情国产日韩精品一区| 欧美日韩在线观看h| 嫩草影院新地址| 特大巨黑吊av在线直播| 亚洲中文字幕日韩| 97在线视频观看| 久久久久性生活片| 一个人看视频在线观看www免费| 男女啪啪激烈高潮av片| 国产黄色小视频在线观看| 亚洲精品456在线播放app| 日韩国内少妇激情av| 日本色播在线视频| 一级毛片我不卡| 国产色爽女视频免费观看| 色哟哟哟哟哟哟| 我的女老师完整版在线观看| 色视频www国产| 国产伦一二天堂av在线观看| 国产精品av视频在线免费观看| 嫩草影院入口| 乱码一卡2卡4卡精品| 黄色配什么色好看| 国产精品人妻久久久影院| 亚洲国产精品成人久久小说 | 国产精品不卡视频一区二区| 亚洲国产精品sss在线观看| 国产精品三级大全| 91精品国产九色| 中国美白少妇内射xxxbb| 日韩制服骚丝袜av| 日本欧美国产在线视频| 亚洲成av人片在线播放无| 精品人妻视频免费看| 91久久精品国产一区二区成人| 直男gayav资源| 欧美区成人在线视频| 国产精品福利在线免费观看| 精品久久久久久久末码| 精品一区二区三区av网在线观看| 男人舔奶头视频| 免费观看人在逋| 色av中文字幕| 国产精品久久久久久久电影| av中文乱码字幕在线| 男女之事视频高清在线观看| 成人综合一区亚洲| 少妇丰满av| 99riav亚洲国产免费| 丝袜喷水一区| 自拍偷自拍亚洲精品老妇| 男女视频在线观看网站免费| 99精品在免费线老司机午夜| www日本黄色视频网| 色播亚洲综合网| 国内久久婷婷六月综合欲色啪| 永久网站在线| 久久婷婷人人爽人人干人人爱| 国产成人aa在线观看| 欧美激情国产日韩精品一区| 我的女老师完整版在线观看| 免费在线观看成人毛片| 婷婷亚洲欧美| 一级毛片电影观看 | 伦理电影大哥的女人| avwww免费| 午夜老司机福利剧场| 国内精品久久久久精免费| 日韩一本色道免费dvd| 最近中文字幕高清免费大全6| 国产精品永久免费网站| 成人毛片a级毛片在线播放| 日韩强制内射视频| 亚洲精品乱码久久久v下载方式| 日本-黄色视频高清免费观看| 欧美一区二区国产精品久久精品| 如何舔出高潮| 欧美人与善性xxx| 99久久精品热视频| 国产日本99.免费观看| 成人一区二区视频在线观看| 变态另类成人亚洲欧美熟女| 国产精品久久久久久亚洲av鲁大| 成人国产麻豆网| 欧美一区二区亚洲| 亚洲最大成人手机在线| 欧美极品一区二区三区四区| 久久久a久久爽久久v久久| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲,欧美,日韩| 自拍偷自拍亚洲精品老妇| 欧美一区二区亚洲| 色视频www国产| 在线播放无遮挡| 91午夜精品亚洲一区二区三区| 久久精品国产清高在天天线| 久久综合国产亚洲精品| 人妻少妇偷人精品九色| 亚洲人成网站高清观看| av专区在线播放| 12—13女人毛片做爰片一| 欧美bdsm另类| a级毛片免费高清观看在线播放| 日韩亚洲欧美综合| 国产av一区在线观看免费| 日韩欧美在线乱码| 麻豆久久精品国产亚洲av| 久久婷婷人人爽人人干人人爱| 插阴视频在线观看视频| 久久久久久久亚洲中文字幕| 夜夜看夜夜爽夜夜摸| 97超视频在线观看视频| 亚洲国产精品国产精品| 日韩人妻高清精品专区| 亚洲aⅴ乱码一区二区在线播放| 十八禁国产超污无遮挡网站| 成人三级黄色视频| 精品无人区乱码1区二区| 欧美日韩综合久久久久久| 久久久久久大精品| 直男gayav资源| 日本黄大片高清| 美女内射精品一级片tv| 亚洲性久久影院| 日日撸夜夜添| 美女高潮的动态| 午夜福利在线观看免费完整高清在 | 亚洲欧美中文字幕日韩二区| 国产精品1区2区在线观看.| 色综合站精品国产| 精品人妻一区二区三区麻豆 | 丰满人妻一区二区三区视频av| 日本欧美国产在线视频| 国产亚洲精品综合一区在线观看| 色哟哟·www| 精品99又大又爽又粗少妇毛片| 亚洲中文字幕一区二区三区有码在线看| 我要搜黄色片| 啦啦啦观看免费观看视频高清| 国产蜜桃级精品一区二区三区| 最近的中文字幕免费完整| 亚洲av二区三区四区| 欧美性猛交黑人性爽| 亚洲图色成人| 亚洲精品在线观看二区| 国产精品一区www在线观看| 成年版毛片免费区| 一级毛片久久久久久久久女| 成人综合一区亚洲| 97人妻精品一区二区三区麻豆| 欧美xxxx性猛交bbbb| 网址你懂的国产日韩在线| 国产成人福利小说| 欧美极品一区二区三区四区| 国产av在哪里看| 天美传媒精品一区二区| 男女那种视频在线观看| 国产一区二区在线观看日韩| 一级黄片播放器| 老熟妇乱子伦视频在线观看| 99久久无色码亚洲精品果冻| 亚洲成av人片在线播放无| 亚洲av.av天堂| 国产亚洲欧美98| 亚洲欧美精品自产自拍| 嫩草影院新地址| 亚洲无线观看免费| 变态另类丝袜制服| 久久精品国产亚洲av天美| 日韩人妻高清精品专区| 久久精品夜色国产| 国产高清不卡午夜福利| 99久久无色码亚洲精品果冻| 国产精品亚洲美女久久久| 丰满乱子伦码专区| 成人美女网站在线观看视频| 久久久成人免费电影| 国产精品久久电影中文字幕| 日产精品乱码卡一卡2卡三| 性色avwww在线观看| 久久精品国产亚洲av涩爱 | 成人漫画全彩无遮挡| 国产在视频线在精品| 国产男靠女视频免费网站| 99久国产av精品国产电影| 在线播放无遮挡| 天堂动漫精品| 老女人水多毛片| 99国产极品粉嫩在线观看| 久久久色成人| 国产黄片美女视频| 亚洲av第一区精品v没综合| 亚洲国产精品国产精品| 国产精品一区二区性色av| 中文字幕熟女人妻在线| 免费av毛片视频| 免费观看的影片在线观看| 精品日产1卡2卡| 国产精品亚洲一级av第二区| 丰满的人妻完整版| 给我免费播放毛片高清在线观看| 99热精品在线国产| 成人av一区二区三区在线看| 久久亚洲精品不卡| 熟女人妻精品中文字幕| 看免费成人av毛片| 久久人人爽人人爽人人片va| 可以在线观看的亚洲视频| 亚洲欧美成人精品一区二区| 嫩草影视91久久| 亚洲aⅴ乱码一区二区在线播放| 欧美成人精品欧美一级黄| 欧美激情久久久久久爽电影| 村上凉子中文字幕在线| 久久久精品94久久精品| 老司机午夜福利在线观看视频| 国产精品电影一区二区三区| 又黄又爽又免费观看的视频| 日本 av在线| 卡戴珊不雅视频在线播放| 国产av一区在线观看免费| 精品熟女少妇av免费看| 菩萨蛮人人尽说江南好唐韦庄 | 高清午夜精品一区二区三区 | 久久精品国产亚洲av涩爱 | 寂寞人妻少妇视频99o| 在线免费观看的www视频| 一级黄片播放器| 久久久欧美国产精品| 亚洲精品亚洲一区二区| 国产黄a三级三级三级人| 国产黄色视频一区二区在线观看 | 久久久久九九精品影院| 级片在线观看| 国产女主播在线喷水免费视频网站 | 日韩成人av中文字幕在线观看 | 日本在线视频免费播放| 日韩国内少妇激情av| 国产三级中文精品| 国产精品一区二区三区四区久久| 亚洲精品影视一区二区三区av| 国内久久婷婷六月综合欲色啪| 亚洲中文字幕一区二区三区有码在线看| 久久人人精品亚洲av| 最近视频中文字幕2019在线8| 午夜激情福利司机影院| 久久亚洲国产成人精品v| 身体一侧抽搐| 久久精品影院6| 在线免费十八禁| 大又大粗又爽又黄少妇毛片口| 久久精品人妻少妇| 国产欧美日韩精品亚洲av| 麻豆成人午夜福利视频| 中国美白少妇内射xxxbb| eeuss影院久久| 免费观看的影片在线观看| 亚洲欧美成人精品一区二区| 麻豆国产97在线/欧美| 精品午夜福利视频在线观看一区| 国产一区二区三区av在线 | 一级黄片播放器| ponron亚洲| 午夜精品在线福利| 亚洲一区二区三区色噜噜| 国产精品久久视频播放| 大香蕉久久网| 国产一区二区三区在线臀色熟女| 99久久成人亚洲精品观看| 午夜福利18| 午夜福利成人在线免费观看| 一级黄色大片毛片| 国产一区亚洲一区在线观看| 在线播放国产精品三级| 国产精品一及| 成人欧美大片| 国产精品女同一区二区软件| h日本视频在线播放| 国产精品1区2区在线观看.| 精品免费久久久久久久清纯| 国产精品亚洲一级av第二区| 国产精品美女特级片免费视频播放器| 久久欧美精品欧美久久欧美| 中文字幕免费在线视频6| 久久这里只有精品中国| 亚洲国产精品久久男人天堂| 亚洲精品色激情综合| 99久久精品一区二区三区| 亚洲性夜色夜夜综合| 又黄又爽又免费观看的视频| 久久国内精品自在自线图片| 久久欧美精品欧美久久欧美| 国产精品久久电影中文字幕| 免费高清视频大片| 欧美+日韩+精品| 卡戴珊不雅视频在线播放| 精品一区二区三区视频在线观看免费| 精品无人区乱码1区二区| 欧美日韩精品成人综合77777| 久久精品国产亚洲av天美| 日韩三级伦理在线观看| 亚洲人成网站在线观看播放| 女人十人毛片免费观看3o分钟| 精品不卡国产一区二区三区| 成人性生交大片免费视频hd| 亚洲国产精品sss在线观看| 在线播放国产精品三级| 国产一区二区亚洲精品在线观看| 熟妇人妻久久中文字幕3abv| 最近手机中文字幕大全| 蜜臀久久99精品久久宅男| 精品午夜福利视频在线观看一区| 日本精品一区二区三区蜜桃| 免费观看精品视频网站| 一个人免费在线观看电影| 亚洲av二区三区四区| 国产淫片久久久久久久久| 村上凉子中文字幕在线| 老师上课跳d突然被开到最大视频| 日本精品一区二区三区蜜桃| 国产伦一二天堂av在线观看| 一本久久中文字幕| av中文乱码字幕在线| 欧美极品一区二区三区四区| 天堂√8在线中文| 特级一级黄色大片| 日韩高清综合在线| 国产精品久久久久久亚洲av鲁大| 精品99又大又爽又粗少妇毛片| 国产男人的电影天堂91| 精品少妇黑人巨大在线播放 | 国产精品爽爽va在线观看网站| 黄色配什么色好看| 国产亚洲精品久久久com| 国产av在哪里看| 国产精品永久免费网站| 九九热线精品视视频播放| 老熟妇乱子伦视频在线观看| 国产人妻一区二区三区在| 美女大奶头视频| 欧洲精品卡2卡3卡4卡5卡区| 国产精品日韩av在线免费观看| 伊人久久精品亚洲午夜| 久久九九热精品免费| 最好的美女福利视频网| 日本在线视频免费播放| 九九热线精品视视频播放| 亚洲经典国产精华液单| 热99re8久久精品国产| 日本 av在线| 国产精品野战在线观看| 男女视频在线观看网站免费| 老熟妇仑乱视频hdxx| 一卡2卡三卡四卡精品乱码亚洲| 亚洲熟妇中文字幕五十中出| 亚洲欧美日韩东京热| 日本欧美国产在线视频| 97人妻精品一区二区三区麻豆| 国产 一区 欧美 日韩| 久久久久久大精品| 变态另类成人亚洲欧美熟女| 久久精品夜色国产| 日韩欧美一区二区三区在线观看| 精品久久久久久久人妻蜜臀av| 丝袜美腿在线中文| 1000部很黄的大片| 精品99又大又爽又粗少妇毛片| 麻豆国产97在线/欧美| 99久久九九国产精品国产免费| 午夜爱爱视频在线播放| 搡女人真爽免费视频火全软件 | 在线免费观看的www视频| 色5月婷婷丁香| 高清毛片免费观看视频网站| 国产av在哪里看| 乱码一卡2卡4卡精品| 成人漫画全彩无遮挡| 夜夜看夜夜爽夜夜摸| 欧美中文日本在线观看视频| 国产精品人妻久久久影院| 免费看光身美女| av女优亚洲男人天堂| 日韩中字成人| 精品久久久久久久人妻蜜臀av| 亚洲婷婷狠狠爱综合网| 国产三级中文精品| 中文在线观看免费www的网站| 18禁在线播放成人免费| 亚洲一区二区三区色噜噜| 成熟少妇高潮喷水视频| 97在线视频观看| 日本成人三级电影网站| 日本撒尿小便嘘嘘汇集6| 久久久久久伊人网av| 国产成人一区二区在线| 亚洲欧美日韩高清专用| 日本 av在线| 亚洲精华国产精华液的使用体验 | 老师上课跳d突然被开到最大视频| 久久综合国产亚洲精品| 人妻夜夜爽99麻豆av| 内地一区二区视频在线| 亚洲精品国产成人久久av| 亚洲人成网站在线播放欧美日韩| 桃色一区二区三区在线观看| 在线免费观看的www视频| 日韩欧美在线乱码| 亚洲欧美日韩卡通动漫| 国产熟女欧美一区二区| 国产成人aa在线观看| 国产真实伦视频高清在线观看| 午夜福利成人在线免费观看| 国产一区亚洲一区在线观看| 亚洲中文日韩欧美视频| 一级毛片久久久久久久久女| 婷婷亚洲欧美| 高清毛片免费观看视频网站| 国内精品美女久久久久久| 热99re8久久精品国产| 日本与韩国留学比较| 蜜桃久久精品国产亚洲av| 成年女人永久免费观看视频| 成人高潮视频无遮挡免费网站| 给我免费播放毛片高清在线观看| 婷婷精品国产亚洲av在线| 中文字幕免费在线视频6| 亚洲国产欧洲综合997久久,| 在线播放无遮挡| 一边摸一边抽搐一进一小说| 老熟妇仑乱视频hdxx| 免费看日本二区| 久久亚洲精品不卡| av在线老鸭窝| 国产精品爽爽va在线观看网站| 午夜日韩欧美国产| 观看美女的网站| 老熟妇乱子伦视频在线观看| 国产亚洲av嫩草精品影院| 日日啪夜夜撸| 欧美高清性xxxxhd video| 波多野结衣高清作品| 小蜜桃在线观看免费完整版高清|