• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multicolor biomass based carbon nanodots for bacterial imaging

    2022-06-18 03:00:24WenboZhaoYongWangKaikaiLiuRuiZhouChongxinShan
    Chinese Chemical Letters 2022年2期

    Wenbo Zhao, Yong Wang, Kaikai Liu, Rui Zhou, Chongxin Shan

    Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China

    ABSTRACT Biomass-based carbon nanodots (CNDs) are becoming promising fluorescent materials due to their superior optical properties and excellent biocompatibility.However, most fluorescent CNDs are prepared under high temperatures with artificial chemicals as precursors.In this work, multicolor biomass-based CNDs have been prepared by employing natural biomass as precursors through an ultrasonic-assisted method at room temperature.The multicolor biomass-based CNDs can be prepared within 10 min, and cavitation produced by ultrasound in solution contributes to the polymerization of biomolecules into nanodots.The emission of the CNDs covers from blue to red region, with emission peaks centered at 410 nm, 520 nm and 670 nm, and the corresponding photoluminescence quantum yields of the CNDs are 11%, 12% and 28%, respectively.Furthermore, bacterial imaging by using the biomass-based CNDs as fluorescent imaging agent has been demonstrated.This work provides a convenient ultrasonic-assisted way for fabrication multicolor and eco-friendly biomass CNDs, demonstrating their application in bacterial imaging.

    Keywords:Carbon nanodots Biomass Fluorescence Ultrasonic methods Bacterial imaging

    Fluorescent nanomaterials are of great interest in the field of display technology, detection and biomedical diagnosis/treatment[1-6].An important milestone in the development of fluorescent nanomaterials was the discovery of fluorescent semiconductor quantum dots (QDs), which have many recognized advantages,such as high quantum yield (QY), good photostability, and controllable preparation processes.However, these highly fluorescent QDs have also suffered from negative attention, as most of them contain heavy metal ions, and the issue of toxicity is always a concern[7,8].Increased efforts have been made to develop less toxic, better biocompatible fluorescent nanomaterials as a potential alternative to semiconductor QDs, promoting their application especially in the field of biomedicine.

    Carbon nanodots (CNDs), as a new class of fluorescent materials, have attracted much attention for their fantastic fluorescent properties and high stability [9-11].The heavy metal-free of CNDs is the obvious advantage over conventional QDs, the major element of CNDs is elemental C, while the latter mostly have lead and cadmium [12,13].In the past few years, there has been considerable progress in synthesis and application of CNDs [14,15].Until now, the emission region of CNDs extends from a single blue color to the deep ultraviolet and near-infrared regions [9,16,17].Light-emitting diodes, optical encryption and bio-imaging based on emissive CNDs have been realized [18-22].The fact why CNDs have so much application potential is partially due to variety of reaction precursors, that is, different precursors can be used for preparation CNDs with distinct properties.Precursors of CNDs can be small molecule compounds or some carbon-based materials such as carbon nanotubes and graphene, in addition to which biomass is also a very important source of precursors [23].On the one hand,it is possible way to convert waste biomass into a useful material.On the other hand, biomass has unique advantages over man-made carbon sources, such as cheapness, abundance of raw materials,and better environmental friendliness [24,25].There are already many examples of CNDs prepared using biomass as precursor, and applications based on these CNDs have also been demonstrated[26-28].Without exception, all of them involved typical processes of high-temperature carbonization.This process may involve a long time and high temperature, which is difficult to achieve large-scale batch production.Ultrasonics-assisted synthesis method is one of effective methods for preparing nanomaterials, which has been reported CNDs for synthesis of nanomaterials [29-33].Ultrasound produces cavitation in solution, where the high temperature and pressure environment created by this process can provide energy required for formation of nanodots [34].However, only single color biomass based CNDs are obtained by the ultrasonic method, and there are few reports available regarding the preparation of multicolor CNDs from biomass through ultrasonic-assisted method at room temperature.

    In this work, biomass based fluorescent CNDs have been demonstrated through ultrasonic-assisted method at room temperature.The CNDs can emit blue, green and red emission by tuning biomass precursors.The photoluminescence (PL) QY of the asprepared CNDs with blue, green and red fluorescence is 11%, 12%and 28%, respectively.In addition, bacteria imaging by using the CNDs has been investigated, in which blue and green CNDs emissive can label all bacteria, while red emissive CNDs enable the identification of gram-positive and gram-negative bacteria due to competition between electrostatic repulsion and hydrophobic interaction.

    The multicolor biomass based CNDs are obtained from different precursors with the assistance of ultrasonic and bacteria imaging by using the CNDs as imaging agents has been demonstrated,as illustrated in Fig.1.In general, the three precursors were each weighed to 4 g.Among these, honeysuckle was added to a 500 mL DMSO solution and turmeric and perilla leaves were separately added to 500 mL of dichloromethane.Blue, green and red emissive CNDs were obtained after ultrasonic treatment for 10 min.The as-prepared CNDs are further purified by silica gel chromatography to remove any excess impurities.For convenience, the CNDs with blue, green and red fluorescence are named as b-CNDs, g-CNDs and r-CNDs, respectively.The morphologies of the CNDs were characterized by a transmission electron microscope (TEM).From Figs.2a-c, all of the CNDs have uniform size and exhibit spherelike shapes, with average diameters of 3.7 nm, 2.6 nm and 4.2 nm(bottom inset), respectively.The high-resolution TEM (HR-TEM) images (Top inset) indicate the high crystallinity of the CNDs, with a lattice spacing of 0.21 nm [9].These results indicate that biomass can form CNDs in a short time under ultrasonic action, without the need for additional heating procedures.

    Fig.1.Schematic illustration of preparation of multicolor biomass based CNDs and bacteria imaging using the CNDs as imaging agent.

    To investigate surface functional groups onto these CNDs,Fourier transform infrared (FTIR) spectra were recorded, as shown in Figs.S1-S3 (Supporting information).The absorption bands at around 3432 cm-1can be assigned to the stretching vibrations of-OH.The peaks at 2920 cm-1and 2850 cm-1are attributed to symmetric stretching of -CH3and -CH2, which indicates that the selected CNDs contain a series of hydrocarbon groups [35].The peak at 1640 cm-1corresponds to C=C bending vibrations [30],the signal can be observed in the spectra of the CNDs.In addition,C=O signals were observed in the spectra of the g- and r-CNDs,indicating some carboxyl groups on the surface CND.

    X-ray photoelectron spectroscopy (XPS) was used to further investigate the surfaces of the CNDs.Figs.2d-f show the XPS spectra of the three CNDs.Only C 1s (285 eV) and O 1s (531 eV) signals can be observed from that of b- and g-CNDs, indicating b- and g-CNDs do not contain element N.This is most likely from the fact that the active ingredients of biomass precursors (honeysuckle and turmeric) are mostly carbohydrates, which the major elements are C and O elements.C, O and N elements are present in the r-CNDs from full XPS spectrum of r-CNDs.The origin of element N may be derived from chlorophyll of precursor perilla, which was doped into the r-CNDs during the ultrasonic process.The high-resolution XPS C 1s spectra are shown in Figs.2g-i.The C 1s envelope of the b- and g-CNDs can be deconvoluted into three Gaussian peaks corresponding to sp2C (C-C/C=C), sp3C (C-O), and C=O at 288.2 eV,respectively [36].The C 1s spectrum of the r-CNDs can be divided into sp2/sp3carbons (C-C/C=C, 284.5 eV), C-N/C-O at 285.7 eV,and C=O at 288.2 eV.Moreover,13C NMR spectra were recorded,as shown in Figs.S4 and S5 (Supporting information).Unfortunately, the NMR spectrum of the b-CNDs was not collected even though we tried for many times.For g-CNDs and r-CNDs, signals in the range of 20-50 ppm correspond to sp3carbon atoms.In addition, resonance signals in the 120-145 ppm range are attributed to sp2carbon atoms, indicating the formation of sp2structural domains.Moreover, signals greater than 200 ppm was also observed in the13C NMR spectrum of the g-CNDs, corresponding to the carbonyl group [16].The above results indicate the sp2and sp3carbon atoms within the CNDs synthesized by ultrasonic assisted method.

    Fig.2.TEM images of (a) b-CNDs, (b) g-CNDs, and (c) r-CNDs, and the insets are size distribution of the corresponding CNDs.XPS patterns of (d) b-CNDs, (e) g-CNDs and(f) r-CNDs.High-resolution XPS spectra of the C 1s for (g) b-CNDs, (h) g-CNDs, and (i) r-CNDs.

    The optical properties of the three CNDs are investigated, as presented in Fig.3.The excitation-emission contour plots of the three CNDs show that the emission centers of three CNDs are virtually unshifted over a wide excitation range, indicating that the excitation-independent PL feature of the as-prepared CNDs in this work.As shown in Fig.3a, the as-prepared b-CNDs solutions show the characteristic fluorescence property with emission peaks centered at 410 nm.The UV-vis absorption spectra of all three kinds of CNDs have a strong absorption band before 300 nm, which originates from theπ-π*transition of C=C [18].The UV-vis spectra of the b-CNDs show a strong absorption peak at 330 nm (Fig.3b),which is due to the n-π*transition of C=O.However, significant aggregation in water can lead to fluorescence quenching of the CNDs, limiting their application in bioimaging.Surface modification is an effective means of avoiding aggregation between CNDs[37].In order to achieve water-soluble CNDs, the obtained CNDs were modified by amphiphilic polymers, and the modified CNDs show bright emission in aqueous solution.The corresponding spectra of the CNDs after modification are shown in Fig.3c, and the images of the CNDs in different solution were taken (Fig.3d).Fig.3e is excitation-independent PL feature of the as-prepared g-CNDs with emission peaks centered at 520 nm.In the case of the g-CNDs, there is a strong absorption band at 430 nm (Fig.3f), which is very close to the excitation center, suggesting that the fluorescence of the g-CNDs derives from the n-π*transition under excitation of 430 nm.The modified g-CNDs are also effective in avoiding aggregation quenching, and the corresponding PL spectra and images in water, ethanol and DMSO are shown in Figs.3g and h.For the r-CNDs, emission peaks of r-CNDs centered at 670 nm (Fig.3i), and the corresponding absorption spectra cover from UV to red region, as shown in Fig.3j.Specifically, two absorption peaks centered at 420 nm and 670 nm can be observed, which is due to the enlarged conjugate region [9].Similar to the above results, the r-CNDs maintained well PL properties in water and other solutions after modification (Figs.3k and l), which facilitates their bioimaging applications.In addition, photostability of the three CNDs were measured (Fig.S6 in Supporting information), and the fluorescence intensity of the CNDs can keep consistent under continuous UV irradiation for 6 h, indicating their good photostability.

    Fig.3.(a) Excitation-emission contour plots of the b-CNDs.(b) UV-vis absorption spectra of the b-CNDs.The insets are the images of CNDs under sunlight and 365 nm excitation.(c) The PL spectra of modified b-CNDs are dispersed in water, ethanol and DMSO, and (d) the corresponding images under sunlight and 365 nm excitation.(e)Excitation-emission contour plots of the g-CNDs.(f) UV-vis absorption spectra of the g-CNDs.(g) PL spectra of g-CNDs dispersed in different solvents.(h) Image of g-CNDs dispersed in different solvents.(i) Excitation-emission contour plots of the r-CNDs.(j) UV-vis absorption spectra of the r-CNDs.(k) PL spectra of r-CNDs dispersed in different solvents.(l) Image of r-CNDs dispersed in different solvents.

    In view of excellent optical property, their bacterial imaging ability was assessed.In addition, CNDs prepared using biomass as precursors have better biocompatibility compared with synthetic chemicals, which has been confirmed in our previous work [38].In previous work, CNDs have been demonstrated in imaging and labeling cells of mammalian systems [9,14].The labeling and imaging of mammalian cell strongly suggest the feasibility of extending CNDs to label bacteria.Four bacteria were selected as representative models, including two kinds of gram-positive bacteria (Staphylococcus aureus, Enterococcus faecium) and two kinds of gram-negative bacteria (Escherichia coli, Salmonella).The bacterial toxicity of the three CNDs in dark conditions was tested forStaphylococcus aureusandEscherichia coli(Fig.S7 in Supporting information), and the results showed that none of the three CNDs were dark toxicity to bacteria.The three multicolor CNDs were incubated with the mentioned bacteria for half an hour, and a confocal laser scanning microscope was used for imaging observation.In Fig.4, strong signals can be detected from the b-CNDs stained bacteria in blue region under excitation of 405 nm, and the fluorescence signals can cover all parts of the bacteria.The similar results also obtained from g-CNDs, indicating good capabilities of the CNDs as bio-imaging agents.While there is a clear difference in the group of bacteria incubated with r-CNDs.Bright red signals can be easy detected in gram-positive bacteria, whereas for gramnegative bacteria that have been incubated, barely red signals can be detected under the same excitation conditions.Red fluorescence signal was detected on the surface of the gram-negative bacteria by using HyD detector and increasing excitation intensity (Fig.S8 in Supporting information).This indicates that r-CNDs are still present on the surface of the gram-negative bacteria, but in small numbers compared to the other gram-positive bacteria.This difference in imaging between bacteria may be attributed to the fact that the r-CNDs are more favorable for adhering to gram-positive bacteria and away from gram-negative bacteria.

    Fig.4.The confocal laser scanning microscope images of live S.aureus, E.faecium(gram-positive bacteria) and E.coli, Salmonella (gram-negative bacteria) treated by CNDs with a concentration of 200 μg/mL for 30 min.Scale bar: 25 μm.

    In order to understand the adhesion ability of three kinds of CNDs to different types of bacteria, the zeta potential of bacteria and CNDs in water were tested, as shown in Fig.S9 (Supporting information).Bacteria have a strong negative charge, while the band g-CNDs have a low charge.Therefore, there is no obvious repulsion between the b-, g-CNDs and all bacteria.Thus, b- and g-CNDs can adhere to the surface of the bacteria without resistance.For r-CNDs, the surface has strong negative charge, and electrostatic repulsion will hinder the contact between CNDs and bacteria.However, it is noted from the above results that the red fluorescence signal is readily detected in the gram-positive group, so it is likely that another force counteracts the electrostatic repulsion between the r-CNDs and the gram-positive bacteria.The hydrophobic chains on the surface of the r-CNDs endow them with affinity ability with gram-positive bacteria by hydrophobic action [20,39].It has also been confirmed in previous reports that weak hydrophobic ability of materials is beneficial to the affinity with grampositive bacteria, which is dominated by the difference in membrane structure between gram-positive and gram-negative bacteria[40].Subsequently, hydrophobic properties of r-CNDs was tested by a shake flask method [41], the hydrophobic coefficient of r-CNDs is less than 3, indicating r-CNDs is typical weak hydrophobic nanomaterials.Therefore, hydrophobic interaction between grampositive and r-CNDs plays a key role for staining gram-positive bacteria.In addition to animal cells, fungi are also an important part of eukaryotic cells.In order to investigate whether the CNDs can be used for fungal cell imaging,Fusarium graminearumandSaccharomyceswere selected as representative models.Both fungal cells were incubated with the multicolor CNDs for half an hour, and a laser confocal microscope was used for imaging observation.In Fig.S10 (Supporting information), strong signals can be detected from the b-CNDs stained fungal cells in blue region under excitation of 405 nm, and the fluorescence signals can cover all parts of the fungal.The similar results also obtained from g-CNDs and r-CNDs stained cells in green and red region, indicating good capabilities of the CNDs as fungal cell agents.

    In conclusion, biomass based CNDs with blue, green and red fluorescence have been demonstrated by ultrasonic-assisted method.The entire synthesis process does not involve any synthetic high-purity chemical reagents, high temperature and pressure, leading to a significant decrease in the cost of synthesis.Optical characterizations indicate that the as-prepared CNDs have good photostability and optical properties.Additionally, bacterial imaging by using the as-prepared CNDs demonstrates the potential as imaging agents for staining bacteria.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.11904326, 62075198), China Postdoctoral Science Foundation (Nos.2019TQ0287, 2019M662510).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.08.084.

    国产精品嫩草影院av在线观看 | 欧美+日韩+精品| 中文字幕精品亚洲无线码一区| 国产欧美日韩精品亚洲av| 黄色日韩在线| 中文字幕精品亚洲无线码一区| 婷婷六月久久综合丁香| h日本视频在线播放| 久久草成人影院| 欧美成人一区二区免费高清观看| 19禁男女啪啪无遮挡网站| 一进一出好大好爽视频| 久久99热这里只有精品18| 亚洲成人精品中文字幕电影| 久久久久久九九精品二区国产| 啪啪无遮挡十八禁网站| 一区二区三区高清视频在线| 天堂影院成人在线观看| 噜噜噜噜噜久久久久久91| 国产欧美日韩精品一区二区| 黄色片一级片一级黄色片| 变态另类丝袜制服| 免费av毛片视频| 每晚都被弄得嗷嗷叫到高潮| 国产视频一区二区在线看| 看黄色毛片网站| 国产在视频线在精品| 精品熟女少妇八av免费久了| 女人十人毛片免费观看3o分钟| 五月玫瑰六月丁香| 波多野结衣巨乳人妻| 青草久久国产| 国产黄a三级三级三级人| 国产三级中文精品| 午夜精品一区二区三区免费看| 老鸭窝网址在线观看| 丰满的人妻完整版| 国产精品影院久久| 国产在线精品亚洲第一网站| 日韩欧美在线二视频| 夜夜夜夜夜久久久久| 男人和女人高潮做爰伦理| 免费搜索国产男女视频| 丝袜美腿在线中文| 欧美一区二区国产精品久久精品| 亚洲精品在线观看二区| 欧美最新免费一区二区三区 | 国产激情欧美一区二区| 色噜噜av男人的天堂激情| 欧美乱码精品一区二区三区| 欧美黄色淫秽网站| 国产欧美日韩一区二区精品| 一个人观看的视频www高清免费观看| 亚洲精品国产精品久久久不卡| 国产蜜桃级精品一区二区三区| 人人妻,人人澡人人爽秒播| 国产黄片美女视频| 91在线观看av| 怎么达到女性高潮| 国产69精品久久久久777片| а√天堂www在线а√下载| 日本与韩国留学比较| 好男人电影高清在线观看| 九九在线视频观看精品| 亚洲色图av天堂| 中文亚洲av片在线观看爽| 久久国产精品影院| 国产精品永久免费网站| 一区二区三区免费毛片| 18禁黄网站禁片免费观看直播| 色老头精品视频在线观看| 日日夜夜操网爽| xxxwww97欧美| 精品久久久久久久末码| 国产伦人伦偷精品视频| 日本a在线网址| 午夜老司机福利剧场| 亚洲五月婷婷丁香| 给我免费播放毛片高清在线观看| 欧美成人a在线观看| 天天躁日日操中文字幕| 乱人视频在线观看| 制服丝袜大香蕉在线| 久久中文看片网| 亚洲美女视频黄频| 欧美又色又爽又黄视频| 国产黄片美女视频| 欧洲精品卡2卡3卡4卡5卡区| 在线观看午夜福利视频| 天天添夜夜摸| 99热只有精品国产| 成人av一区二区三区在线看| 午夜日韩欧美国产| 国产aⅴ精品一区二区三区波| 亚洲av不卡在线观看| 久9热在线精品视频| 亚洲av熟女| 性色avwww在线观看| 天天躁日日操中文字幕| 日本免费一区二区三区高清不卡| av福利片在线观看| 日本成人三级电影网站| 老司机深夜福利视频在线观看| 国产色婷婷99| av女优亚洲男人天堂| 亚洲国产精品成人综合色| 深爱激情五月婷婷| 18禁在线播放成人免费| 国内精品美女久久久久久| 9191精品国产免费久久| xxx96com| 亚洲人成网站在线播| 97超级碰碰碰精品色视频在线观看| 99精品久久久久人妻精品| 欧美成狂野欧美在线观看| 黄片大片在线免费观看| 国产成人影院久久av| 午夜免费激情av| 午夜免费激情av| 在线观看午夜福利视频| 毛片女人毛片| 国产日本99.免费观看| 午夜激情福利司机影院| 国产精品美女特级片免费视频播放器| 免费观看的影片在线观看| 国产淫片久久久久久久久 | eeuss影院久久| 色噜噜av男人的天堂激情| 日本精品一区二区三区蜜桃| 国产91精品成人一区二区三区| 国产免费一级a男人的天堂| av福利片在线观看| 国内精品一区二区在线观看| 欧美最新免费一区二区三区 | 最近在线观看免费完整版| 国产精华一区二区三区| 国产日本99.免费观看| 两人在一起打扑克的视频| 色综合欧美亚洲国产小说| 国产成人a区在线观看| 国产av麻豆久久久久久久| 中文资源天堂在线| 久久精品亚洲精品国产色婷小说| 一级黄色大片毛片| 我的老师免费观看完整版| 两个人的视频大全免费| 99久久精品一区二区三区| 夜夜躁狠狠躁天天躁| 成年免费大片在线观看| a在线观看视频网站| 男人的好看免费观看在线视频| 亚洲国产欧美人成| 国产伦精品一区二区三区视频9 | 床上黄色一级片| 国产精品一区二区三区四区久久| 国产精品免费一区二区三区在线| 久久精品综合一区二区三区| 叶爱在线成人免费视频播放| 久久久久九九精品影院| 国产亚洲欧美98| 丰满人妻熟妇乱又伦精品不卡| 看片在线看免费视频| 日本成人三级电影网站| 男人舔奶头视频| 日本五十路高清| 精华霜和精华液先用哪个| 久久99热这里只有精品18| 香蕉久久夜色| 母亲3免费完整高清在线观看| 制服丝袜大香蕉在线| 一个人免费在线观看电影| 亚洲欧美日韩卡通动漫| 亚洲av熟女| 日韩高清综合在线| 日韩亚洲欧美综合| x7x7x7水蜜桃| 老司机福利观看| 一本精品99久久精品77| 真实男女啪啪啪动态图| www.熟女人妻精品国产| 国产在视频线在精品| 丁香六月欧美| 欧美日本视频| 国产午夜精品论理片| 中文资源天堂在线| 女同久久另类99精品国产91| 久久国产乱子伦精品免费另类| 男女床上黄色一级片免费看| 狠狠狠狠99中文字幕| 亚洲人成电影免费在线| svipshipincom国产片| 久久国产精品人妻蜜桃| 9191精品国产免费久久| 动漫黄色视频在线观看| 国产高清有码在线观看视频| 色综合亚洲欧美另类图片| 亚洲精品色激情综合| a级毛片a级免费在线| 桃红色精品国产亚洲av| 午夜福利成人在线免费观看| 精品人妻一区二区三区麻豆 | 操出白浆在线播放| 操出白浆在线播放| 男人和女人高潮做爰伦理| 很黄的视频免费| 亚洲人成网站高清观看| 成人永久免费在线观看视频| 一进一出抽搐gif免费好疼| 欧美bdsm另类| 美女高潮喷水抽搐中文字幕| 18禁美女被吸乳视频| 精品欧美国产一区二区三| 日韩欧美在线二视频| 9191精品国产免费久久| 在线a可以看的网站| 亚洲 国产 在线| 熟女电影av网| 午夜福利高清视频| 午夜两性在线视频| 2021天堂中文幕一二区在线观| 91久久精品电影网| 精品国产亚洲在线| 免费看a级黄色片| 午夜福利在线在线| 亚洲成人精品中文字幕电影| 88av欧美| 最近视频中文字幕2019在线8| 国产高清有码在线观看视频| 一级作爱视频免费观看| 一本精品99久久精品77| 色老头精品视频在线观看| 嫩草影视91久久| АⅤ资源中文在线天堂| 日韩高清综合在线| 亚洲国产中文字幕在线视频| 国产亚洲精品av在线| 午夜福利高清视频| 日韩精品青青久久久久久| 国产精品免费一区二区三区在线| 亚洲av一区综合| 亚洲aⅴ乱码一区二区在线播放| 男人和女人高潮做爰伦理| 美女 人体艺术 gogo| 国产97色在线日韩免费| 黑人欧美特级aaaaaa片| 好看av亚洲va欧美ⅴa在| 变态另类成人亚洲欧美熟女| 1000部很黄的大片| 丁香欧美五月| 国产精品一区二区三区四区久久| 日本a在线网址| 久久久国产成人免费| 欧美极品一区二区三区四区| 国产精品电影一区二区三区| 一个人看的www免费观看视频| 国产爱豆传媒在线观看| 国产一区二区在线观看日韩 | 国产91精品成人一区二区三区| 亚洲国产精品成人综合色| 99久久精品国产亚洲精品| 国产在线精品亚洲第一网站| 欧美不卡视频在线免费观看| 人人妻人人澡欧美一区二区| 亚洲性夜色夜夜综合| 热99re8久久精品国产| 欧美一级a爱片免费观看看| 99视频精品全部免费 在线| www日本黄色视频网| 日韩欧美免费精品| 免费观看的影片在线观看| 亚洲第一欧美日韩一区二区三区| 精品久久久久久久久久久久久| 一本综合久久免费| 很黄的视频免费| e午夜精品久久久久久久| 国产av一区在线观看免费| 成人国产综合亚洲| avwww免费| 观看美女的网站| 狂野欧美白嫩少妇大欣赏| 日韩大尺度精品在线看网址| 国产精品久久久久久久电影 | 18禁黄网站禁片午夜丰满| 国产探花在线观看一区二区| 一区二区三区激情视频| 亚洲精品色激情综合| 嫁个100分男人电影在线观看| xxx96com| 成人精品一区二区免费| 少妇高潮的动态图| 日本黄色视频三级网站网址| 国产主播在线观看一区二区| 亚洲av美国av| 日韩欧美精品免费久久 | 免费看美女性在线毛片视频| 亚洲精华国产精华精| 国产欧美日韩一区二区精品| 少妇的丰满在线观看| 国产亚洲精品一区二区www| 男女午夜视频在线观看| 少妇的逼水好多| 亚洲 欧美 日韩 在线 免费| 91麻豆精品激情在线观看国产| 性色avwww在线观看| 亚洲国产精品久久男人天堂| 国产乱人伦免费视频| 他把我摸到了高潮在线观看| 一个人观看的视频www高清免费观看| 99久国产av精品| 亚洲成av人片在线播放无| 精品人妻1区二区| 亚洲国产欧美人成| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美精品综合久久99| 久久精品国产综合久久久| 欧美+亚洲+日韩+国产| 黄色女人牲交| 听说在线观看完整版免费高清| 日本 欧美在线| 人妻久久中文字幕网| 国产探花极品一区二区| 久久久久亚洲av毛片大全| АⅤ资源中文在线天堂| 国产亚洲精品久久久com| 亚洲第一电影网av| 亚洲av五月六月丁香网| 欧美在线黄色| 男女之事视频高清在线观看| 女人被狂操c到高潮| 一本综合久久免费| 波多野结衣高清无吗| 俄罗斯特黄特色一大片| 狂野欧美白嫩少妇大欣赏| 午夜日韩欧美国产| 精品一区二区三区人妻视频| 免费av毛片视频| 午夜福利视频1000在线观看| svipshipincom国产片| 熟女电影av网| 国产欧美日韩精品亚洲av| 国产成人aa在线观看| 在线观看舔阴道视频| 此物有八面人人有两片| 免费观看人在逋| 法律面前人人平等表现在哪些方面| 又紧又爽又黄一区二区| 欧美bdsm另类| 欧美激情在线99| 特大巨黑吊av在线直播| 国产精品亚洲美女久久久| 女人高潮潮喷娇喘18禁视频| 国产黄色小视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲无线观看免费| 久久久久亚洲av毛片大全| 我要搜黄色片| 高清在线国产一区| ponron亚洲| 免费大片18禁| 夜夜躁狠狠躁天天躁| 国产野战对白在线观看| 亚洲av第一区精品v没综合| 黄色丝袜av网址大全| 国产一区二区三区视频了| 久久久国产精品麻豆| 国产97色在线日韩免费| 日韩精品中文字幕看吧| 久久中文看片网| tocl精华| 亚洲国产日韩欧美精品在线观看 | 夜夜爽天天搞| 淫妇啪啪啪对白视频| 午夜影院日韩av| 久久精品影院6| 欧美xxxx黑人xx丫x性爽| 欧美丝袜亚洲另类 | 在线视频色国产色| 久久久久久国产a免费观看| 亚洲成av人片免费观看| 亚洲人成网站在线播| 亚洲va日本ⅴa欧美va伊人久久| 日本免费一区二区三区高清不卡| 国产亚洲欧美在线一区二区| 亚洲欧美日韩卡通动漫| 男插女下体视频免费在线播放| 真实男女啪啪啪动态图| 国产精品一区二区三区四区免费观看 | 99久久无色码亚洲精品果冻| 亚洲国产精品久久男人天堂| 精品一区二区三区人妻视频| 亚洲狠狠婷婷综合久久图片| 色av中文字幕| 波野结衣二区三区在线 | 亚洲欧美日韩卡通动漫| 欧美成人免费av一区二区三区| 精品福利观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av第一区精品v没综合| 51国产日韩欧美| 美女被艹到高潮喷水动态| 亚洲 国产 在线| 叶爱在线成人免费视频播放| 久久草成人影院| 国产精品一区二区三区四区免费观看 | 久久国产精品人妻蜜桃| 99久久久亚洲精品蜜臀av| 最近视频中文字幕2019在线8| 久久草成人影院| 成人特级黄色片久久久久久久| 成年女人永久免费观看视频| 欧美色欧美亚洲另类二区| 两性午夜刺激爽爽歪歪视频在线观看| 九九久久精品国产亚洲av麻豆| 亚洲av免费高清在线观看| 亚洲国产日韩欧美精品在线观看 | 亚洲黑人精品在线| 老司机福利观看| 国产精品亚洲一级av第二区| 国产精品自产拍在线观看55亚洲| 丰满人妻熟妇乱又伦精品不卡| 亚洲 国产 在线| 成人鲁丝片一二三区免费| 国产免费男女视频| 美女高潮喷水抽搐中文字幕| 午夜激情欧美在线| 波野结衣二区三区在线 | 我要搜黄色片| 国产在线精品亚洲第一网站| av国产免费在线观看| 禁无遮挡网站| 在线播放无遮挡| 精品国产三级普通话版| 毛片女人毛片| 啦啦啦韩国在线观看视频| 3wmmmm亚洲av在线观看| 在线观看免费午夜福利视频| 国产毛片a区久久久久| 久久久久久久久久黄片| 无人区码免费观看不卡| 白带黄色成豆腐渣| 久久久久久大精品| 尤物成人国产欧美一区二区三区| 91久久精品电影网| 欧美黑人巨大hd| 日韩欧美在线乱码| 国产91精品成人一区二区三区| x7x7x7水蜜桃| 在线观看66精品国产| 噜噜噜噜噜久久久久久91| 级片在线观看| 人人妻,人人澡人人爽秒播| 母亲3免费完整高清在线观看| 午夜免费男女啪啪视频观看 | 亚洲精品亚洲一区二区| 一个人免费在线观看的高清视频| 免费在线观看成人毛片| 久久久久免费精品人妻一区二区| 男女下面进入的视频免费午夜| 母亲3免费完整高清在线观看| 中文字幕高清在线视频| 亚洲精品一区av在线观看| 欧美激情在线99| 国产在视频线在精品| 欧美日韩黄片免| 久久久精品欧美日韩精品| 日本与韩国留学比较| 床上黄色一级片| 高清在线国产一区| 亚洲欧美日韩无卡精品| 亚洲国产色片| 一级黄色大片毛片| 免费大片18禁| 麻豆一二三区av精品| 久久久久久久久大av| 日本黄色片子视频| 亚洲成人免费电影在线观看| 欧美日韩乱码在线| 国产av麻豆久久久久久久| 国内揄拍国产精品人妻在线| 国产成人av教育| 一级黄色大片毛片| 极品教师在线免费播放| 久久国产精品人妻蜜桃| 美女大奶头视频| 在线观看免费午夜福利视频| 天天一区二区日本电影三级| 老汉色av国产亚洲站长工具| 99久久无色码亚洲精品果冻| 天堂网av新在线| 精品国产三级普通话版| 免费在线观看亚洲国产| 免费在线观看影片大全网站| 69av精品久久久久久| 一区二区三区国产精品乱码| 91av网一区二区| 别揉我奶头~嗯~啊~动态视频| 一个人看视频在线观看www免费 | 成年免费大片在线观看| 久久国产精品影院| 亚洲性夜色夜夜综合| 亚洲av成人精品一区久久| 日本 av在线| 99久国产av精品| 日本与韩国留学比较| 51国产日韩欧美| 12—13女人毛片做爰片一| 国产亚洲av嫩草精品影院| 婷婷精品国产亚洲av| 狠狠狠狠99中文字幕| 搡老熟女国产l中国老女人| 久久久久久久午夜电影| 亚洲在线观看片| 美女高潮喷水抽搐中文字幕| 国产又黄又爽又无遮挡在线| 久久精品夜夜夜夜夜久久蜜豆| 99精品久久久久人妻精品| 亚洲av五月六月丁香网| 舔av片在线| 最新美女视频免费是黄的| 在线视频色国产色| 欧美色欧美亚洲另类二区| 久久久久久九九精品二区国产| 十八禁人妻一区二区| 国产精品99久久99久久久不卡| 亚洲性夜色夜夜综合| 国产在线精品亚洲第一网站| 草草在线视频免费看| 亚洲久久久久久中文字幕| 少妇人妻一区二区三区视频| 很黄的视频免费| 在线观看av片永久免费下载| 久久久色成人| 身体一侧抽搐| 男人和女人高潮做爰伦理| 中文亚洲av片在线观看爽| 国产精品久久视频播放| 亚洲av二区三区四区| 啪啪无遮挡十八禁网站| 欧美激情久久久久久爽电影| 午夜亚洲福利在线播放| 成人永久免费在线观看视频| 最近视频中文字幕2019在线8| 免费在线观看日本一区| 亚洲熟妇中文字幕五十中出| 黑人欧美特级aaaaaa片| 欧美黄色片欧美黄色片| 亚洲国产精品久久男人天堂| 国产乱人视频| 男人的好看免费观看在线视频| 又紧又爽又黄一区二区| 免费观看人在逋| 国产精品野战在线观看| 99在线人妻在线中文字幕| 国产精品永久免费网站| 亚洲自拍偷在线| 老司机午夜十八禁免费视频| 国产午夜福利久久久久久| 男女视频在线观看网站免费| 国产探花极品一区二区| 欧美日韩中文字幕国产精品一区二区三区| 精品人妻一区二区三区麻豆 | 99久久99久久久精品蜜桃| h日本视频在线播放| 性色av乱码一区二区三区2| 特级一级黄色大片| 18禁美女被吸乳视频| 亚洲最大成人中文| 亚洲国产精品成人综合色| 欧美不卡视频在线免费观看| 免费人成视频x8x8入口观看| 黄色日韩在线| 亚洲精华国产精华精| 九九在线视频观看精品| 一本久久中文字幕| 精品一区二区三区人妻视频| 51国产日韩欧美| 欧美日本亚洲视频在线播放| 成熟少妇高潮喷水视频| 热99在线观看视频| 高清在线国产一区| 国产精品,欧美在线| 高潮久久久久久久久久久不卡| 天堂√8在线中文| 国产成人a区在线观看| 变态另类丝袜制服| 在线播放无遮挡| 日韩欧美免费精品| 一本综合久久免费| 黄色视频,在线免费观看| 韩国av一区二区三区四区| 国产精品爽爽va在线观看网站| 一级毛片高清免费大全| 国产欧美日韩精品亚洲av| 亚洲欧美日韩高清在线视频| 国产一区二区在线av高清观看| 免费观看精品视频网站| 床上黄色一级片| 看黄色毛片网站| 久久久久久久午夜电影| 亚洲国产欧美网| 叶爱在线成人免费视频播放| 无限看片的www在线观看| а√天堂www在线а√下载| 色老头精品视频在线观看| 最近最新免费中文字幕在线| 午夜两性在线视频| 久久午夜亚洲精品久久| 国产高清视频在线播放一区| 女警被强在线播放| 免费看a级黄色片| 欧美中文日本在线观看视频| 美女大奶头视频| 色av中文字幕| 国产免费av片在线观看野外av| 国产综合懂色|