• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multicolor biomass based carbon nanodots for bacterial imaging

    2022-06-18 03:00:24WenboZhaoYongWangKaikaiLiuRuiZhouChongxinShan
    Chinese Chemical Letters 2022年2期

    Wenbo Zhao, Yong Wang, Kaikai Liu, Rui Zhou, Chongxin Shan

    Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China

    ABSTRACT Biomass-based carbon nanodots (CNDs) are becoming promising fluorescent materials due to their superior optical properties and excellent biocompatibility.However, most fluorescent CNDs are prepared under high temperatures with artificial chemicals as precursors.In this work, multicolor biomass-based CNDs have been prepared by employing natural biomass as precursors through an ultrasonic-assisted method at room temperature.The multicolor biomass-based CNDs can be prepared within 10 min, and cavitation produced by ultrasound in solution contributes to the polymerization of biomolecules into nanodots.The emission of the CNDs covers from blue to red region, with emission peaks centered at 410 nm, 520 nm and 670 nm, and the corresponding photoluminescence quantum yields of the CNDs are 11%, 12% and 28%, respectively.Furthermore, bacterial imaging by using the biomass-based CNDs as fluorescent imaging agent has been demonstrated.This work provides a convenient ultrasonic-assisted way for fabrication multicolor and eco-friendly biomass CNDs, demonstrating their application in bacterial imaging.

    Keywords:Carbon nanodots Biomass Fluorescence Ultrasonic methods Bacterial imaging

    Fluorescent nanomaterials are of great interest in the field of display technology, detection and biomedical diagnosis/treatment[1-6].An important milestone in the development of fluorescent nanomaterials was the discovery of fluorescent semiconductor quantum dots (QDs), which have many recognized advantages,such as high quantum yield (QY), good photostability, and controllable preparation processes.However, these highly fluorescent QDs have also suffered from negative attention, as most of them contain heavy metal ions, and the issue of toxicity is always a concern[7,8].Increased efforts have been made to develop less toxic, better biocompatible fluorescent nanomaterials as a potential alternative to semiconductor QDs, promoting their application especially in the field of biomedicine.

    Carbon nanodots (CNDs), as a new class of fluorescent materials, have attracted much attention for their fantastic fluorescent properties and high stability [9-11].The heavy metal-free of CNDs is the obvious advantage over conventional QDs, the major element of CNDs is elemental C, while the latter mostly have lead and cadmium [12,13].In the past few years, there has been considerable progress in synthesis and application of CNDs [14,15].Until now, the emission region of CNDs extends from a single blue color to the deep ultraviolet and near-infrared regions [9,16,17].Light-emitting diodes, optical encryption and bio-imaging based on emissive CNDs have been realized [18-22].The fact why CNDs have so much application potential is partially due to variety of reaction precursors, that is, different precursors can be used for preparation CNDs with distinct properties.Precursors of CNDs can be small molecule compounds or some carbon-based materials such as carbon nanotubes and graphene, in addition to which biomass is also a very important source of precursors [23].On the one hand,it is possible way to convert waste biomass into a useful material.On the other hand, biomass has unique advantages over man-made carbon sources, such as cheapness, abundance of raw materials,and better environmental friendliness [24,25].There are already many examples of CNDs prepared using biomass as precursor, and applications based on these CNDs have also been demonstrated[26-28].Without exception, all of them involved typical processes of high-temperature carbonization.This process may involve a long time and high temperature, which is difficult to achieve large-scale batch production.Ultrasonics-assisted synthesis method is one of effective methods for preparing nanomaterials, which has been reported CNDs for synthesis of nanomaterials [29-33].Ultrasound produces cavitation in solution, where the high temperature and pressure environment created by this process can provide energy required for formation of nanodots [34].However, only single color biomass based CNDs are obtained by the ultrasonic method, and there are few reports available regarding the preparation of multicolor CNDs from biomass through ultrasonic-assisted method at room temperature.

    In this work, biomass based fluorescent CNDs have been demonstrated through ultrasonic-assisted method at room temperature.The CNDs can emit blue, green and red emission by tuning biomass precursors.The photoluminescence (PL) QY of the asprepared CNDs with blue, green and red fluorescence is 11%, 12%and 28%, respectively.In addition, bacteria imaging by using the CNDs has been investigated, in which blue and green CNDs emissive can label all bacteria, while red emissive CNDs enable the identification of gram-positive and gram-negative bacteria due to competition between electrostatic repulsion and hydrophobic interaction.

    The multicolor biomass based CNDs are obtained from different precursors with the assistance of ultrasonic and bacteria imaging by using the CNDs as imaging agents has been demonstrated,as illustrated in Fig.1.In general, the three precursors were each weighed to 4 g.Among these, honeysuckle was added to a 500 mL DMSO solution and turmeric and perilla leaves were separately added to 500 mL of dichloromethane.Blue, green and red emissive CNDs were obtained after ultrasonic treatment for 10 min.The as-prepared CNDs are further purified by silica gel chromatography to remove any excess impurities.For convenience, the CNDs with blue, green and red fluorescence are named as b-CNDs, g-CNDs and r-CNDs, respectively.The morphologies of the CNDs were characterized by a transmission electron microscope (TEM).From Figs.2a-c, all of the CNDs have uniform size and exhibit spherelike shapes, with average diameters of 3.7 nm, 2.6 nm and 4.2 nm(bottom inset), respectively.The high-resolution TEM (HR-TEM) images (Top inset) indicate the high crystallinity of the CNDs, with a lattice spacing of 0.21 nm [9].These results indicate that biomass can form CNDs in a short time under ultrasonic action, without the need for additional heating procedures.

    Fig.1.Schematic illustration of preparation of multicolor biomass based CNDs and bacteria imaging using the CNDs as imaging agent.

    To investigate surface functional groups onto these CNDs,Fourier transform infrared (FTIR) spectra were recorded, as shown in Figs.S1-S3 (Supporting information).The absorption bands at around 3432 cm-1can be assigned to the stretching vibrations of-OH.The peaks at 2920 cm-1and 2850 cm-1are attributed to symmetric stretching of -CH3and -CH2, which indicates that the selected CNDs contain a series of hydrocarbon groups [35].The peak at 1640 cm-1corresponds to C=C bending vibrations [30],the signal can be observed in the spectra of the CNDs.In addition,C=O signals were observed in the spectra of the g- and r-CNDs,indicating some carboxyl groups on the surface CND.

    X-ray photoelectron spectroscopy (XPS) was used to further investigate the surfaces of the CNDs.Figs.2d-f show the XPS spectra of the three CNDs.Only C 1s (285 eV) and O 1s (531 eV) signals can be observed from that of b- and g-CNDs, indicating b- and g-CNDs do not contain element N.This is most likely from the fact that the active ingredients of biomass precursors (honeysuckle and turmeric) are mostly carbohydrates, which the major elements are C and O elements.C, O and N elements are present in the r-CNDs from full XPS spectrum of r-CNDs.The origin of element N may be derived from chlorophyll of precursor perilla, which was doped into the r-CNDs during the ultrasonic process.The high-resolution XPS C 1s spectra are shown in Figs.2g-i.The C 1s envelope of the b- and g-CNDs can be deconvoluted into three Gaussian peaks corresponding to sp2C (C-C/C=C), sp3C (C-O), and C=O at 288.2 eV,respectively [36].The C 1s spectrum of the r-CNDs can be divided into sp2/sp3carbons (C-C/C=C, 284.5 eV), C-N/C-O at 285.7 eV,and C=O at 288.2 eV.Moreover,13C NMR spectra were recorded,as shown in Figs.S4 and S5 (Supporting information).Unfortunately, the NMR spectrum of the b-CNDs was not collected even though we tried for many times.For g-CNDs and r-CNDs, signals in the range of 20-50 ppm correspond to sp3carbon atoms.In addition, resonance signals in the 120-145 ppm range are attributed to sp2carbon atoms, indicating the formation of sp2structural domains.Moreover, signals greater than 200 ppm was also observed in the13C NMR spectrum of the g-CNDs, corresponding to the carbonyl group [16].The above results indicate the sp2and sp3carbon atoms within the CNDs synthesized by ultrasonic assisted method.

    Fig.2.TEM images of (a) b-CNDs, (b) g-CNDs, and (c) r-CNDs, and the insets are size distribution of the corresponding CNDs.XPS patterns of (d) b-CNDs, (e) g-CNDs and(f) r-CNDs.High-resolution XPS spectra of the C 1s for (g) b-CNDs, (h) g-CNDs, and (i) r-CNDs.

    The optical properties of the three CNDs are investigated, as presented in Fig.3.The excitation-emission contour plots of the three CNDs show that the emission centers of three CNDs are virtually unshifted over a wide excitation range, indicating that the excitation-independent PL feature of the as-prepared CNDs in this work.As shown in Fig.3a, the as-prepared b-CNDs solutions show the characteristic fluorescence property with emission peaks centered at 410 nm.The UV-vis absorption spectra of all three kinds of CNDs have a strong absorption band before 300 nm, which originates from theπ-π*transition of C=C [18].The UV-vis spectra of the b-CNDs show a strong absorption peak at 330 nm (Fig.3b),which is due to the n-π*transition of C=O.However, significant aggregation in water can lead to fluorescence quenching of the CNDs, limiting their application in bioimaging.Surface modification is an effective means of avoiding aggregation between CNDs[37].In order to achieve water-soluble CNDs, the obtained CNDs were modified by amphiphilic polymers, and the modified CNDs show bright emission in aqueous solution.The corresponding spectra of the CNDs after modification are shown in Fig.3c, and the images of the CNDs in different solution were taken (Fig.3d).Fig.3e is excitation-independent PL feature of the as-prepared g-CNDs with emission peaks centered at 520 nm.In the case of the g-CNDs, there is a strong absorption band at 430 nm (Fig.3f), which is very close to the excitation center, suggesting that the fluorescence of the g-CNDs derives from the n-π*transition under excitation of 430 nm.The modified g-CNDs are also effective in avoiding aggregation quenching, and the corresponding PL spectra and images in water, ethanol and DMSO are shown in Figs.3g and h.For the r-CNDs, emission peaks of r-CNDs centered at 670 nm (Fig.3i), and the corresponding absorption spectra cover from UV to red region, as shown in Fig.3j.Specifically, two absorption peaks centered at 420 nm and 670 nm can be observed, which is due to the enlarged conjugate region [9].Similar to the above results, the r-CNDs maintained well PL properties in water and other solutions after modification (Figs.3k and l), which facilitates their bioimaging applications.In addition, photostability of the three CNDs were measured (Fig.S6 in Supporting information), and the fluorescence intensity of the CNDs can keep consistent under continuous UV irradiation for 6 h, indicating their good photostability.

    Fig.3.(a) Excitation-emission contour plots of the b-CNDs.(b) UV-vis absorption spectra of the b-CNDs.The insets are the images of CNDs under sunlight and 365 nm excitation.(c) The PL spectra of modified b-CNDs are dispersed in water, ethanol and DMSO, and (d) the corresponding images under sunlight and 365 nm excitation.(e)Excitation-emission contour plots of the g-CNDs.(f) UV-vis absorption spectra of the g-CNDs.(g) PL spectra of g-CNDs dispersed in different solvents.(h) Image of g-CNDs dispersed in different solvents.(i) Excitation-emission contour plots of the r-CNDs.(j) UV-vis absorption spectra of the r-CNDs.(k) PL spectra of r-CNDs dispersed in different solvents.(l) Image of r-CNDs dispersed in different solvents.

    In view of excellent optical property, their bacterial imaging ability was assessed.In addition, CNDs prepared using biomass as precursors have better biocompatibility compared with synthetic chemicals, which has been confirmed in our previous work [38].In previous work, CNDs have been demonstrated in imaging and labeling cells of mammalian systems [9,14].The labeling and imaging of mammalian cell strongly suggest the feasibility of extending CNDs to label bacteria.Four bacteria were selected as representative models, including two kinds of gram-positive bacteria (Staphylococcus aureus, Enterococcus faecium) and two kinds of gram-negative bacteria (Escherichia coli, Salmonella).The bacterial toxicity of the three CNDs in dark conditions was tested forStaphylococcus aureusandEscherichia coli(Fig.S7 in Supporting information), and the results showed that none of the three CNDs were dark toxicity to bacteria.The three multicolor CNDs were incubated with the mentioned bacteria for half an hour, and a confocal laser scanning microscope was used for imaging observation.In Fig.4, strong signals can be detected from the b-CNDs stained bacteria in blue region under excitation of 405 nm, and the fluorescence signals can cover all parts of the bacteria.The similar results also obtained from g-CNDs, indicating good capabilities of the CNDs as bio-imaging agents.While there is a clear difference in the group of bacteria incubated with r-CNDs.Bright red signals can be easy detected in gram-positive bacteria, whereas for gramnegative bacteria that have been incubated, barely red signals can be detected under the same excitation conditions.Red fluorescence signal was detected on the surface of the gram-negative bacteria by using HyD detector and increasing excitation intensity (Fig.S8 in Supporting information).This indicates that r-CNDs are still present on the surface of the gram-negative bacteria, but in small numbers compared to the other gram-positive bacteria.This difference in imaging between bacteria may be attributed to the fact that the r-CNDs are more favorable for adhering to gram-positive bacteria and away from gram-negative bacteria.

    Fig.4.The confocal laser scanning microscope images of live S.aureus, E.faecium(gram-positive bacteria) and E.coli, Salmonella (gram-negative bacteria) treated by CNDs with a concentration of 200 μg/mL for 30 min.Scale bar: 25 μm.

    In order to understand the adhesion ability of three kinds of CNDs to different types of bacteria, the zeta potential of bacteria and CNDs in water were tested, as shown in Fig.S9 (Supporting information).Bacteria have a strong negative charge, while the band g-CNDs have a low charge.Therefore, there is no obvious repulsion between the b-, g-CNDs and all bacteria.Thus, b- and g-CNDs can adhere to the surface of the bacteria without resistance.For r-CNDs, the surface has strong negative charge, and electrostatic repulsion will hinder the contact between CNDs and bacteria.However, it is noted from the above results that the red fluorescence signal is readily detected in the gram-positive group, so it is likely that another force counteracts the electrostatic repulsion between the r-CNDs and the gram-positive bacteria.The hydrophobic chains on the surface of the r-CNDs endow them with affinity ability with gram-positive bacteria by hydrophobic action [20,39].It has also been confirmed in previous reports that weak hydrophobic ability of materials is beneficial to the affinity with grampositive bacteria, which is dominated by the difference in membrane structure between gram-positive and gram-negative bacteria[40].Subsequently, hydrophobic properties of r-CNDs was tested by a shake flask method [41], the hydrophobic coefficient of r-CNDs is less than 3, indicating r-CNDs is typical weak hydrophobic nanomaterials.Therefore, hydrophobic interaction between grampositive and r-CNDs plays a key role for staining gram-positive bacteria.In addition to animal cells, fungi are also an important part of eukaryotic cells.In order to investigate whether the CNDs can be used for fungal cell imaging,Fusarium graminearumandSaccharomyceswere selected as representative models.Both fungal cells were incubated with the multicolor CNDs for half an hour, and a laser confocal microscope was used for imaging observation.In Fig.S10 (Supporting information), strong signals can be detected from the b-CNDs stained fungal cells in blue region under excitation of 405 nm, and the fluorescence signals can cover all parts of the fungal.The similar results also obtained from g-CNDs and r-CNDs stained cells in green and red region, indicating good capabilities of the CNDs as fungal cell agents.

    In conclusion, biomass based CNDs with blue, green and red fluorescence have been demonstrated by ultrasonic-assisted method.The entire synthesis process does not involve any synthetic high-purity chemical reagents, high temperature and pressure, leading to a significant decrease in the cost of synthesis.Optical characterizations indicate that the as-prepared CNDs have good photostability and optical properties.Additionally, bacterial imaging by using the as-prepared CNDs demonstrates the potential as imaging agents for staining bacteria.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.11904326, 62075198), China Postdoctoral Science Foundation (Nos.2019TQ0287, 2019M662510).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.08.084.

    久久人人97超碰香蕉20202| 成年女人毛片免费观看观看9| 久久久国产成人免费| 亚洲专区字幕在线| 99在线视频只有这里精品首页| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲精品av在线| 久久九九热精品免费| 亚洲精品久久成人aⅴ小说| 国产成+人综合+亚洲专区| 级片在线观看| 69av精品久久久久久| 国产午夜福利久久久久久| 欧美丝袜亚洲另类 | 淫秽高清视频在线观看| 国产精品影院久久| 岛国在线观看网站| 制服人妻中文乱码| 日本撒尿小便嘘嘘汇集6| 亚洲欧美一区二区三区黑人| 少妇被粗大的猛进出69影院| 欧美+亚洲+日韩+国产| 在线十欧美十亚洲十日本专区| 精品国内亚洲2022精品成人| 精品国产超薄肉色丝袜足j| 欧美大码av| 欧洲精品卡2卡3卡4卡5卡区| 精品一区二区三区四区五区乱码| 成人手机av| 日韩大码丰满熟妇| 丝袜美腿诱惑在线| 久久久精品欧美日韩精品| 天堂动漫精品| 亚洲av美国av| 欧美激情 高清一区二区三区| 色综合亚洲欧美另类图片| 亚洲av成人不卡在线观看播放网| 亚洲专区国产一区二区| 国产成人精品久久二区二区免费| 一卡2卡三卡四卡精品乱码亚洲| 大码成人一级视频| 禁无遮挡网站| 母亲3免费完整高清在线观看| 久久久久国内视频| 男女之事视频高清在线观看| 深夜精品福利| 一区二区日韩欧美中文字幕| 亚洲av成人不卡在线观看播放网| 悠悠久久av| 国产乱人伦免费视频| 咕卡用的链子| 人妻丰满熟妇av一区二区三区| 欧美丝袜亚洲另类 | av电影中文网址| 国产高清videossex| 黄色片一级片一级黄色片| 又大又爽又粗| 国产精华一区二区三区| 日本 欧美在线| 99国产综合亚洲精品| 国产一卡二卡三卡精品| 免费少妇av软件| 天天躁夜夜躁狠狠躁躁| 午夜精品国产一区二区电影| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品国产精品久久久不卡| 男女下面进入的视频免费午夜 | 亚洲国产精品久久男人天堂| 欧美色视频一区免费| 成人手机av| 成年人黄色毛片网站| 午夜福利在线观看吧| 亚洲av电影在线进入| 深夜精品福利| 欧美在线黄色| 久久人人97超碰香蕉20202| 亚洲成人免费电影在线观看| 欧美性长视频在线观看| 亚洲中文日韩欧美视频| www.熟女人妻精品国产| 日韩欧美在线二视频| e午夜精品久久久久久久| 国产成人精品在线电影| 天堂√8在线中文| 男女床上黄色一级片免费看| 中文字幕人妻丝袜一区二区| 91麻豆精品激情在线观看国产| 国产91精品成人一区二区三区| 国产真人三级小视频在线观看| 99国产极品粉嫩在线观看| 成人av一区二区三区在线看| 国产乱人伦免费视频| 精品福利观看| 国产亚洲精品久久久久久毛片| 777久久人妻少妇嫩草av网站| 一本综合久久免费| 久久精品国产综合久久久| av电影中文网址| 中文字幕精品免费在线观看视频| 色播在线永久视频| 国产精品电影一区二区三区| 脱女人内裤的视频| 国产高清videossex| 欧美黄色淫秽网站| 日韩一卡2卡3卡4卡2021年| 亚洲成a人片在线一区二区| 亚洲成国产人片在线观看| 成人三级做爰电影| 黄色视频不卡| 欧美日韩亚洲综合一区二区三区_| 中文字幕人妻熟女乱码| 成人18禁高潮啪啪吃奶动态图| www日本在线高清视频| av天堂在线播放| 日韩三级视频一区二区三区| 一区二区三区精品91| 国产片内射在线| 又黄又爽又免费观看的视频| 最好的美女福利视频网| 国产欧美日韩精品亚洲av| 中国美女看黄片| 人妻久久中文字幕网| 在线播放国产精品三级| 国产精品 欧美亚洲| av天堂久久9| 久久影院123| 日本在线视频免费播放| 在线播放国产精品三级| 精品第一国产精品| 99国产精品99久久久久| 久久精品国产综合久久久| 搡老熟女国产l中国老女人| 国产熟女xx| 欧美国产精品va在线观看不卡| 激情在线观看视频在线高清| 国产亚洲av高清不卡| 精品不卡国产一区二区三区| 曰老女人黄片| 精品不卡国产一区二区三区| 日韩精品青青久久久久久| 97碰自拍视频| 午夜福利高清视频| 人人妻,人人澡人人爽秒播| 久久人人97超碰香蕉20202| 亚洲欧美日韩无卡精品| 国产av一区二区精品久久| 男女床上黄色一级片免费看| 成人免费观看视频高清| 中文字幕另类日韩欧美亚洲嫩草| av超薄肉色丝袜交足视频| 久久午夜亚洲精品久久| 免费不卡黄色视频| 亚洲欧美精品综合久久99| 精品久久久久久久久久免费视频| 国产精品一区二区免费欧美| 日韩大尺度精品在线看网址 | 在线观看一区二区三区| 国产精品久久久久久精品电影 | 国产精品久久久久久精品电影 | 女性生殖器流出的白浆| 亚洲精品中文字幕一二三四区| 嫁个100分男人电影在线观看| 国产色视频综合| 亚洲色图 男人天堂 中文字幕| bbb黄色大片| 国产97色在线日韩免费| 午夜福利成人在线免费观看| 久久伊人香网站| 中文字幕高清在线视频| 欧美 亚洲 国产 日韩一| 亚洲五月色婷婷综合| 每晚都被弄得嗷嗷叫到高潮| 国产一区在线观看成人免费| 天堂动漫精品| 满18在线观看网站| 欧美日韩一级在线毛片| 久久久国产成人免费| e午夜精品久久久久久久| 成人亚洲精品av一区二区| 国产精品一区二区在线不卡| 真人做人爱边吃奶动态| 色老头精品视频在线观看| 老司机靠b影院| 日本五十路高清| 男女做爰动态图高潮gif福利片 | 大型av网站在线播放| 久久久久九九精品影院| 国产国语露脸激情在线看| 狂野欧美激情性xxxx| 国内精品久久久久精免费| 亚洲av片天天在线观看| 国产精品亚洲美女久久久| 亚洲精品一卡2卡三卡4卡5卡| 一级黄色大片毛片| 亚洲电影在线观看av| 亚洲欧美激情在线| 亚洲精品国产区一区二| 精品一区二区三区视频在线观看免费| 9热在线视频观看99| 精品少妇一区二区三区视频日本电影| 国产精品久久久久久亚洲av鲁大| 神马国产精品三级电影在线观看 | 久久久国产欧美日韩av| 国产一区在线观看成人免费| av视频免费观看在线观看| 在线免费观看的www视频| 18禁国产床啪视频网站| 黄色女人牲交| 亚洲av成人av| 露出奶头的视频| 999精品在线视频| 麻豆久久精品国产亚洲av| 亚洲精品在线观看二区| 一进一出好大好爽视频| 91精品三级在线观看| cao死你这个sao货| 欧美色欧美亚洲另类二区 | 欧美av亚洲av综合av国产av| 精品人妻在线不人妻| av有码第一页| 少妇裸体淫交视频免费看高清 | 国产精华一区二区三区| tocl精华| 精品国产一区二区久久| 精品久久蜜臀av无| xxx96com| 午夜日韩欧美国产| 欧美精品啪啪一区二区三区| 国产精品亚洲一级av第二区| 18禁观看日本| 日韩精品免费视频一区二区三区| 欧美午夜高清在线| www.999成人在线观看| 黄频高清免费视频| 十八禁人妻一区二区| 精品一区二区三区四区五区乱码| 国产单亲对白刺激| 91大片在线观看| 国产亚洲精品av在线| 激情在线观看视频在线高清| 欧美精品亚洲一区二区| 黄色 视频免费看| 国产一区在线观看成人免费| 日韩三级视频一区二区三区| 一级,二级,三级黄色视频| 国产区一区二久久| www.精华液| 久久精品国产综合久久久| 国产一区二区三区视频了| av欧美777| 黄频高清免费视频| 99久久精品国产亚洲精品| 精品国产乱子伦一区二区三区| 亚洲欧美激情在线| 国产精品免费一区二区三区在线| 免费人成视频x8x8入口观看| 人人妻人人澡人人看| 91老司机精品| 不卡av一区二区三区| 亚洲全国av大片| 欧美黑人欧美精品刺激| av超薄肉色丝袜交足视频| 亚洲欧美激情综合另类| 国产精品一区二区在线不卡| 女人爽到高潮嗷嗷叫在线视频| 12—13女人毛片做爰片一| avwww免费| 男女之事视频高清在线观看| 免费在线观看黄色视频的| 国产日韩一区二区三区精品不卡| 亚洲午夜精品一区,二区,三区| av中文乱码字幕在线| 国产精品爽爽va在线观看网站 | 日韩 欧美 亚洲 中文字幕| 女性生殖器流出的白浆| 午夜免费激情av| 法律面前人人平等表现在哪些方面| 老司机深夜福利视频在线观看| 伊人久久大香线蕉亚洲五| 男女床上黄色一级片免费看| 一级,二级,三级黄色视频| 极品人妻少妇av视频| 日日爽夜夜爽网站| 国产视频一区二区在线看| 久久狼人影院| 俄罗斯特黄特色一大片| 女警被强在线播放| 国产精品野战在线观看| 国产一区二区三区视频了| 午夜福利一区二区在线看| а√天堂www在线а√下载| 精品久久蜜臀av无| 可以在线观看毛片的网站| 妹子高潮喷水视频| 午夜免费观看网址| 一级,二级,三级黄色视频| 欧美中文综合在线视频| 中文字幕精品免费在线观看视频| 日韩精品青青久久久久久| 90打野战视频偷拍视频| 亚洲人成电影免费在线| xxx96com| 欧美日韩黄片免| 一进一出好大好爽视频| 亚洲色图 男人天堂 中文字幕| 欧美丝袜亚洲另类 | 99在线人妻在线中文字幕| 国产精品美女特级片免费视频播放器 | 久久久久久久午夜电影| 波多野结衣一区麻豆| 我的亚洲天堂| 黄网站色视频无遮挡免费观看| 一区二区日韩欧美中文字幕| 一夜夜www| 亚洲欧美激情综合另类| 国产精品野战在线观看| 亚洲 欧美 日韩 在线 免费| 1024香蕉在线观看| 又大又爽又粗| 亚洲色图av天堂| 1024香蕉在线观看| 一区在线观看完整版| 美国免费a级毛片| 男人舔女人下体高潮全视频| 十八禁人妻一区二区| 亚洲av片天天在线观看| 精品一品国产午夜福利视频| 久久久国产成人精品二区| 伊人久久大香线蕉亚洲五| 国产熟女午夜一区二区三区| 亚洲国产欧美日韩在线播放| 91国产中文字幕| 精品少妇一区二区三区视频日本电影| 欧美成人一区二区免费高清观看 | 91成年电影在线观看| 成人欧美大片| 成人免费观看视频高清| 丝袜美足系列| 久久久国产精品麻豆| 成人欧美大片| 亚洲熟妇熟女久久| 91精品国产国语对白视频| 亚洲久久久国产精品| 九色国产91popny在线| 午夜福利一区二区在线看| 亚洲男人的天堂狠狠| 日韩 欧美 亚洲 中文字幕| 少妇的丰满在线观看| 午夜福利18| 国产麻豆69| www.自偷自拍.com| 精品国产一区二区久久| 亚洲精品一区av在线观看| 精品国产一区二区久久| 国产男靠女视频免费网站| 很黄的视频免费| 此物有八面人人有两片| 国产区一区二久久| 久久国产精品男人的天堂亚洲| 女人精品久久久久毛片| 搡老岳熟女国产| 中文字幕色久视频| av在线播放免费不卡| 狂野欧美激情性xxxx| 亚洲国产精品sss在线观看| 国产单亲对白刺激| 国产精品香港三级国产av潘金莲| 色尼玛亚洲综合影院| 在线观看免费视频网站a站| 免费久久久久久久精品成人欧美视频| av视频免费观看在线观看| 成人18禁在线播放| 国产成人系列免费观看| 欧美成人免费av一区二区三区| av天堂在线播放| 国产麻豆成人av免费视频| 欧美+亚洲+日韩+国产| 午夜老司机福利片| 久久久国产欧美日韩av| 精品无人区乱码1区二区| 日本黄色视频三级网站网址| 人人妻人人爽人人添夜夜欢视频| 国产精品香港三级国产av潘金莲| 国产精华一区二区三区| 欧美日韩瑟瑟在线播放| 90打野战视频偷拍视频| 级片在线观看| 国产亚洲精品av在线| 亚洲熟妇熟女久久| 久久久水蜜桃国产精品网| 欧美中文日本在线观看视频| 久久婷婷成人综合色麻豆| 亚洲精品久久国产高清桃花| 最近最新中文字幕大全电影3 | www.熟女人妻精品国产| 久久国产乱子伦精品免费另类| 在线观看免费日韩欧美大片| 亚洲色图综合在线观看| 在线观看一区二区三区| 国产97色在线日韩免费| 不卡av一区二区三区| 搡老岳熟女国产| 在线观看日韩欧美| 亚洲精品中文字幕在线视频| 香蕉国产在线看| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美免费精品| 热re99久久国产66热| 久久久水蜜桃国产精品网| 正在播放国产对白刺激| 精品人妻在线不人妻| 午夜福利成人在线免费观看| 乱人伦中国视频| 黄色片一级片一级黄色片| 一区二区三区高清视频在线| 欧美日本中文国产一区发布| 最近最新中文字幕大全电影3 | 亚洲伊人色综图| 国产精华一区二区三区| 精品少妇一区二区三区视频日本电影| 久久久久久久精品吃奶| 久久精品亚洲精品国产色婷小说| 大陆偷拍与自拍| 亚洲av片天天在线观看| 久久久国产精品麻豆| 国产成人精品久久二区二区免费| 久久香蕉国产精品| 日日摸夜夜添夜夜添小说| 在线观看一区二区三区| 两人在一起打扑克的视频| 国产高清视频在线播放一区| 给我免费播放毛片高清在线观看| 欧美激情久久久久久爽电影 | 咕卡用的链子| 1024香蕉在线观看| 成人18禁在线播放| 他把我摸到了高潮在线观看| 国产激情久久老熟女| 天天躁狠狠躁夜夜躁狠狠躁| 日本vs欧美在线观看视频| 精品国产超薄肉色丝袜足j| 亚洲国产欧美一区二区综合| 亚洲va日本ⅴa欧美va伊人久久| 极品人妻少妇av视频| 亚洲成人免费电影在线观看| 久久精品91无色码中文字幕| 岛国在线观看网站| 亚洲欧美一区二区三区黑人| 亚洲午夜理论影院| 国产精品久久久人人做人人爽| 亚洲avbb在线观看| 在线视频色国产色| aaaaa片日本免费| 91字幕亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品综合久久久久久久免费 | 欧美日本视频| 欧美日韩中文字幕国产精品一区二区三区 | 精品电影一区二区在线| av在线播放免费不卡| 欧美一级毛片孕妇| 美女免费视频网站| a在线观看视频网站| 午夜激情av网站| 久久久久久大精品| 99久久99久久久精品蜜桃| 国产一区二区在线av高清观看| 可以在线观看毛片的网站| 国产亚洲欧美在线一区二区| 窝窝影院91人妻| 国产精品一区二区三区四区久久 | 丝袜人妻中文字幕| 在线国产一区二区在线| or卡值多少钱| 国产1区2区3区精品| 国产欧美日韩一区二区三| 欧美久久黑人一区二区| 亚洲欧美日韩无卡精品| 亚洲第一欧美日韩一区二区三区| 一级a爱片免费观看的视频| 久久久久久亚洲精品国产蜜桃av| 好男人电影高清在线观看| 99riav亚洲国产免费| 欧美精品亚洲一区二区| 久久精品91无色码中文字幕| 女同久久另类99精品国产91| 久久午夜亚洲精品久久| 亚洲精品中文字幕在线视频| 国产欧美日韩一区二区精品| 身体一侧抽搐| 国产精品二区激情视频| 在线播放国产精品三级| 日韩欧美一区视频在线观看| av福利片在线| 国产午夜福利久久久久久| 午夜精品久久久久久毛片777| 欧美亚洲日本最大视频资源| 国产精华一区二区三区| 午夜视频精品福利| 香蕉国产在线看| 12—13女人毛片做爰片一| 久久久精品国产亚洲av高清涩受| 久久久久亚洲av毛片大全| 欧美色欧美亚洲另类二区 | 免费在线观看黄色视频的| 久久欧美精品欧美久久欧美| 国产成人欧美在线观看| 亚洲第一av免费看| 色av中文字幕| 97人妻精品一区二区三区麻豆 | 一区二区三区精品91| 12—13女人毛片做爰片一| 午夜老司机福利片| 国产av在哪里看| 久久草成人影院| 午夜福利欧美成人| 欧洲精品卡2卡3卡4卡5卡区| 欧美老熟妇乱子伦牲交| 国产在线精品亚洲第一网站| 午夜免费观看网址| 久久国产精品人妻蜜桃| 99国产精品免费福利视频| 精品国内亚洲2022精品成人| 亚洲成人国产一区在线观看| 精品国内亚洲2022精品成人| 日韩三级视频一区二区三区| 国产成人免费无遮挡视频| 亚洲狠狠婷婷综合久久图片| 岛国在线观看网站| 日韩高清综合在线| 一区二区三区激情视频| 日韩有码中文字幕| av欧美777| 中文字幕av电影在线播放| 黄片小视频在线播放| 精品第一国产精品| 日韩精品免费视频一区二区三区| 午夜福利成人在线免费观看| 久久精品国产清高在天天线| 精品第一国产精品| 琪琪午夜伦伦电影理论片6080| 一本综合久久免费| 日本 欧美在线| 欧美不卡视频在线免费观看 | 国产成人免费无遮挡视频| 黄色视频,在线免费观看| 国产1区2区3区精品| 99国产综合亚洲精品| 老熟妇乱子伦视频在线观看| 大香蕉久久成人网| 久久久久久人人人人人| 久久这里只有精品19| 日韩成人在线观看一区二区三区| √禁漫天堂资源中文www| 18禁国产床啪视频网站| 久久久久久久久免费视频了| 亚洲精品粉嫩美女一区| 亚洲一区二区三区不卡视频| 色播亚洲综合网| 亚洲中文字幕一区二区三区有码在线看 | 久久久久国内视频| 久久久久久免费高清国产稀缺| а√天堂www在线а√下载| 亚洲三区欧美一区| 国内精品久久久久久久电影| 亚洲第一av免费看| 国产成人欧美在线观看| 国产av一区二区精品久久| 啦啦啦观看免费观看视频高清 | 咕卡用的链子| 久久精品91无色码中文字幕| 黑人巨大精品欧美一区二区mp4| 真人一进一出gif抽搐免费| 村上凉子中文字幕在线| 午夜成年电影在线免费观看| 中文字幕人妻丝袜一区二区| 大码成人一级视频| 国产一卡二卡三卡精品| 久久久久久久久免费视频了| 黑丝袜美女国产一区| 成人永久免费在线观看视频| 一级,二级,三级黄色视频| 久久久久久人人人人人| www国产在线视频色| 久久天堂一区二区三区四区| 可以在线观看毛片的网站| 90打野战视频偷拍视频| 手机成人av网站| 极品教师在线免费播放| 热re99久久国产66热| 色播亚洲综合网| 女人被躁到高潮嗷嗷叫费观| 日本一区二区免费在线视频| 啦啦啦免费观看视频1| 亚洲情色 制服丝袜| 俄罗斯特黄特色一大片| 亚洲专区国产一区二区| 操出白浆在线播放| 99re在线观看精品视频| 国产成人av激情在线播放| 成在线人永久免费视频| 黑人巨大精品欧美一区二区mp4| 精品熟女少妇八av免费久了| 一区二区三区高清视频在线| 可以免费在线观看a视频的电影网站| 久久天堂一区二区三区四区| 人妻久久中文字幕网| 久热这里只有精品99| 免费观看精品视频网站| 国产精品精品国产色婷婷| 又紧又爽又黄一区二区| 日韩有码中文字幕| 国产又色又爽无遮挡免费看| 日韩大尺度精品在线看网址 | 色婷婷久久久亚洲欧美|