• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sun toughness and existence of P≥3-factor in two settings

    2022-06-18 08:45:20LANMeihuiGAOWei

    LAN Meihui, GAO Wei

    (1.School of Information Engineering,Qujing Normal University,Qujing 655011,China;2.School of Information Science and Technology,Yunnan Normal University,Kunming 650500,China)

    Abstract: Motivated by toughness and isolated toughness,reference [9] introduced a new variable,sun toughness.For a non-complete graph G,its sun toughness s(G) is formulated by minimizing the ratio |S|/sun(G-S) with sun(G-S)≥2.In this paper,two statements have been obtained:(1)if a non-complete graph G satisfies κ(G)≥m and s(G)>1 (resp.s′(G)>3/2),G is a (P≥3,m)-factor deleted graph.(2)G is a (P≥3,k)-factor critical graph if s(G)>(k+1)/3 or s′(G)>(k+1)/2 when κ≥k+2(resp.s(G)>(k+2)/3 or s′(G)>(k+2)/2 when κ≥k+1).Furthermore,we proved that these sun toughness bounds are sharp.

    Key words: graph;path-factor;(P≥3,m)-factor deleted graph;sun toughness

    1 Introduction

    Graph modeling is applied to many computer problems.For instance,task allocation and scheduling problems can be analyzed by the graph coloring model;circuit board designing can be analyzed by several problems on the planar graphs;data packet splitting and transmission problems can be equivalent to the existence of factors in the graph.Specifically,due to the limitation of the transmission channel capacity,large blocks of data cannot be transmitted as a whole.Usually,large blocks of data need to be cut,distributed and transmitted,and then reassembled at the destination vertex.It equals to the existence of flow or fractional flow which can be measured by factors in corresponding network graph.Some related results on graph factors in various settings can refer to Gao et al[1-4],Wu and Li[5],Xu and Tao[6],and Zhou et al[7-8].

    Assuming G as a graph with vertex set V(G) and edge set E(G),we use dG(x) to denote the degree of any x∈V(G) in G.For any subset S of V(G) and E′ of E(G),we denote G-S and G-E′as the subgraphs by deleting the vertices of S and edges of E′ from G respectively.Denote ω(G) by the number of connected components of a graph G,and denote Pnby the path with n vertices where n≥2 is an integer.A path factor of a graph G is defined as a spanning subgraph whose components are paths.A P≥n-factor is a path factor such that every component contains at least n vertices.

    Let k and m be non-negative integers.A graph G is called a (P≥n,k)-factor critical graph if any induced subgraph with order |V(G)|-k has a P≥n-factor.A graph G is called a(P≥n,m)-factor deleted graph if the resulting subgraph has a P≥n-factor,after deleting any m edges from G.Specially,when m=1,it is called a P≥n-factor deleted graph.If any induced subgraph of R with order |V(R)|-1 has a perfect matching,then graph R is a factor-critical graph.A graph H is called a sun if H≌K1or H≌K2or H is the corona of a factor-critical graph R having at least 3 vertices.We call the last class of sun with order at least six as big sun.The sun component refers to the component of G if it is isomorphic to a sun,and denoted sun(G) by the number of sun components in G.

    Using the pattern of toughness and isolated toughness,Zhou et al[9]introduced a new toughness parameter called sun toughness s(G) which is formulated as follows

    if G is not a complete graph.For complete graph G,s(G)=+∞.

    Inspired by τ(G) and I′(G)(these parameters are the transformed version of toughness and isolated toughness),Zhu et al[10]introduced the variant of sun toughness denoted by s′(G) which is stated as follows

    if G is not a complete graph;otherwise,s′(G)=+∞.

    In order to prove the main results in next section,we need the following condition for a graph containin P≥3-factor from the view of sun component.

    Lemma 1[11]A graph G has a P≥3-factor if and only if sun(G-S)≤2|S| for every S?V(G).

    Clearly,using the above lemma,we immediately get that G has a P≥3-factor if s(G)≥1/2.Intuitively,1/2 is the tight sun toughness bound for a graph admits P≥3-factor.However,Theorem 2 manifests the fact that 1/3 is the sharp bound instead of 1/2 when κ(G)≥k+2,and Theorem 3 reveals 2/3 is the tight bound when κ(G)≥k+1.

    2 Main results and proofs

    In Zhou's previous work[9],they determined a sharp sun toughness bound for a 2-edge-connected graph having P≥3-factor after removing any edge e from graph.In this paper,we consider the general case of (P≥3,m)-factor deleted graph,while we use vertex connectivity condition instead of edge connectivity demand.

    Theorem 1Let m∈N,and G be a non-complete graph with κ(G)≥m.If

    then G is a (P≥3,m)-factor deleted graph.

    Proof.By assumption of theorem,we infer δ(G)≥λ(G)≥κ(G)≥m and |V(G)|≥4.

    For any E′?E(G) contains m edges,let G′=G-E′.We prove Theorem 1 in terms of acquiring that G′admits a P≥3-factor.In contrast,we assume that G′ has no P≥3-factor.In light of Lemma 1,there is a subset S?V(G′)=V(G) meeting

    The whole proof can be divided into two cases in view of whether S is an empty set.

    Case 1|S|≥1.

    In this case,sun(G′-S)≥2|S|+1≥3 from (1),and we discuss two subcases according to whether S is a vertex cut set.

    Case 1.1G-S is not a connected graph.

    Following from connectivity assumption,we infer |S|≥m and ω(G-S)≥2.We treat the process of deletingedges in G-S as deleting edges one by one,and observe that deleting each edge in G-S may add at most two sun components.If sun(G′-S)≤sun(G-S)+m,then (since sun(G′-S)≥2|S|+1≥2m+1,we confirm sun(G-S)≥sun(G′-S)-m≥2m+1-m=m+1≥2)

    which leads to |S|≤m-1,a contradiction.

    Now we consider sun(G-S)+m+1≤sun(G′-S)≤sun(G-S)+2m.Set t′=sun(G′-S)-sun(G-S)-m.Hence,t′∈{1,…,m} and there are at least t′ edges in E′ such that after deleting each edge,the number of sun component will add 2.Assume that there are exactly t edges in E′ such that after deleting each edge,the number of sun component will add 2,thus m≥t≥t′.Specifically,let T={e1,…,et} be the set of these t edges in G-S,and C1,…,Ctbe the components in G-S during the edge deleting procedure such that ei∈E(Ci) and the number of sun component add 2 after removing eifrom Ci(i∈{1,…,t}).Note that K2■Ci(although delete edge in K2will process two sun components,K2is a sun component itself.Thus deleting edge in K2only add one sun component).By observing,Cican be the following structures:

    (1)P3or P4(a path with three or four vertices);

    (2)a big sun connects K1or K2with one edge;

    (3)two big suns connected by an edge.We use the following way to get vertex set Di:(i∈{1,…,t});

    (4)If Ciis isomorphic to P3or P4,then denote Diby a vertex in V(Ci) with degree 2 in Ci;

    (5)If Ciis isomorphic to a big sun connects K1,then denote Diby the vertex set of factor-critical subgraph of big sun if K1is adjacent to a vertex in its factor-critical subgraph.Otherwise,K1adjacent to a vertex with degree 1 of big sun is denoted by u,and denote uw is an edge in big sun(see Figure 1).The set Diis the vertex set of factor-critical of big sun except w,and then add vertex u into Di;

    (6)If Ciis isomorphic to a big sun connects K2,then denote Diby the vertex set of factor-critical subgraph of big sun if K2connects a vertex with degree 3 in big sun by edge ei.Otherwise,K2connects to a vertex with degree 1 in big sun by an edge(see Figure 2),and the set Diis the vertex set of factor-critical subgraph of big sun except w,and then add vertex u into Di;

    Figure 1 The second structure with a big sun connect K1

    Figure 2 The second structure with a big sun connect K2

    (7)If Ciis isomorphic to two big suns which is connected by an edge,then we consider the following three structures.(i)eiconnected two vertices with degree 1 in big suns.We mark one end of eias u,and uw is an edge in the big sun(see Figure 3).In this case,denote Diby the vertex set of factor-critical subgraph of these two big suns except w and w′,and then add vertex u into Di.(ii) If the connecting structure as depicted in Figure 4,thendenote Diby the vertex set of factor-critical subgraph of these two big suns except w.(iii)As can be seen in Figure 5,the degree of vertices in edge which connects two big suns is 4 in Ci.We mark one of these two vertices as w,then denote Diby the vertex set of factor-critical subgraph of these two big suns except w.

    Figure 3 The first structure of two big suns which are connected by edge ei

    Figure 4 The second structure of two big suns which are connected by edge ei

    Figure 5 The third structure of two big suns which are connected by edge ei

    We verify |Di|=|V(Ci)|/2-1 or (|V(Ci)|-1)/2,and the number of sun components in Ci-Diis equal to |Di|+1.Since sun(G-S胰D)≤sun(G-S)+sun(C-D)(because the component Cimay not in G-S,and they produced by deleting some edges in E′),we need to discuss more components whose one edge is removed,the number of sun components add 1.

    Let Xibe components in the process of deleting edges in G-S such that the number of sun components is increased by one after removing one edge from Xi,where i∈{1,…,sun(G′-S)-sun(G-S)-2t}.We select vertex subset Yiaccording to the structure of Xisuch that there are |Yi| isolated vertices will be processed in Xiafter deleting Yi.If Xi≌K2,then denote Yiby empty set.Otherwise,it implies that removing one edge from non-sun component Xi,it can be divided into a sun component and another non-sun component with at least three vertices.The structure of this non-sun component Xican be summarized into one of four structures in Figure 6.

    Figure 6 The structures of four non-sun components

    We consider the following circumstances.

    (1)If Xiis isomorphic to structure described in Figure 6(a),then Yiis a vertex in non-sun component which connects K1or Yiis an empty set.This is because this non-sun component which connects K1in Ximay become one of Ciif we continue deleting some edges from it.Indeed,in this case,if K1connects exactly a vertex in Dior an isolated vertex in Ci-Di,then Yi=?;if K1connects to a vertex in K2in Ci-Di,then Yiis a vertex which connects K1in Xi(for instance,in Figure 4,uw is a K2component in Ci-Di,and if u is exactly a vertex connect K1,then Yi={u}).

    (2)If Xiis isomorphic to structure described in Figure 6(b),then Yiis a vertex in K2which connects nonsun component.

    (3)If Xiis isomorphic to structure described in Figure 6(c),then Yiis the vertex set of factor-critical subgraph of big sun.

    (4)If Xiis isomorphic to structure described in Figure 6(d),let u be a vertex with degree 1 in big sun which has another edge connecting to non-sun component,and w be a vertex in factor-critical subgraph of big sun which associates to u.Then Yiis the vertex set of factor-critical subgraph of big sun except w,and then add vertex u into Yi.

    We state that if Yi=? in the special situation of Figure 6(a),we consider sun(Xi-Yi)=0.Set

    Combining the above discussions,we acquire(note that the value of |Y| can be taken zero,for example,when t=m or K2components in G-S are enough large and edges in E′ belonging to Xiare contained in these K2components)

    since |S|≥m,a contradiction.

    For s′(G),we have

    a contradiction.

    Case 1.2G-S is still a connected graph.

    In this case,ω(G)=ω(G-S)=1,and after removing each edge from G-S,the number of its components adds at most 1.That is to say,sun(G′-S)≤ω(G′-S)=ω(G-S-E′)≤m+ω(G-S)=m+1.Therefore,combining with (1),we acquire 2|S|+1≤sun(G′-S)≤m+1,i.e.,|S|≤m/2.Furthermore,δ(G-S)≥λ(G-S)≥κ(G-S)≥κ(G)-|S|≥mm/2=m/2.

    Since sun(G′-S)≥3,we ensure that at least:

    (1)three vertices in G′-S have degree 0,or

    (2)two vertices in G′-S have degree 0 and two vertices in G′-S has degree 1,or

    (3)one vertices in G′-S has degree 0 and four vertices in G′-S has degree 1,or

    (4)six vertices in G′-S has degree 1.

    We consider the following subcases according to the value of m.

    (5)If m=1 or 2,then δ(G-S)≥1 and the only possible to delete 2 edges in G-S and produce three sun components in G′-S.In this case,m=2,sun(G′-S)=3,|S|=1.Let SC1,SC2,SC3be three sun components in G′-S,where SC1and SC2is connected by e1,and SC2and SC3is connected by e2in G-S.If SC2≌K1,then we get

    and

    This leads a contradiction.

    If SC2isomorphic to K2or a big sun,then we can select a vertex subset W in G-S in light of the tricks similar to discussed in Case 1.1 such that the number of sun components in G-S is exactly |W|+1 after removing W.Thus,we yield

    and

    a contradiction.

    (6)If m=3,then δ(G-S)≥2.To produce at least three sun components in G′-S,we need delete at least four edges in G-S,a contradiction.

    (7)If m≥4,then,to produce at least three sun components in G′-S,we need remove at least

    edges from G-S,a contradiction.

    Case 2If S is an empty set.

    According to (1) we acquire sun(G′)>0.We have the following claim.

    Claim 1If |S|=0,then sun(G′)=1.

    Proof.Assume sun(G′)≥2.

    If one of sun component of G′ is a big sun,then it is generated by deleting at least 3m-6 edges in G,we further have m=1.Hence,G isomorphic to a big sun connects to another sun by an edge.By means of discussion presented in Case 1.1,we can select S from V(G) such that G-S has |S|+1 sun components,which means

    and

    a contradiction.

    If one of sun component of G′ is K2,then it is generated by deleting at least 2(m-1) edges in G,thus m=1 or 2.If m=1,then G≌P4.Thus s(P4)=1/2 and s′(P4)=1,a contradiction.If m=2,then G≌C4(an even cycle with 4 vertices).We have s(C4)=1 and s′(C4)=2,which contradicts to s(G)>1 and s′(G)> 2 when m=2.

    The last case is that all the sun components in G′ are isolated vertex.By δ(G)≥m and |E′|=m,G isomor-phic to K2which contradicts to the assumption that G is not complete.□

    In terms of Claim 1,we confirm G′=G-E′ is a big sun.Therefore,there are at least three vertices has degree 1 in G′.If m≥2,then contradicts to E′ only has m edges and δ(G)≥m.Therefore,m=1 and G isomorphic to a big sun add one more edge.Let S be the factor-critical subgraph of the big sun,and then we get

    and

    a contradiction.

    In all,we finish the proofing of Theorem 1.□

    The following result reveals the relationship between sun toughness and (P≥3,k)-factor critical graphs.The tricks used to prove Theorem 2 follows from Gao et al[2],and we skip the detailed proofing process here.

    Theorem 2Let k∈N∪{0} and G be a graph satisfies κ(G)≥k+2.If s(G)>(k+1)/3 or s′(G)>(k+1)/2,then G is (P≥3,k)-factor critical.

    If we revise κ(G)≥k+2 to κ(G)≥k+1,then when S≠? we can’t deduce sun(G-U)=sun(G′)=0 where U?V(G) with |U|=k,G′=G-U,and S?V(G′) with 2|S|+1<sun(G′-S).While we still get G-U is connected since κ(G)≥k+1.If G-U≌K2then G is a complete graph by means of δ(G)≥κ(G)≥k+1.If G-U is a big sun,then under the counterexample hypothesis,we have s(G)≤(k+2)/3 and s′(G)≤(k+2)/2.Therefore,we obtain the following conclusion.

    Theorem 3Let k∈N∪{0} and G be a non-complete graph satisfies κ(G)≥k+1.If s(G)>(k+2)/3 or s′(G)>(k+2)/2,then G is (P≥3,k)-factor critical.

    3 Sharpness

    First,we show that the sun component conditions in Theorem 1 are sharp.Let m∈N,H1be a big sun and R1be its factor-critical subgraph.Hence,dH1(x)=1 for arbitrary x∈V(H1)V(R1) and |V(R1)|=|V(H1)|/2≥3.Choose v1∈V(H1)-V(R1) and u1≠V(H1).Let H1′ be a graph with V(H1′)=V(H1)∪{u1} and E(H1′)=E(H1)∪{e1}with e1=u1v1.We get other m-1 copies of H1′,and denoted by H2′,…,Hm′,respectively.A graph G is constructed asWe select,where wi∈V(Ri) and viwi∈E(Ri).be a subset of E(G) with m edges.Thus,we get

    and

    Therefore,for any positive integer m,we confirm

    On the other hand,let S=V(Km).Then we get sun(G-S-E′)=2m+1>2m=2|S|.According to Lemma 1,G-E′has no P≥3-factor,i.e.,G is not a (P≥3,m)-factor deleted graph.Hence,s(G)≥1 (or s′(G)>1) for m≥3 is tight.

    Considering G=K1∨G1(see Figure 7) where G1is constructed as follows:SC1and SC2are suns,v is a vertexin G1which connects SC1and SC2by e1and e2,respectively.Set S=V(K1)∪{v},then we obtain

    and

    Let G′=G-{e1,e2}.Then sun(G′-K1)=3>2=2|V(K1)|,thus G′ has no P≥3-factor and G is not a (P≥3,2)-factor deleted graph.Therefore,s(G)>1(or s′(G)>2) for m=2 is sharp.

    Let H be a big sun with exactly six vertices,and G be a graph by adding an edge e in H as depicted in Figure 8.Let S be the vertex set of factor-critical subgraph of H,then s(G)=|S|/sun(G-S)=1 and s′(G)=|S|/(sun(G-S)-1)=3/2.On the other hand,delete e from G,then G-e its self a big sun which has no P≥3-factor(by setting S=?,then verifying using Lemma 1).Thus,G is not a (P≥3,1)-factor deleted graph,and s(G)>1(or s′(G)>3/2) for m=1 is tight.

    Figure 7 A counterexample of Theorem 1 when m=2

    Figure 8 A counterexample of Theorem 1 when m=1

    Considering G=Kk+1∨3K2,we have κ(G)=k+1,s(G)=(k+1)/3 and s′(G)=(k+1)/2.Let U be a vertex set in Kk+1with k vertices and G′=G-U=K1∨3K2.Set S=K1in G′,and we have sun(G′-S)=3>2=2|S|.That is to say,G′has no P≥3-factor and thus G is not (P≥3,k)-factor critical.Therefore,κ(G)≥k+2 and s(G)>(k+1)/3 (resp.s′(G)>(k+1)/2) in Theorem 2 can't replace to κ(G)≥k+1 and s(G)≥(k+1)/3 (resp.s′(G)≥(k+1)/2).

    To see Theorem 3 is sharp,let’s consider G=Kk∨G′ where G′ is a big sun with exactly six vertices(the factor-critical subgraph of G′ contain exactly three vertices).Hence,we have κ(G)=k+1,s(G)=(k+2)/3 and s′(G)=(k+2)/2.Let U=V(Kk),G′=G-U,and S=?.Thus,sun(G′-S)=1>0 =2|S|,which implies G′ has no P≥3-factor and thus G is not (P≥3,k)-factor critical.

    4 Conclusions and open problems

    The main findings of this paper can be summarized as follows in which these results are against our intuition.

    (1)Intuitively,under the condition κ(G)≥m,the tight sun toughness bound for a graph to be (P≥3,m)-factor deleted should be a function of m,i.e.,at the beginning we thought this bound should increase as m increases.However,Theorem 1 reveals that the sharp bound of sun toughness for (P≥3,m)-factor deleted graphs is a constant which is independent of the value of m.

    (2)Lemma 1 seems to imply that 1/2 should be a tight bound for a graph admits P≥3-factor.Our second and third main results described in Theorem 2 and Theorem 3 present the best sun toughness bounds for (P≥3,k)-factor critical graphs in setting κ(G)≥k+2 and κ(G)≥k+1 respectively,where k is a non-negative integer.When k=0,we really found that the previous intuition is completely wrong,and s(G)>1/3 for κ(G)≥k+2 (resp.s(G)>2/3 for κ(G)≥k+1) is exactly the sharp bound for a graph permits P≥3-factor.

    In Zhou et al[9],they proved that a 2-edge-connected graph is P≥3-factor deleted if s(G)≥1.We note that in Zhou's work,they use edge connectivity condition,while in our paper we use the vertex connectivity conditioninstead.We raise the following conjecture on the edge-connected condition.

    Conjecture 1Let m∈N,and G be a m+1-edge connected graph.If s(G)≥1(resp.s′(G)>1),then G is a(P≥3,m)-factor deleted graph.

    We found that after changing the vertex connectivity condition to edge connectivity condition,the problem will become much more difficult where the tricks presented in Theorem 1 can not be available any more.New technologies are needed to conquer the above conjecture.

    As the end of our paper,we raise the following open problem for future on-going works.

    Problem 1What are the tight bounds of s(G) and s′(G) for a graph G to be a (P≥3,m)-factor covered graph?

    国产精品久久久久久av不卡| 日韩欧美精品免费久久| 日本黄色视频三级网站网址| 女的被弄到高潮叫床怎么办| 99九九线精品视频在线观看视频| 在线天堂最新版资源| 直男gayav资源| 亚洲国产色片| 丰满人妻一区二区三区视频av| 人妻制服诱惑在线中文字幕| 麻豆精品久久久久久蜜桃| 国产精品一及| 国产免费男女视频| 午夜免费激情av| 久久99蜜桃精品久久| 黄色欧美视频在线观看| 一区二区三区免费毛片| 久久国产乱子免费精品| 国产精品麻豆人妻色哟哟久久 | 水蜜桃什么品种好| 国产av码专区亚洲av| 中文字幕亚洲精品专区| 欧美精品国产亚洲| 纵有疾风起免费观看全集完整版 | 国产成年人精品一区二区| 高清午夜精品一区二区三区| 老师上课跳d突然被开到最大视频| 亚洲欧美日韩东京热| 91精品国产九色| 国产精品精品国产色婷婷| 在线观看av片永久免费下载| 青春草视频在线免费观看| 在现免费观看毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 美女内射精品一级片tv| 97人妻精品一区二区三区麻豆| 国产精品99久久久久久久久| 亚洲欧美精品综合久久99| 久久6这里有精品| 你懂的网址亚洲精品在线观看 | 色网站视频免费| 在线免费十八禁| 国产精品国产三级国产av玫瑰| 国产免费一级a男人的天堂| 欧美97在线视频| 一级黄片播放器| 两个人视频免费观看高清| 3wmmmm亚洲av在线观看| 久久人人爽人人片av| 深夜a级毛片| 国产大屁股一区二区在线视频| 18禁裸乳无遮挡免费网站照片| 男的添女的下面高潮视频| 国产高清三级在线| 欧美性猛交╳xxx乱大交人| 婷婷六月久久综合丁香| 精品一区二区三区人妻视频| 特级一级黄色大片| 韩国高清视频一区二区三区| 欧美激情在线99| 日韩av不卡免费在线播放| 亚洲在久久综合| 别揉我奶头 嗯啊视频| 亚洲欧美日韩卡通动漫| 午夜日本视频在线| av在线亚洲专区| 成人鲁丝片一二三区免费| 成人无遮挡网站| 久久久精品欧美日韩精品| 两个人的视频大全免费| 国产成人午夜福利电影在线观看| 一级毛片aaaaaa免费看小| 中文在线观看免费www的网站| 能在线免费观看的黄片| 最近中文字幕高清免费大全6| 国产精品,欧美在线| 亚洲精品日韩在线中文字幕| 国产极品精品免费视频能看的| 亚洲性久久影院| 精品久久久久久久久久久久久| 1024手机看黄色片| 舔av片在线| 久久久成人免费电影| 午夜福利高清视频| 国产高清三级在线| 免费黄色在线免费观看| 国产黄片视频在线免费观看| 美女国产视频在线观看| 成人毛片60女人毛片免费| 两性午夜刺激爽爽歪歪视频在线观看| 国产在视频线在精品| 成人av在线播放网站| 日韩成人av中文字幕在线观看| 亚洲伊人久久精品综合 | 国产高清不卡午夜福利| 久久久欧美国产精品| 午夜福利成人在线免费观看| 精品一区二区三区视频在线| 97在线视频观看| 变态另类丝袜制服| 91久久精品国产一区二区成人| 22中文网久久字幕| 午夜日本视频在线| 国产精品国产高清国产av| 欧美一级a爱片免费观看看| 国产单亲对白刺激| 亚洲精品国产av成人精品| 男女国产视频网站| 三级毛片av免费| 自拍偷自拍亚洲精品老妇| 大香蕉久久网| 国产乱人偷精品视频| 免费看a级黄色片| 99视频精品全部免费 在线| 久久久久久久久久久丰满| 非洲黑人性xxxx精品又粗又长| 国产私拍福利视频在线观看| 老司机影院毛片| 久久人妻av系列| 久99久视频精品免费| 22中文网久久字幕| 一夜夜www| 少妇的逼好多水| 草草在线视频免费看| 91久久精品电影网| 日韩视频在线欧美| 熟女人妻精品中文字幕| 91在线精品国自产拍蜜月| 国产精品无大码| 99热这里只有精品一区| 国产亚洲av嫩草精品影院| 长腿黑丝高跟| 国产精品av视频在线免费观看| 一区二区三区高清视频在线| 国产精品熟女久久久久浪| 成人特级av手机在线观看| 国内揄拍国产精品人妻在线| 在线观看66精品国产| 精品人妻一区二区三区麻豆| 成人性生交大片免费视频hd| 欧美成人a在线观看| 欧美三级亚洲精品| 亚洲人成网站在线观看播放| 免费黄网站久久成人精品| 亚洲av免费高清在线观看| 22中文网久久字幕| av福利片在线观看| 18+在线观看网站| 久久鲁丝午夜福利片| 国产精品一二三区在线看| av天堂中文字幕网| 99热这里只有精品一区| 韩国av在线不卡| 精品欧美国产一区二区三| av视频在线观看入口| 亚洲精品国产成人久久av| 91久久精品电影网| 国产大屁股一区二区在线视频| 国产黄色视频一区二区在线观看 | 91av网一区二区| 久久鲁丝午夜福利片| 中文字幕人妻熟人妻熟丝袜美| 精品免费久久久久久久清纯| 国产一区二区三区av在线| 特级一级黄色大片| 国产色爽女视频免费观看| 简卡轻食公司| 一级毛片久久久久久久久女| 国产精品1区2区在线观看.| 精品不卡国产一区二区三区| 老师上课跳d突然被开到最大视频| 国产精品伦人一区二区| 99热这里只有是精品在线观看| 麻豆成人午夜福利视频| 91久久精品国产一区二区成人| 日本一二三区视频观看| 成人美女网站在线观看视频| 中文乱码字字幕精品一区二区三区 | 免费av毛片视频| 欧美日韩精品成人综合77777| 蜜臀久久99精品久久宅男| 色噜噜av男人的天堂激情| 寂寞人妻少妇视频99o| 欧美不卡视频在线免费观看| 免费看光身美女| 日本熟妇午夜| 欧美+日韩+精品| 成人综合一区亚洲| 国产欧美日韩精品一区二区| 亚洲在线观看片| 免费人成在线观看视频色| 亚洲精品一区蜜桃| 成年免费大片在线观看| 国产真实乱freesex| 麻豆成人午夜福利视频| 99久久精品国产国产毛片| 国模一区二区三区四区视频| 欧美成人a在线观看| 国产精品国产三级国产av玫瑰| 亚洲av.av天堂| 国产精品一区二区三区四区久久| 日韩三级伦理在线观看| 久久久久久久久久黄片| 最近最新中文字幕免费大全7| 最新中文字幕久久久久| 成人国产麻豆网| 寂寞人妻少妇视频99o| 国产精品一区二区三区四区免费观看| 白带黄色成豆腐渣| 精品久久久噜噜| 久热久热在线精品观看| a级毛色黄片| 人妻系列 视频| 欧美丝袜亚洲另类| 水蜜桃什么品种好| 麻豆乱淫一区二区| 成人二区视频| 国产亚洲av片在线观看秒播厂 | 亚洲在久久综合| 亚洲欧美日韩高清专用| 少妇猛男粗大的猛烈进出视频 | 欧美日韩一区二区视频在线观看视频在线 | 色网站视频免费| 国产免费一级a男人的天堂| 男女啪啪激烈高潮av片| 国产一区二区三区av在线| 国产伦精品一区二区三区视频9| 亚洲自拍偷在线| 欧美bdsm另类| 日韩大片免费观看网站 | 日日摸夜夜添夜夜爱| 99久久无色码亚洲精品果冻| 在线免费十八禁| 三级毛片av免费| 亚洲一区高清亚洲精品| 国产v大片淫在线免费观看| 成年免费大片在线观看| 国产精品久久久久久久久免| 色视频www国产| 久久久国产成人精品二区| 免费黄网站久久成人精品| 欧美97在线视频| 赤兔流量卡办理| 国产精品久久久久久av不卡| 成人三级黄色视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品91蜜桃| 又粗又爽又猛毛片免费看| 精品人妻偷拍中文字幕| 久久久亚洲精品成人影院| 熟妇人妻久久中文字幕3abv| 白带黄色成豆腐渣| 国产高清不卡午夜福利| 亚洲欧美精品自产自拍| 国产午夜福利久久久久久| 一区二区三区高清视频在线| 色吧在线观看| 色综合站精品国产| 久久精品久久精品一区二区三区| 少妇猛男粗大的猛烈进出视频 | 美女国产视频在线观看| 日韩大片免费观看网站 | 日韩制服骚丝袜av| 久久久久久久久久黄片| 麻豆国产97在线/欧美| 日韩强制内射视频| 日本免费a在线| 99久国产av精品国产电影| 1024手机看黄色片| 简卡轻食公司| 又爽又黄无遮挡网站| 如何舔出高潮| 亚洲av成人精品一区久久| 日韩在线高清观看一区二区三区| 国产毛片a区久久久久| 白带黄色成豆腐渣| 天天躁夜夜躁狠狠久久av| 久久久久精品久久久久真实原创| 亚洲欧洲国产日韩| 日韩三级伦理在线观看| 国产亚洲最大av| 日韩成人av中文字幕在线观看| 国产精品久久视频播放| 国产淫片久久久久久久久| 99热这里只有是精品在线观看| 亚洲美女搞黄在线观看| 亚洲av中文字字幕乱码综合| 国产精品99久久久久久久久| 亚洲欧美精品自产自拍| 亚洲欧美精品专区久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99热这里只有是精品在线观看| 99热这里只有精品一区| 国产探花在线观看一区二区| 午夜视频国产福利| 成人高潮视频无遮挡免费网站| h日本视频在线播放| 国产 一区精品| 黄片wwwwww| 国产精品日韩av在线免费观看| 69人妻影院| 男插女下体视频免费在线播放| 99热全是精品| 亚洲精品456在线播放app| 高清在线视频一区二区三区 | 嫩草影院精品99| 国模一区二区三区四区视频| 一本久久精品| 日本免费a在线| 1024手机看黄色片| 亚洲欧美日韩高清专用| 免费观看性生交大片5| 国内精品宾馆在线| 国产精品一二三区在线看| av线在线观看网站| 在线播放国产精品三级| 99热精品在线国产| 亚洲最大成人中文| 大话2 男鬼变身卡| 久久精品久久久久久噜噜老黄 | 欧美激情在线99| 亚洲欧美中文字幕日韩二区| 亚洲久久久久久中文字幕| 欧美激情国产日韩精品一区| 国产精品1区2区在线观看.| 久久精品人妻少妇| 久久久久精品久久久久真实原创| 色综合站精品国产| 性插视频无遮挡在线免费观看| 日韩一区二区三区影片| 精品久久久久久久久久久久久| 久久亚洲国产成人精品v| 亚洲av二区三区四区| 国内少妇人妻偷人精品xxx网站| 久久婷婷人人爽人人干人人爱| 精品久久久久久电影网 | 美女内射精品一级片tv| 天天躁日日操中文字幕| 亚洲一区高清亚洲精品| 十八禁国产超污无遮挡网站| 日日摸夜夜添夜夜添av毛片| 亚洲国产高清在线一区二区三| 国产精品无大码| 国产男人的电影天堂91| 女人十人毛片免费观看3o分钟| 一区二区三区免费毛片| 精品人妻熟女av久视频| 一本一本综合久久| 亚洲最大成人av| 91在线精品国自产拍蜜月| 人妻少妇偷人精品九色| 别揉我奶头 嗯啊视频| 波多野结衣巨乳人妻| 欧美激情久久久久久爽电影| 欧美精品一区二区大全| 国产精品久久久久久久久免| 内地一区二区视频在线| 在线播放国产精品三级| 成人美女网站在线观看视频| 久久精品国产亚洲av涩爱| 少妇熟女aⅴ在线视频| 亚洲精品乱码久久久久久按摩| 日本wwww免费看| 美女大奶头视频| 国产亚洲最大av| 精品久久久久久久末码| 插阴视频在线观看视频| 亚洲国产色片| 国产黄片视频在线免费观看| 男人和女人高潮做爰伦理| 午夜福利视频1000在线观看| 国产精品久久久久久久久免| 欧美潮喷喷水| 久久人人爽人人片av| 最近2019中文字幕mv第一页| 丝袜喷水一区| 国产探花极品一区二区| 高清在线视频一区二区三区 | 欧美色视频一区免费| 一级黄片播放器| 亚洲久久久久久中文字幕| 亚洲,欧美,日韩| 国产毛片a区久久久久| 午夜日本视频在线| 久久久久久久久久黄片| 免费不卡的大黄色大毛片视频在线观看 | 日韩视频在线欧美| 国产精品久久电影中文字幕| 丝袜喷水一区| 久久人妻av系列| 久久精品国产亚洲av天美| 内地一区二区视频在线| 中文资源天堂在线| 日本黄大片高清| 永久免费av网站大全| 男人舔奶头视频| 亚洲av成人av| 综合色av麻豆| 丰满少妇做爰视频| 中文字幕制服av| 亚洲成av人片在线播放无| 麻豆久久精品国产亚洲av| 国产乱人视频| 亚洲国产精品专区欧美| 国产精品爽爽va在线观看网站| 18禁在线无遮挡免费观看视频| 久久韩国三级中文字幕| 非洲黑人性xxxx精品又粗又长| 国产大屁股一区二区在线视频| 黄色配什么色好看| 国产黄片美女视频| 日本与韩国留学比较| 3wmmmm亚洲av在线观看| 欧美性猛交╳xxx乱大交人| 97热精品久久久久久| 国产v大片淫在线免费观看| 国产伦在线观看视频一区| 三级经典国产精品| 久久这里只有精品中国| 日日干狠狠操夜夜爽| 午夜精品国产一区二区电影 | 国产精品不卡视频一区二区| 91久久精品电影网| 亚洲18禁久久av| 禁无遮挡网站| 乱码一卡2卡4卡精品| 小说图片视频综合网站| 久久这里只有精品中国| 免费搜索国产男女视频| 午夜老司机福利剧场| 亚洲美女搞黄在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 三级国产精品欧美在线观看| 日韩制服骚丝袜av| 91久久精品国产一区二区成人| 午夜激情欧美在线| 亚洲在线观看片| 你懂的网址亚洲精品在线观看 | 欧美精品国产亚洲| 男插女下体视频免费在线播放| 国产一级毛片在线| 精品久久久久久久人妻蜜臀av| 只有这里有精品99| 欧美性猛交╳xxx乱大交人| 内地一区二区视频在线| 日本黄色视频三级网站网址| 综合色av麻豆| 亚洲国产色片| 秋霞伦理黄片| 国产精品久久久久久精品电影小说 | 性插视频无遮挡在线免费观看| 成人鲁丝片一二三区免费| 亚洲欧洲日产国产| 插阴视频在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲av日韩在线播放| 婷婷色麻豆天堂久久 | 亚洲一级一片aⅴ在线观看| 一个人免费在线观看电影| 韩国av在线不卡| 看十八女毛片水多多多| 国产一区亚洲一区在线观看| 在线免费观看不下载黄p国产| 日本熟妇午夜| 色吧在线观看| 1024手机看黄色片| 搞女人的毛片| 免费电影在线观看免费观看| 日本黄色片子视频| 两个人的视频大全免费| 男人的好看免费观看在线视频| 三级经典国产精品| 久久久久久大精品| 国产高清三级在线| eeuss影院久久| 国产亚洲一区二区精品| 日韩人妻高清精品专区| 少妇裸体淫交视频免费看高清| 成人午夜精彩视频在线观看| 国产不卡一卡二| 日韩 亚洲 欧美在线| 亚洲电影在线观看av| 亚洲av福利一区| 国产精品一区二区三区四区免费观看| 久久精品国产自在天天线| 丝袜美腿在线中文| 亚洲人成网站在线播| 亚洲成人av在线免费| 久久久久精品久久久久真实原创| 六月丁香七月| 国产高清三级在线| 精品人妻偷拍中文字幕| 亚洲最大成人av| 精品久久久久久成人av| 三级经典国产精品| www.色视频.com| 日韩欧美精品免费久久| 久久人妻av系列| 边亲边吃奶的免费视频| 日本猛色少妇xxxxx猛交久久| 国产老妇伦熟女老妇高清| 国产伦精品一区二区三区四那| 国产极品天堂在线| 搡老妇女老女人老熟妇| av线在线观看网站| 欧美精品一区二区大全| 色综合站精品国产| 成年免费大片在线观看| 白带黄色成豆腐渣| 黑人高潮一二区| 毛片女人毛片| 午夜免费男女啪啪视频观看| 亚洲精品成人久久久久久| 性色avwww在线观看| 伦精品一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 欧美精品一区二区大全| 男女国产视频网站| 久久精品国产99精品国产亚洲性色| 国产精品国产高清国产av| 久久久久久伊人网av| 午夜爱爱视频在线播放| www.av在线官网国产| av又黄又爽大尺度在线免费看 | 免费av毛片视频| 午夜精品在线福利| 亚洲国产日韩欧美精品在线观看| 亚洲美女视频黄频| av女优亚洲男人天堂| 少妇高潮的动态图| 91久久精品国产一区二区三区| 国产亚洲精品久久久com| 国产免费又黄又爽又色| 亚洲av日韩在线播放| 色综合站精品国产| 国产v大片淫在线免费观看| 国产亚洲精品av在线| 日本熟妇午夜| 美女国产视频在线观看| 99久久精品国产国产毛片| 欧美极品一区二区三区四区| 日韩成人伦理影院| 亚洲怡红院男人天堂| 成人性生交大片免费视频hd| 亚洲在久久综合| 99在线人妻在线中文字幕| 狂野欧美白嫩少妇大欣赏| 欧美激情国产日韩精品一区| 精品国产三级普通话版| 99在线视频只有这里精品首页| 午夜视频国产福利| 边亲边吃奶的免费视频| av在线播放精品| 国产久久久一区二区三区| 大话2 男鬼变身卡| 国产精品女同一区二区软件| 精品久久久久久久久久久久久| ponron亚洲| 国产高清视频在线观看网站| 99热这里只有是精品在线观看| 国产精品久久久久久精品电影| 亚洲va在线va天堂va国产| 秋霞在线观看毛片| 久久鲁丝午夜福利片| 亚洲美女视频黄频| 午夜精品在线福利| 欧美潮喷喷水| 国产白丝娇喘喷水9色精品| 你懂的网址亚洲精品在线观看 | 91aial.com中文字幕在线观看| 老司机影院成人| 色网站视频免费| 亚洲五月天丁香| 国产激情偷乱视频一区二区| 亚洲乱码一区二区免费版| 久久精品久久精品一区二区三区| 亚洲国产精品久久男人天堂| 欧美精品一区二区大全| 99久久中文字幕三级久久日本| 老司机影院成人| 麻豆成人av视频| 七月丁香在线播放| 久久久久性生活片| 波野结衣二区三区在线| 国产亚洲午夜精品一区二区久久 | 日本av手机在线免费观看| 亚洲天堂国产精品一区在线| 大香蕉久久网| 美女国产视频在线观看| 国产老妇伦熟女老妇高清| 亚洲,欧美,日韩| 国产一区亚洲一区在线观看| 成人二区视频| 22中文网久久字幕| 久久6这里有精品| 精品国内亚洲2022精品成人| 亚洲成人中文字幕在线播放| 国语对白做爰xxxⅹ性视频网站| a级一级毛片免费在线观看| 亚洲美女视频黄频| 在线免费观看不下载黄p国产| 久久久久国产网址| 亚洲av成人av| 亚洲欧美日韩卡通动漫| 日韩一区二区三区影片| 小说图片视频综合网站| 偷拍熟女少妇极品色| a级毛色黄片| 亚洲av中文字字幕乱码综合| www日本黄色视频网| 一夜夜www| 国产91av在线免费观看| 日韩一本色道免费dvd| 丝袜美腿在线中文| 中文资源天堂在线|