• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ni nanoparticles encapsulated within H-type ZSM-5 crystals for upgrading palmitic acid to diesel-like fuels

    2022-06-18 03:00:24YnchunShiChenGoEnhuiXingJimeiZhngFengDunHeZhoYongingXie
    Chinese Chemical Letters 2022年2期

    Ynchun Shi, Chen Go, Enhui Xing, Jimei Zhng, Feng Dun, He Zho,Yonging Xie,*

    a CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

    b State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China

    ABSTRACT Meso-Ni@HZSM-5 bi-functional catalysts were successfully post-encapsulated with about 3–7 nm Ni nanoparticles within HZSM-5 crystals, which exhibited significantly efficient conversion activity (67.4 g[palmitic acid] g[Ni]-1 h-1) of palmitic acid and 100% selectivity of hydrocarbons with the outstanding stability during recycling application, compared to the impregnated Ni/HZSM-5 catalyst (14.0 g[palmitic acid] g[Ni]-1 h-1).

    Keywords:Post-encapsulation Ni@HZSM-5 Ni nanoparticles Palmitic acid Hydrodeoxygenation Hydrocarbons

    The increasingly environmental requirements and the dwindling fossil resources have highly encouraged researchers to develop renewable and sustainable energy resources, such as waste oils and fats, vegetable oils, microalgae oils,etc.[1,2].These oleaginous feedstocks generally consist of C16–C20triglycerides and fatty acids (palmitic and stearic acids as main components) with high oxygen contents (10–40 wt%), which lead to the low energy density, the inferior chemical, the inferior thermal stability and so on.Catalytic deoxygenation is considered as the necessary and effi-cient method for producing high quality biodiesel-like fuels, and three deoxygenation routes are summarized in Scheme S1 (Supporting information) with C15–C18n-alkanes as main products as follows: decarboxylation (DCX) (route 1 - DCX: R-COOH →R-H+ CO2), hydro-decarbonylation (HDC) (route 2 - HDC: R-COOH +H2→R-H + CO + H2O) and hydrodeoxygenation (HDO) (route 3 -HDO: R-COOH + 3H2→R-CH3+ 2H2O) [3-6].The design of effective and stable catalysts is the challenge to determine the deoxygenation performance.Impregnation and ion-exchange methods usually lead to the almost un-restriction of metal leaching, migration and aggregation supports, which are deactivated quickly during recycle runs and regeneration, like Ni/HZSM-5 and Ni/HBeta bifunctional catalysts [7,8].Recently, encapsulation of metal within zeolites has been reported as the absolutely effective method to synthesize high activity and stability catalysts in many publications[9-11].Therefore, in this paper, we primarily attempted to encapsulate Ni nanoparticles within H-type ZSM-5 crystals (Ni@HZP-5)viathe post-encapsulation method derived from the identical parent zeolite (HZ-5-80), which produced a series of meso-Ni@HZSM-5 bi-functional catalysts with similar morphology and further upgraded palmitic acid (PA, as model compound).The detailed information for catalysts synthesis, characterization and catalytic performance was provided in Supporting information.

    Physicochemical property of Ni@HZP-5: All Ni@HZP-5 bifunctional were post-encapsulated without/with Al addition to produce the Si/Al gradient descent from 80 to 45 and 30.Larger surface areas and volumes of 4Ni@HZP-5-n and 2Ni@HZP-5-n were obtained (n= 80, 45 or 30, Table S1 in Supporting information)than compared to impregnated 4Ni/HZ-5-80, which were obvious hysteresis loops of the adsorption-desorption curves (Fig.S1A for 4Ni@HZP-5-n and Fig.S1B for 2Ni@HZP-5-n in Supporting information) to suggest the formation of mesopores.The distribution of pore diameters was centered at 3.8 nm based upon Barrett-Joiner-Halenda (BJH) curves (Fig.S1C for 4Ni@HZP-5-n and Fig.S1D for 2Ni@HZP-5-n in Supporting information).As shown in Fig.S2 (Supporting information), all Ni@HZP-5 showed similar diffraction peaks like parent zeolite HZ-5 with well crystallinity in Figs.S2A and B, without any new diffraction peaks with 2θ= 44°and 52° for Ni [111] and Ni [200] planes (4Ni/HZ-5-80, Figs.S2A and B) [7,8], which may indicate the small Ni sizes and the uniform dispersion of Ni nanoparticles within HZP-5 crystals.Additionally, more acid sites particularly for medium/strong acid cites were obtained for 4Ni@HZP-5-n (Fig.S2C) and 2Ni@HZP-5-n (Fig.S2D) than those of 4Ni/HZ-5-80.On the one hand, it could be seen that the lower Si/Al ratios, the number of acid sites were increased with similar Ni contents; on the other hand, the more Ni contents could improve the strong acid sites with similar Si/Al ratios.

    Fig.1.SEM images, TEM images and Ni size distribution of bi-functional catalysts: (a, d, g, j) 2Ni@HZP-5-30, (b, e, h, k) 2Ni@HZP-5-45 and (c, f, i, l) 2Ni @HZP-5-80.

    The chemical states of Ni species over Ni@HZP-5 were analyzed in Fig.S3 (Supporting information) by X-ray photoelectron spectroscopy (XPS).The fitting peaks of Ni 2p region could be divided into two/three peaks about Ni0(854.7–856.1 eV for Ni 2p3/2and 872.5–874.3 eV for Ni 2p1/2), Ni2+(857.1–860.8 eV for Ni 2p3/2and 875.0–878.5 eV for Ni 2p1/2) and/or satellite peaks (862.2–864.0 eV for Ni 2p3/2and 880.8–882.5 eV for Ni 2p1/2) [12-14].Binding energies of Ni0for all Ni@HZP-5 were shifted about 1.7–3.1 eV for Ni 2p3/2and 2.5–4.3 eV for Ni 2p1/2toward higher values, compared to 853 eV for Ni 2p3/2and 870 eV for Ni 2p1/2of nickel metal [12], which may be ascribed to both the quantum size effect of Ni0nanoparticles and the electronic properties of zeolite matrix [13,14].The similar phenomenon has also been reported by zeolites encapsulation Pt [14] and Ni [15].On the one hand,the more Ni encapsulation, the higher values of Ni0binding energies were observed between 2Ni@HZP-5-n and 4Ni@HZP-5-n at similar Si/Al ratios; on the other hand, the higher Si/Al ratios, the more Ni2+species were reduced to form Ni0centers especially for 4Ni@HZP-5-n (Figs.S3d-f).Significantly, there was no detection of Ni2+species for 2Ni@HZP-5-80 (Fig.S3c), which indicated that all Ni2+species were reduced to Ni0.

    Fig.1 gives scanning electron microscopy (SEM) images, transmission electron microscope (TEM) images and Ni size distribution of 2Ni@HZP-5-n (n= 30, 45 or 80).There was no obvious difference in the morphology of 2Ni@HZP-5-30 (Fig.1a), 2Ni@HZP-5-45(Fig.1b) and 2Ni@HZP-5-80 (Fig.1c), which may be ascribed to the identical parent zeolite.While there existed significant differences in these three 2Ni@HZP-5-n (n= 30, 45 or 80) with the increase of Si/Al ratios by TEM.Firstly, many mesopores were absolutely observed (Figs.1d–i), which was in agreement with BET analysis (Fig.S1B).Secondly, more and smaller Ni nanoparticles were exhibited by the increase of Si/Al ratios, with distributed mainly in 4–11 nm for 2Ni@HZP-5-30, 5–8 nm for 2Ni@HZP-5-45 and 3–7 nm for 2Ni@HZP-5-80.Similar results of 4Ni@HZP-5-n (n= 30,45 or 80) were obtained in Fig.S4 (Supporting information), which were different in those of 4Ni/HZ-5-80 (Fig.S5 in Supporting information).Thus, the less Ni contents and the higher Si/Al ratios usually led to the weaker interaction between Ni and Al, which was not only beneficial for the reduction of Ni2+to Ni0(Fig.S3),but also for the formation of smaller Ni nanoparticles.The observation of small Ni nanoparticles especially for 2Ni@HZP-5-80 with 3–7 nm, was also accordance with in X-ray diffraction (XRD) results with no obvious diffraction peaks of Ni speciesviathe postencapsulation method.

    Hydrodeoxygenation performances: As shown in Fig.2,Ni@HZP-5 bi-functional catalysts catalyzed PA at identical reaction conditions (260 °C and 4.0 MPa H2) as function of reaction time.With prolonging reaction time (Fig.2A), PA conversion increased to demonstrate that enough reaction time would bring PA into contact with active centers.At 240 min, 2Ni@HZP-5-80 exhibited higher conversion (99.7%, Fig.2A-e) than 2Ni@HZP-5-45 (93.0%,Fig.2A-c) and 2Ni@HZP-5-30 (84.3%, Fig.2A-a, with error bar); the similar results were obtained over 4Ni@HZP-5-80 (91.4%, Fig.2Af), 4Ni@HZP-5-45 (69.9%, Fig.2A-d) and 4Ni@HZP-5-30 (57.5%,Fig.2A-b).The higher conversion was obtained over 2Ni@HZP-5-n bi-functional catalysts with low Ni contents than those over 4Ni@HZP-5-n at similar Si/Al ratios, especially for 2Ni@HZP-5-80.To further evaluate the activity, turn over frequency (TOF, g[PA]g[Ni]-1h-1) of Ni@HZP-5 bi-functional catalysts were calculated at initial 1 h in Table 1 [16], as comparison of impregnated 4Ni/HZ-5-80.The corresponding TOF were 33.8 g[PA] g[Ni]-1h-1for 4Ni@HZP-5-80, 32.1 g[PA] g[Ni]-1h-1for 4Ni@HZP-5-45, 29.4 g[PA] g[Ni]-1h-1for 4Ni@HZP-5-30, 67.4 g[PA] g[Ni]-1h-1for 2Ni@HZP-5-80, 45.0 g[PA] g[Ni]-1h-1for 2Ni@HZP-5-45 and 31.6 g[PA] g[Ni]-1h-1for 2Ni@HZP-5-30, which were all much higher than those for 4Ni/HZ-5-80 (14.0 g[PA] g[Ni]-1h-1).These results directly disclose that Ni@HZP-5 synthesized by the postencapsulation could possess high hydrogenation and dehydration activity, especially for high Si/Al ratios in spite of low Ni contents.The corresponding concentration of each component was shown in Table S2 (Supporting information).

    Fig.2.Conversion of PA (A) and yield of products (B, C, D, E, F) over mNi@HZP-5-n (m = 2 or 4 wt% Ni, n = 30, 45 or 80 of Si/Al ratios) bi-functional catalysts with similar Ni contents (0.5 g PA in 50 mL n-decane; 0.2 g 2Ni@HZP-5-n and 0.1 g 4Ni@HZP-5-n; P = 4.0 MPa H2; T = 260 °C; 800 rpm).

    Table 1 Turn over frequency (TOF, g[PA] g[Ni]-1 h-1) of Ni@HZP-5 bi-functional catalysts compared to 4Ni/HZ-5-80 catalyst (0.5 g PA, 45 mL n-decane, 260 °C, 4.0 MPa H2,800 rpm).

    The molar yields of main hydrocarbons over all Ni@HZP-5 are shown in Fig.2B (C16alkanes) and Fig.2C (C15alkanes).C16and C15alkanes were the dominant productsviaHDC and HDO routes in presence of H2, and the increase yields of these two hydrocarbons were observed over Ni@HZP-5 with prolonging reaction time, like the various rules of PA conversion (Fig.2A).Taking an example of 240 min, C16and C15alkanes were 57.7% and 37.5%for 2Ni@HZP-5-80, 52.3% and 33.1% for 2Ni@HZP-5-45, 42.2% and 33.5% for 2Ni@HZP-5-30, respectively.With complete conversion of PA, there was no obvious change of products’distribution over 2Ni@HZP-5-80 with prolonging reaction time to 300 min (58.1%C16and 37.8% C15) and 360 min (58.2% C16and 37.9% C15).Besides for C16and C15hydrocarbons, a few C12–14alkanes were observed over all Ni@HZP-5 (Fig.2D), which may be derived from the cracking of C15/C16alkanes [17,18].With increasing the Si/Al ratios,C12–14alkanes were 4.2% for 2Ni@HZP-5-30 (5.6% for 4Ni@HZP-5-30), 4.2% for 2Ni@HZP-5-45 (4.6% for 4Ni@HZP-5-45) and 3.6% for 2Ni@HZP-5-80 (4.0% for 4Ni@HZP-5-80) at 240 min.Slight isoalkanes (below 5%) were also obtained at 240 min during PA conversion despite of prolonging reaction time, which indicated that HZ-5 topology may do not favor isomerization compared to HMCM-49[17,19] and/or HZSM-22 [20].Trace yield of methyl palmitate was observed in Fig.2E, which was formedviathe esterification reaction between PA and 1-hexadecanol, and then was further cracked to C15alkanes [5,17].The slight hexadecanol was detected and could be quickly dehydrated to hydrocarbons, which suggested that dehydration reaction was not the determine step in this system.

    Stability of 2Ni@HZP-5-80: During the deoxygenation process of fatty acids to diesel-like fuels, catalysts deactivation is considered as one of the biggest challenges, especially for impregnated catalysts with problems of metal leaching, migration, aggregation, sintering,etc.The stability of 2Ni@HZP-5-80 was importantly studied as shown in Figs.3a and b.There were no obvious changes both for activity and hydrocarbons selectivity (Fig.3a) over 2Ni@HZP-5-80 during 3 runs at identical conditions, which disclosed the outstanding stability.The hydrogenation activity and hydrocarbons selectivity over 2Ni@HZP-5-80 could recover completely after 3 runs and then regeneration (Fig.3a-Reg.1).However, only 72.3% conversion of PA was obtained over impregnated 0.25 g 4Ni/HZ-5-80-Reg.1 with 50.2% C16and 21.3% C15alkanes in Fig.3b, compared to fresh 4Ni/HZ-5-80 (75.5% conversion of PA, 49.5% C16and 34.9%C15alkanes), which indicated that there was some irreversible deactivation over 4Ni/HZ-5-80.Furthermore, 99.8% conversion of PA and 99.1% selectivity of hydrocarbons were obtained over 0.2 g 2Ni@HZP-5-80-Reg.2 (after 3 runs and 2 regenerations), basically the identical results over 0.2 g fresh 2Ni@HZP-5-80 (99.7% conversion of PA and 99.2% selectivity of hydrocarbons).This result confirmed the excellent stability of 2Ni@HZP-5-80 again, which point out the advantage of this post-encapsulation method.TEM analysis of 2Ni@HZP-5-80-Reg.2 was performed in Figs.3c and d to show the superior stability of Ni nanoparticles about 3–7 nm, as well as the crystallinity of regeneration catalyst by XRD results in Fig.S6 (Supporting information).Additionally, the consecutively lattice fringe of ZSM-5 were observed without interrupted of the Ni nanoparticles both in 2Ni@HZP-5-45 (Fig.1h) and 2Ni@HZP-5-80-Reg.2 (Fig.3c), which directly indicated that Ni nanoparticles were encapsulated within ZSM-5 crystals not distributed in the outer surfaces.It is totally different from 4Ni/HZ-5-80-Reg.1 with obvious increase of Ni particles (Fig.S5-b)viathe impregnation method.

    Fig.3.(a, b) Stability of 2Ni@HZP-5-80 bi-functional catalysts and (c, d) TEM analysis of Reg.2 catalyst (0.5 g palmitic acid in 50 mL n-decane; P = 4.0 MPa H2; T = 260 °C;800 rpm).

    According to above study, Ni encapsulation, Al addition and pores expansion were successfully achieved to synthesize meso-Ni@HZSM-5 bi-functional catalysts.About 3–7 nm Ni nanoparticles were uniformly confined within HZSM-5 crystals.The less Ni contents and the higher Si/Al ratios led to the weaker interaction between Ni and Al, which was beneficial for the improvement of hydrogenation and acid-catalysis activities.All Ni@HZSM-5viathe post-encapsulation method exhibited more superior palmitic acid deoxygenation activity and yielded higher hydrocarbons selectivity than Ni/HZSM-5viathe impregnation method.Especially Ni@HZSM-5 (2 wt% Ni, Si/Al = 80) showed the highest conversion capacity of 67.4 g[PA] g[Ni]-1h-1.Significantly, the outstanding stability of Ni@HZSM-5 were achieved during recycles and regeneration processes.There was no obvious deactivation for Ni@HZSM-5 after 3 runs and 2 regenerations, which was contributed to the excellent stability of Ni nano-particlesviathe post-encapsulation method.Therefore, the post-encapsulation of Ni within acid zeolites would offer a novel strategy to synthesize metal@zeolite bifunctional catalysts, which would effectively catalyze fatty acids to hydrocarbons.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors are grateful for the financial supports from the Natural Science Foundation of China (No.21908225) and the National Key Research and Development Program (No.2018YFC1801501).

    Appendix A.Supplementary data

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.06.086.

    a级毛片免费高清观看在线播放| 精品一区二区免费观看| 国产日韩欧美在线精品| or卡值多少钱| 欧美最新免费一区二区三区| 人妻系列 视频| 日韩欧美三级三区| 麻豆久久精品国产亚洲av| 精品人妻一区二区三区麻豆| 亚洲欧美日韩卡通动漫| 国产熟女欧美一区二区| 欧美成人精品欧美一级黄| 国产av不卡久久| 黄色配什么色好看| 欧美丝袜亚洲另类| 美女黄网站色视频| .国产精品久久| 又爽又黄a免费视频| 毛片女人毛片| 免费看a级黄色片| 精品久久久久久久人妻蜜臀av| videossex国产| 看免费成人av毛片| 女人被狂操c到高潮| 久久久久久国产a免费观看| 亚洲av二区三区四区| 精品一区二区三区视频在线| 搡女人真爽免费视频火全软件| 日本熟妇午夜| 青春草国产在线视频 | 久久久久久久久久成人| 麻豆国产av国片精品| 黑人高潮一二区| www.av在线官网国产| 美女高潮的动态| av卡一久久| 日韩制服骚丝袜av| 亚洲av二区三区四区| 久久久a久久爽久久v久久| 日本与韩国留学比较| 国产成人精品婷婷| 欧美日韩乱码在线| 久久九九热精品免费| 日韩一区二区三区影片| 午夜精品国产一区二区电影 | 免费观看精品视频网站| 久久草成人影院| 99riav亚洲国产免费| 久久精品国产亚洲av香蕉五月| 99视频精品全部免费 在线| 18+在线观看网站| 久久草成人影院| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧洲国产日韩| 亚洲性久久影院| 婷婷色av中文字幕| 最近中文字幕高清免费大全6| 亚洲欧美精品专区久久| 伦精品一区二区三区| 成人亚洲精品av一区二区| 青春草国产在线视频 | 亚洲国产欧美在线一区| 日韩,欧美,国产一区二区三区 | 久久久色成人| 美女国产视频在线观看| 男女啪啪激烈高潮av片| 久久精品国产亚洲av涩爱 | 亚洲第一区二区三区不卡| 看黄色毛片网站| 国产日本99.免费观看| 国产成人影院久久av| 97在线视频观看| 一区福利在线观看| ponron亚洲| 欧美激情久久久久久爽电影| 国产伦精品一区二区三区四那| 校园春色视频在线观看| 1024手机看黄色片| 91在线精品国自产拍蜜月| 国产蜜桃级精品一区二区三区| 成人特级黄色片久久久久久久| 国产成人一区二区在线| 亚洲天堂国产精品一区在线| a级毛色黄片| 给我免费播放毛片高清在线观看| 成人漫画全彩无遮挡| 麻豆国产97在线/欧美| 久久国产乱子免费精品| 中文亚洲av片在线观看爽| 国产成人一区二区在线| 色尼玛亚洲综合影院| 国产成人aa在线观看| 18禁裸乳无遮挡免费网站照片| 久久精品综合一区二区三区| 亚洲精品粉嫩美女一区| 久久6这里有精品| 亚洲国产色片| 国产69精品久久久久777片| 国产成人a区在线观看| 男人狂女人下面高潮的视频| 国产精品国产高清国产av| 国产精品99久久久久久久久| 老司机福利观看| 三级国产精品欧美在线观看| 一本精品99久久精品77| 麻豆精品久久久久久蜜桃| 国内精品宾馆在线| 欧美成人a在线观看| 一级毛片久久久久久久久女| 亚洲美女视频黄频| 中文欧美无线码| 久久精品夜夜夜夜夜久久蜜豆| 日本免费一区二区三区高清不卡| 久久久久免费精品人妻一区二区| 日本一本二区三区精品| 国产久久久一区二区三区| 男人狂女人下面高潮的视频| 能在线免费观看的黄片| 久久久国产成人免费| 国内精品宾馆在线| 亚洲五月天丁香| 国产熟女欧美一区二区| 老司机福利观看| 久久精品夜色国产| 99久久精品国产国产毛片| 91久久精品国产一区二区成人| a级毛片免费高清观看在线播放| 亚洲国产欧美人成| 中文精品一卡2卡3卡4更新| 久久精品国产清高在天天线| 亚洲精品乱码久久久久久按摩| 成人特级黄色片久久久久久久| 亚洲在久久综合| 中文字幕av在线有码专区| 亚洲国产精品国产精品| 欧美丝袜亚洲另类| 男人的好看免费观看在线视频| 听说在线观看完整版免费高清| 有码 亚洲区| 久久婷婷人人爽人人干人人爱| 亚洲精品自拍成人| 九草在线视频观看| 99精品在免费线老司机午夜| 亚洲国产精品国产精品| 性欧美人与动物交配| 一级黄片播放器| 亚洲精品乱码久久久v下载方式| 欧美3d第一页| av女优亚洲男人天堂| 日韩高清综合在线| 免费搜索国产男女视频| 国产高清有码在线观看视频| 青春草亚洲视频在线观看| 黑人高潮一二区| 爱豆传媒免费全集在线观看| 国产一区二区在线观看日韩| 欧美又色又爽又黄视频| 国产亚洲精品久久久久久毛片| 欧美激情久久久久久爽电影| 国产精品人妻久久久久久| 精品久久久噜噜| 亚洲人成网站高清观看| 国产成人a区在线观看| 国产日韩欧美在线精品| 黄色欧美视频在线观看| 大又大粗又爽又黄少妇毛片口| 国产在视频线在精品| 国产高清三级在线| 老师上课跳d突然被开到最大视频| 别揉我奶头 嗯啊视频| 亚洲天堂国产精品一区在线| 国产精品麻豆人妻色哟哟久久 | 国产午夜福利久久久久久| h日本视频在线播放| 变态另类成人亚洲欧美熟女| 成人高潮视频无遮挡免费网站| 伊人久久精品亚洲午夜| 久久精品国产亚洲av涩爱 | 国产男人的电影天堂91| 色综合亚洲欧美另类图片| 亚洲欧美成人综合另类久久久 | 成人毛片60女人毛片免费| 熟女电影av网| 小说图片视频综合网站| 亚洲精品乱码久久久久久按摩| 国产亚洲5aaaaa淫片| 国产一区二区三区av在线 | 插阴视频在线观看视频| 99久久精品国产国产毛片| 1024手机看黄色片| 狂野欧美白嫩少妇大欣赏| 国产精品伦人一区二区| 久久精品国产鲁丝片午夜精品| 精品久久久久久久久久免费视频| 天堂av国产一区二区熟女人妻| 国产精品人妻久久久久久| 日韩成人伦理影院| 天天一区二区日本电影三级| 波野结衣二区三区在线| 变态另类成人亚洲欧美熟女| 亚洲中文字幕日韩| 日日啪夜夜撸| 婷婷色综合大香蕉| 国产蜜桃级精品一区二区三区| 日韩欧美三级三区| 国产成人福利小说| 观看美女的网站| 亚洲精品影视一区二区三区av| 免费搜索国产男女视频| 99久国产av精品国产电影| 99热全是精品| 蜜桃亚洲精品一区二区三区| 高清毛片免费看| 天堂av国产一区二区熟女人妻| 亚洲人成网站在线观看播放| kizo精华| 一个人看视频在线观看www免费| 国产亚洲精品久久久久久毛片| 三级男女做爰猛烈吃奶摸视频| 夜夜看夜夜爽夜夜摸| 精品人妻偷拍中文字幕| 日韩av不卡免费在线播放| 日本免费一区二区三区高清不卡| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧美精品自产自拍| 久久精品人妻少妇| 国产极品天堂在线| 97人妻精品一区二区三区麻豆| 午夜a级毛片| 色吧在线观看| 久久久久久久久久黄片| 美女黄网站色视频| 国产成人福利小说| 欧美在线一区亚洲| 好男人在线观看高清免费视频| 久久久国产成人精品二区| 高清毛片免费看| 青春草视频在线免费观看| 内射极品少妇av片p| 欧美最新免费一区二区三区| 亚洲成人久久性| 91av网一区二区| 久久99热这里只有精品18| 长腿黑丝高跟| 91在线精品国自产拍蜜月| 桃色一区二区三区在线观看| 中文字幕免费在线视频6| 日韩欧美国产在线观看| 国产伦精品一区二区三区四那| 内射极品少妇av片p| 成人亚洲欧美一区二区av| 只有这里有精品99| 国产成人精品婷婷| 嫩草影院入口| 99热全是精品| 国产日韩欧美在线精品| 九草在线视频观看| 日韩精品青青久久久久久| 美女国产视频在线观看| 噜噜噜噜噜久久久久久91| 毛片女人毛片| 欧美极品一区二区三区四区| 可以在线观看毛片的网站| 人人妻人人澡人人爽人人夜夜 | 国产成人freesex在线| 国产成人freesex在线| 欧美最黄视频在线播放免费| 国产伦在线观看视频一区| 国产精品久久久久久久电影| 久久人人精品亚洲av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲性久久影院| 九九在线视频观看精品| 日韩精品青青久久久久久| 国产成人91sexporn| 亚洲欧洲日产国产| 亚洲国产精品成人综合色| 国产精品久久久久久精品电影小说 | 国产精品久久久久久精品电影小说 | av黄色大香蕉| 欧美变态另类bdsm刘玥| h日本视频在线播放| 日产精品乱码卡一卡2卡三| 亚洲av男天堂| 日本免费a在线| 热99re8久久精品国产| 欧洲精品卡2卡3卡4卡5卡区| 日日摸夜夜添夜夜添av毛片| 夜夜看夜夜爽夜夜摸| 亚洲自拍偷在线| 国产精品,欧美在线| 青青草视频在线视频观看| 国模一区二区三区四区视频| 久久精品国产99精品国产亚洲性色| 免费观看精品视频网站| 变态另类成人亚洲欧美熟女| 欧美一区二区精品小视频在线| 免费电影在线观看免费观看| 欧美在线一区亚洲| 能在线免费观看的黄片| 99久国产av精品| 男女那种视频在线观看| 亚洲在久久综合| 欧美三级亚洲精品| 精品久久久久久久久亚洲| 久久久精品94久久精品| 岛国在线免费视频观看| 精品人妻熟女av久视频| 亚洲av电影不卡..在线观看| 国产探花在线观看一区二区| 九草在线视频观看| 国产一级毛片七仙女欲春2| 亚洲精品久久久久久婷婷小说 | 国产成人精品一,二区 | 国内揄拍国产精品人妻在线| 深夜精品福利| 狂野欧美白嫩少妇大欣赏| 桃色一区二区三区在线观看| 尤物成人国产欧美一区二区三区| 国产欧美日韩精品一区二区| 国产成人freesex在线| 国产一级毛片七仙女欲春2| 国产精品久久久久久久电影| 免费av不卡在线播放| 日本黄色视频三级网站网址| 国产三级中文精品| 久久婷婷人人爽人人干人人爱| av又黄又爽大尺度在线免费看 | 久久精品国产清高在天天线| 又黄又爽又刺激的免费视频.| 婷婷六月久久综合丁香| 精品人妻视频免费看| 亚洲成人中文字幕在线播放| 国产男人的电影天堂91| av卡一久久| 桃色一区二区三区在线观看| 国产大屁股一区二区在线视频| 亚洲丝袜综合中文字幕| 高清午夜精品一区二区三区 | av女优亚洲男人天堂| 国产精品野战在线观看| 99视频精品全部免费 在线| 亚洲精品自拍成人| 久久精品国产清高在天天线| 国产黄色小视频在线观看| 日本欧美国产在线视频| 午夜精品国产一区二区电影 | 国产精品日韩av在线免费观看| 毛片一级片免费看久久久久| 午夜福利成人在线免费观看| 国内少妇人妻偷人精品xxx网站| 亚洲七黄色美女视频| 国产精品电影一区二区三区| 一区福利在线观看| 一进一出抽搐动态| 大香蕉久久网| 成人特级av手机在线观看| 直男gayav资源| 亚洲精品日韩在线中文字幕 | 国产乱人偷精品视频| 免费av观看视频| 1000部很黄的大片| 国产成人精品婷婷| 毛片女人毛片| 精品99又大又爽又粗少妇毛片| 国产探花极品一区二区| 蜜臀久久99精品久久宅男| 欧美变态另类bdsm刘玥| 婷婷精品国产亚洲av| 深夜a级毛片| 嫩草影院新地址| 三级毛片av免费| 尤物成人国产欧美一区二区三区| 乱系列少妇在线播放| 日韩一区二区三区影片| 国产亚洲精品av在线| 2022亚洲国产成人精品| 丰满乱子伦码专区| 熟女人妻精品中文字幕| 少妇的逼水好多| 中文欧美无线码| 69av精品久久久久久| 高清在线视频一区二区三区 | 亚洲无线在线观看| 国产麻豆成人av免费视频| 看片在线看免费视频| 黄片无遮挡物在线观看| 人妻夜夜爽99麻豆av| 在线观看一区二区三区| 校园人妻丝袜中文字幕| 蜜桃久久精品国产亚洲av| 国产精品一区二区在线观看99 | 校园人妻丝袜中文字幕| 乱码一卡2卡4卡精品| 亚洲中文字幕一区二区三区有码在线看| 久久精品国产清高在天天线| 亚洲欧美中文字幕日韩二区| 欧美潮喷喷水| 亚洲av中文av极速乱| 成人漫画全彩无遮挡| 久久草成人影院| 大香蕉久久网| 亚洲av男天堂| 好男人在线观看高清免费视频| 午夜视频国产福利| 91aial.com中文字幕在线观看| 国产黄色小视频在线观看| 久久精品国产99精品国产亚洲性色| 熟妇人妻久久中文字幕3abv| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品无大码| 亚洲七黄色美女视频| 最近最新中文字幕大全电影3| 身体一侧抽搐| 深爱激情五月婷婷| 午夜精品国产一区二区电影 | 久久人妻av系列| 最好的美女福利视频网| av视频在线观看入口| 精品久久久久久久久久久久久| av.在线天堂| 国产一区二区亚洲精品在线观看| 热99re8久久精品国产| 国产毛片a区久久久久| 少妇人妻一区二区三区视频| 综合色丁香网| 别揉我奶头 嗯啊视频| 边亲边吃奶的免费视频| 欧美激情在线99| 亚洲第一电影网av| 日本黄大片高清| 免费看美女性在线毛片视频| 中文字幕制服av| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美精品综合久久99| 亚洲成人av在线免费| 亚洲av.av天堂| 美女 人体艺术 gogo| 白带黄色成豆腐渣| 亚洲av成人av| 婷婷色av中文字幕| 人体艺术视频欧美日本| 国产一区二区三区在线臀色熟女| 女的被弄到高潮叫床怎么办| 永久网站在线| 激情 狠狠 欧美| 久久精品国产亚洲av天美| 亚洲成人久久性| 最近中文字幕高清免费大全6| 观看免费一级毛片| 久久久午夜欧美精品| 亚洲高清免费不卡视频| 久久久久九九精品影院| 国产v大片淫在线免费观看| 夜夜看夜夜爽夜夜摸| 久久综合国产亚洲精品| 亚洲在线观看片| 国产不卡一卡二| 久久精品夜色国产| av福利片在线观看| 青春草亚洲视频在线观看| 国产综合懂色| 日本与韩国留学比较| 亚洲av免费高清在线观看| 特级一级黄色大片| АⅤ资源中文在线天堂| 特大巨黑吊av在线直播| 国产高潮美女av| 国产成人a∨麻豆精品| 精品久久久久久久人妻蜜臀av| 丰满的人妻完整版| 韩国av在线不卡| 亚洲国产高清在线一区二区三| 欧美日韩乱码在线| 亚洲欧美日韩高清在线视频| av国产免费在线观看| 国产精品一区www在线观看| 久久久久久久久久成人| 色哟哟·www| 级片在线观看| 亚洲精品成人久久久久久| 能在线免费观看的黄片| 国产老妇女一区| 日本av手机在线免费观看| 欧美最黄视频在线播放免费| 色综合亚洲欧美另类图片| 婷婷色av中文字幕| 国产爱豆传媒在线观看| 男人的好看免费观看在线视频| 日韩国内少妇激情av| 淫秽高清视频在线观看| 欧美一级a爱片免费观看看| 色噜噜av男人的天堂激情| 青春草国产在线视频 | avwww免费| 欧美色欧美亚洲另类二区| 亚洲一区二区三区色噜噜| 少妇猛男粗大的猛烈进出视频 | 亚洲av成人精品一区久久| 日本色播在线视频| 国产精品美女特级片免费视频播放器| 久久久久久久久久久免费av| 国产视频首页在线观看| 精品久久久久久久久久免费视频| 日本色播在线视频| 午夜激情福利司机影院| 全区人妻精品视频| 五月伊人婷婷丁香| 亚洲精品456在线播放app| 看非洲黑人一级黄片| 九九爱精品视频在线观看| 日韩制服骚丝袜av| 特大巨黑吊av在线直播| 只有这里有精品99| 久久久国产成人免费| 九九在线视频观看精品| 岛国在线免费视频观看| 中国美白少妇内射xxxbb| 少妇的逼好多水| 天堂影院成人在线观看| 18禁黄网站禁片免费观看直播| 欧美色视频一区免费| 免费av不卡在线播放| 国产精品女同一区二区软件| 国产精品麻豆人妻色哟哟久久 | 午夜激情欧美在线| 变态另类成人亚洲欧美熟女| 两个人视频免费观看高清| 一级毛片aaaaaa免费看小| 99热网站在线观看| 亚洲久久久久久中文字幕| 黄片无遮挡物在线观看| 日韩 亚洲 欧美在线| 免费观看在线日韩| 在线观看午夜福利视频| 亚洲成av人片在线播放无| 成年女人永久免费观看视频| 一本精品99久久精品77| 国内揄拍国产精品人妻在线| a级毛色黄片| 在线观看av片永久免费下载| 午夜福利视频1000在线观看| 免费无遮挡裸体视频| 偷拍熟女少妇极品色| 天堂网av新在线| 久久久成人免费电影| 久久草成人影院| 亚洲乱码一区二区免费版| 午夜激情欧美在线| 99久久久亚洲精品蜜臀av| 国产精华一区二区三区| 精品一区二区三区人妻视频| 成人性生交大片免费视频hd| 日本免费一区二区三区高清不卡| 一本一本综合久久| 成年女人看的毛片在线观看| 嫩草影院入口| 欧美+日韩+精品| 成人漫画全彩无遮挡| 免费av观看视频| 综合色av麻豆| 欧美最黄视频在线播放免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲av天美| 男人舔女人下体高潮全视频| 欧美3d第一页| 国产亚洲5aaaaa淫片| 人妻系列 视频| 日日啪夜夜撸| 51国产日韩欧美| 日韩一本色道免费dvd| 国产美女午夜福利| 日韩欧美 国产精品| 99在线视频只有这里精品首页| 天堂中文最新版在线下载 | 天堂√8在线中文| 男女那种视频在线观看| 免费电影在线观看免费观看| 老师上课跳d突然被开到最大视频| 精品一区二区免费观看| 国产91av在线免费观看| 少妇丰满av| 日本三级黄在线观看| 草草在线视频免费看| 色尼玛亚洲综合影院| 国产成人91sexporn| 国产乱人偷精品视频| 99热网站在线观看| 久久久久久久亚洲中文字幕| 免费电影在线观看免费观看| 国产乱人偷精品视频| 日韩制服骚丝袜av| 免费看日本二区| 日产精品乱码卡一卡2卡三| 亚洲四区av| 成年版毛片免费区| 在线观看美女被高潮喷水网站| 99热精品在线国产| 日韩欧美三级三区| 中文字幕人妻熟人妻熟丝袜美| 深夜a级毛片| 国产日本99.免费观看| 国产三级中文精品| 国产亚洲欧美98| av国产免费在线观看| 欧美极品一区二区三区四区| 久久久成人免费电影| 又黄又爽又刺激的免费视频.| 国产男人的电影天堂91| 麻豆一二三区av精品| 一级二级三级毛片免费看| 熟妇人妻久久中文字幕3abv| 亚洲aⅴ乱码一区二区在线播放| 欧美区成人在线视频|