• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genetic Variation for Anaerobic Germination and Emergence from Deeper Soil Depth in Oryza nivara Accessions

    2022-06-16 11:39:34RevanayyaGotheDharminderBhatiaAkashdeepKambojNitikaSandhuButaSinghDhillon
    Rice Science 2022年4期

    Revanayya M. Gothe, Dharminder Bhatia, Akashdeep Kamboj, Nitika Sandhu, Buta Singh Dhillon

    Letter

    Genetic Variation for Anaerobic Germination and Emergence from Deeper Soil Depth inAccessions

    Revanayya M. Gothe1, Dharminder Bhatia1, Akashdeep Kamboj1, Nitika Sandhu2, Buta Singh Dhillon1

    ()

    Anaerobic germination and emergence from deeper soil depth are two important traits for breeding rice suitable for direct seeded conditions. In order to evaluate genetic variation for these traits, a total of 300accessions were evaluated along with checks, of which, 159 accessions germinated under anaerobic conditions indicating presence of immense variability in. Of 159 accessions, 69 germinated in submerged conditions and 90 germinated after removing water with availability of aerobic conditions, indicating two different mechanisms operating in. Similarly, out of 300accessions, 218 germinated from 6 cm and 95 germinated from 8 cm soil depth. The accessions that germinated from deeper soil depth had longer mesocotyl and coleoptile lengths. For both the traits, the bestaccessions that should be used in breeding programme were selected. Further, genome-wide association study (GWAS)identified 10 significant QTLs for anaerobic germination. Similarly, 8 QTLs for mesocotyl length and 12 QTLs for coleoptile length were identified. These donors and QTLs for anaerobic germination and emergence from deeper soil depth will serve as a platform for developing rice varieties suitable for direct seeded conditions.

    Rice plays a pivotal role in the food security of the world’s population.It is an important crop in Punjab, a north-western state of India due to cultivation of high-yielding varieties, favourable policy regime of free energy and open-ended purchase of this crop at an assured price, thus promising higher returns to farmers. In general, puddled transplanted rice is the cultivation method of rice which requires a lot of standing water in the field for irrigation besides using a lot of labour for transplanting. But, about 73% of water requirement for transplanted rice crop is met from ground water in the state (Sidhu et al, 2021). The practice has led to rapid decline in the water table of soil, which is threatening environmental sustainability (Custodio, 2002). Looming water scarcity, water-intensive nature of this rice cultivation practice and escalating labour shortage propel to adopt alternative methods of rice cultivation in the state. Direct seeded rice is emerging as an alternative method due to low input demand. Punjab Agricultural University, India has recently established the agronomic practices of sowing rice under direct seeded conditions (Anonymous, 2022). However, there is a need to develop varieties suitable fordirect seeded conditions.

    The development of rice varieties suitable for direct-seeded conditions requires breeding for several component traits such as germination under anaerobic conditions, emergence from deeper soil depth, uniform emergence, tolerance to Fe deficiency, resistance to soil nematodes and many plant architectural and yield traits. Among them, germination under anaerobic conditions and emergence from deeper soil depth are two important components for breeding direct seeded rice. In addition, germination under anaerobic conditions is also a feasible way to suppress weeds economically.

    Flooding in farmer field after seeding is a common problem in flood prone areas and in some areas, it may occur due to unexpected rain, unlevelled fields and poor drainage that results in uneven crop establishment. Under direct seeded conditions, the varieties having ability to germinate under anaerobic conditions will show better performance (Doley et al, 2018). On the other hand, rice has a narrow range of optimal sowing depth and deep sowing often causes poor seedling emergence. Germination from upper soil layer may suffer due to more transpiration losses under direct seeded conditions, leading to the lack of moisture required for germination and seedling growth. Nevertheless, deep sowing will enhance seedling emergence and establishment because of the high soil moisture in the seed zone quickens germination. Elongation of both mesocotyl and coleoptile, however, can facilitate the emergence of rice seed when sown deep in the soil under direct seeded conditions (Chung, 2010).

    along withis considered as the wild progenitor of(Lu et al, 2001). Itis a reservoir of an abundant genetic diversity which has contributed genes for resistance to pests, diseases, tolerance to abiotic stress, and yield related traits (Cheema et al, 2008; Gaikwad et al, 2014; Bhatia et al, 2017; Kumar et al, 2018). In addition,with ‘AA’ genome can easily hybridize with cultivatedand stable introgressions can be developed. Few scattered studies have been conducted to identify rice germplasm that can germinate under anaerobic conditions (Angaji et al, 2010; Adigbo et al, 2018) and from deeper soil depths (Wu et al, 2005; Alibu et al, 2012). Efforts have also been made to map QTLs associated with these traits in rice (Angaji et al, 2010; Baltazar et al, 2014; Lee and Kwon, 2015). However, many efforts are still needed to identify donors and QTLs for these traits.

    In this study, we screened 300accessions along with positive and negative checks for anaerobic germination and for emergence from 6 cm and 8 cm soil depths. During screening for anaerobic germination, seeds were submerged for 21 d and thereafter the water was drained out. All the accessions were allowed to germinate for another 10 d, and days to germination and the number of plants germinated were recorded. Wide range of variation was recorded inaccessions for survival under anaerobic conditions. Positive checks started germination from 9 d whereasaccessions started germination from 7 d of submergence. Out of 300accessions, 159 accessions germinated under anaerobic conditions (Table S1). Of these, 69 accessions germinated before removing water or within submerged conditions, whereas 90 accessions germinated after removing water (after 21 d of seeding)(Fig.S1). Of 90 accessions, more than half germinated after 4 d of removing water (21–25 d after seeding). Negative checks didn’t germinate before and after removing water. After removing water and allowing it to germinate for a few more days, we examined seeds of negative checks andaccessions that didn’t germinate, and found thatthese seeds had softened and started decaying, while the seeds ofaccessions that got germinated after some days of removing water were as hard as it was at the time of sowing. The 159 germinated accessions were further evaluated, and the accessions germinated within 7 to 9 d after seeding or within 4 d of removing water were selected (Table 1).

    Table 1. Oryza nivara accessions selected for anaerobic conditions and deeper soil depth (8 cm) with germination in minimum number of days as compared to 2 cm soil depth.

    Numbers in parenthesis are mesocotyl length (cm) and coleoptilelength (cm) obtained at 8 cm soil depth.‘–’ indicates no data for the trait.

    CR, Cuttack rice; IRGC, International rice germplasm collection.

    For anaerobic germination, two types of mechanisms seemed to be operating inaccessions. In one mechanism,accessions started germinating under submerged conditions after 7–8 d of seeding, showing early vigour and elongated coleoptiles. This mechanism seems similar togene mechanism, which helps the plant to survive from flood-like situations by elongating the stem internode and keeping the leaf above water (Hattori et al, 2009). In the other mechanism, germination ofaccessions remained suppressed under anaerobic conditions and as soon as the aerobic conditions prevailed, germination started. However, it will be interesting to get deep insight into molecular mechanisms in both cases inaccessions.

    Similarly, under control conditions at 2 cm soil depth, emergence ofaccessions started as early as the 5th day and by the end of the 9th day, all the accessions germinated. Under the 6 cm soil depth, seed emergence started as early as the 7th day and ended on the 13th day. Most of the accessions germinated between 8 to 12 d under the 6 cm soil depth. Under the 8 cm soil depth, seed emergence started as early as the 8th day and ended on the 14th day and most of the accessions germinated between 10 to 13 d. All the negative checks germinated under the 2 cm soil depth but didn’t germinate under the 6 and 8 cm soil depths except NPT1 and LIL427, which also germinated at the 6 cm soil depth. Out of 300accessions, 218 accessions germinated at the 6 cm soil depth and 95 lines germinated at the 8 cm soil depth. At 15 d after seeding, mesocotyl length and coleoptile length were measured by carefully uprooting the seedlings. Significant variations were observed amongaccessions for mesocotyl and coleoptile lengths under the 6 and 8 cm soil depths (Fig. S2). In the control conditions, as seeds were sown on the upper surface, mesocotyl didn’t get elongated but only coleoptile elongated and it varied from 0.40 to 0.90 cm. Under the 6 cm soil depth, mesocotyl length varied from 1.72 to 5.12 cm and coleoptile length varied from 0.41 to 3.91 cm. Under the 8 cm depth, mesocotyl length varied in the range of 2.90 to 7.70 cm and coleoptile length varied from 0.30 to 4.15 cm.

    Among the 95 accessions germinated at the 8 cm soil depth, the accessions CR100113A, IRGC92745, IRGC92910 and IRGC100916 showed the longest mesocotyl and coleoptile lengths and higher germination rate. At 15 d after seeding, we examined the seeds of negative checks andaccessions which didn’t emerge from the 8 cm depth. Seeds started germinating but they were unable to reach the soil surface due to shorter mesocotyl and coleoptile lengths, and hence the coleoptile leaves unfurled underground which finally terminated. Rice seedlings with longer mesocotyls and coleoptiles can emerge better under deeper soil depths.Highly significant variationwas observed among 95 accessions for mesocotyl and coleoptile lengths (< 0.0001). Based on replicated evaluation, the accessions which germinated within 10 d of seeding showed higher germination rate and possessed longer mesocotyl and coleoptile lengths for emergence from the 8 cm soil depth (Table 1).

    Eizenga et al (2016) indicated thatintrogressions show higher seedling vigour by increasing both coleoptile and shoot lengthsusing backcross inbred lines derived from M-202 and.hides genetic variation for emergence from deeper soil depth. Here, a set of 300accessions was tested for emergence from deeper soil depths, of which, 218 accessions germinated from the 6 cm soil depth and 95 accessions germinated from the 8 cm soil depth, indicating the presence of huge variation for this trait in annual wild relative of rice. Shift from transplanting to direct seeding for rice crop establishment has been evident in Punjab, India due to scarcity of labour required for transplanting, simplicity and additional advantages associated with direct seeded rice. Most of the present cultivated varieties might lack these traits due to breeding efforts directed towards development of cultivars suitable under transplanted conditions for past many decades. However, large number ofaccessions possess these traits, indicating large amount of variations of such traits might be present in wild relatives of rice. Based on thorough screening, theaccessions showing germination under anaerobic conditions with less days to germination could be used further in breeding programme.

    Rice varieties having the ability to elongate its mesocotyl can emerge from deeper soil depths (Luo et al, 2007; Chung, 2010). The mesocotyl elongation ability varied inaccessions. Thus, failure of seedlings to reach soil surface in deep seed placement is due to inability of the mesocotyl to elongate. The mesocotyl and coleoptile lengths increase with changing soil depths and genetic ability present in the accessions.accessions that germinated from the 8 cm soil depth had the ability to elongate its mesocotyl and emerge from the soil surface.

    GWAS was used to identify QTLs governing anaerobic germination and emergence from deeper soil depths. The method uses historic recombination events to identify markers located much closer to the genes of interest (Zhu et al, 2008). In addition, GWAS is an important strategy to identify founder lines that can be used further in breeding programme. A total of 21912 single nucleotide polymorphism (SNPs) were obtained from ddRADseq ofaccessions after data analysis and filtering based on missing data point < 10%, MAF (minor allele frequency) of 0.05 and read depth > 2 (Table S2). Of 21912 SNPs, the highest number of SNPs was obtained on chromosome 1 and the lowest on chromosome 12. SNP data along with phenotypic data of anaerobic germination, mesocotyl and coleoptile lengths for emergence from deeper soil depth were used for GWAS. Principal component analysis (PCA) ofaccessions based on 21912SNPs divided the whole population into two major sub-clusters while few accessions in one major sub-cluster seemed to bear differences with others(Fig. S3).

    Fig. 1. Manhattan plot and quantile-quantile plot for anaerobic germination (A), mesocotyl length (B) and coleoptile length (C).

    Horizontal dotted line is the threshold plotted at LOD = 3 and correspondingvalue. The vertical bars show the QTL region identified based on genome-wide association study using multi-locus mrMLM approach.

    Table 2. Single nucleotide polymorphisms associated with anaerobic germination (AG), mesocotyl length (ML) and coleoptile length (CL) in O. nivara accessions.

    Chr, Chromosome;2, Contribution to the total phenotype; MAF,Minor allele frequency.

    For GWAS,accessions were scored for anaerobic germination as ‘1’ which germinated under anaerobic conditionsand the rest as ‘0’. GWAS with anaerobic germination identified10 SNPs present on chromosomes 1, 2, 3, 4, 7, 8 and 11 (Fig. 1-A and Table 2). Similarly, GWAS was conducted to identify QTLs governing emergence from deeper soil depths using associated traits, mesocotyl length and coleoptile length. Mesocotyl and coleoptile lengths of all the accessions were obtained by combining data from different soil depths(2, 6 and 8 cm). GWAS with mesocotyl length identified 7 SNPs present on chromosomes 1, 2, 3, 8, 9 and 11 (Fig. 1-B and Table 2). GWAS with coleoptile length identified 10 SNPs on chromosomes 1, 2, 3, 4, 8, 9, 10 and 11 (Fig. 1-C and Table 2).

    QTLs for anaerobic germination have been reported on chromosomes 1, 2, 3, 7, 9, 11 and 12 (Angaji et al, 2010; Baltazar et al, 2014). Of these QTLs, trehalose-6-phosphate phosphatase genehas been identified as the genetic determinant in, a major QTL responsible for anaerobic germination.is involved in starch mobilization to the germinating embryo and elongating coleoptile, which consequentlyfacilitates germination under anaerobic conditions (Kretzschmaret al, 2015). This mechanism seems to be operating inaccessions which are germinating under submerged conditions, though further elucidation is required for validation. Ten QTLs for anaerobic germination inaccessions could be further explored by generating bi-parental population, however, no QTL was observed inregion. Wu et al (2015) and Lu et al (2016) have identified QTLs for emergence from deeper soil depth using associated traits such as mesocotyl and coleoptile lengths. This study identified 7 QTLs for mesocotyl length and 10 QTLs for coleoptile length inaccessions.These QTLs are being validated and introgressed into elite cultivars by making bi-parental populations and converting associated SNP to KASP (kompetitive allele specificPCR) markers. At this stage, it is also difficult to predict the candidate genes responsible for anaerobic germination and emergence under deeper soil depth present in QTL regions. However, the donors for anaerobic germination and emergence under deeper soil depth identified in this study can be used in the breeding for direct seeded rice. Further identification of genes underlying these QTL regions will unfold the mechanism that is responsible for anaerobic germination tolerance and emergence under deeper soil depth.

    ACKNOWLEDGEMENT

    This study was funded by the Department of Science and Technology, India (Grant No. EMR/2017/003069).

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Frequency distribution for days to germination ofaccessions under anaerobic conditions.

    Fig. S2. Germination status under anaerobic conditions (submerged conditions) and emergence from deeper soil depths.

    Fig. S3. Principal component analysis (PCA) plot showing clustering of 294accessions into different groups.

    Table S1. Information of 300accessions and checks being evaluated under anaerobic conditions and emergence from deeper soil depths at 6 and 8 cm.

    Table S2.ddRADseq based SNPs inaccessions spanning all the 12 chromosomes.

    Adigbo S O, Osadebay P J, Iseghohi I, Alarima C I, Agbenin N O, Odedina J N, Fabunmi T O. 2018. Screening and evaluation of upland rice (L.) varieties in inundated soil., 51(2): 63–69.

    Alibu S, Saito Y, Shiwachi H, Irie K. 2012. Genotypic variation in coleoptile or mesocotyl lengths of upland rice (L.) and seedling emergence in deep sowing., 7:6239–6348.

    Angaji S A, Septiningsih E M, Mackill D J, Ismail A M. 2010. QTLs associated with tolerance of flooding during germination in rice (L.)., 172(2): 159–168.

    Anonymous. 2022. Package of Practices ofCrops. Ludhiana, India: Punjab Agricultural University: 21–24.

    Baltazar M D, Ignacio J C I, Thomson M J, Ismail A M, Mendioro M S, Septiningsih E M. 2014. QTL mapping for tolerance of anaerobic germination from IR64 and thelandrace Nanhi using SNP genotyping., 197: 251–260.

    Bhatia D, Joshi S, Das A, Vikal Y, Sahi G K, Neelam K, Kaur K, Singh K. 2017. Introgression of yield component traits in rice (ssp.) through interspecific hybridization., 57(3): 1557–1573.

    Cheema K K, Grewal N K, Vikal Y, Sharma R, Lore J S, Das A, Bhatia D, Mahajan R, Gupta V, Bharaj T S, Singh K. 2008. A novel bacterial blight resistance gene frommapped to 38 kb region on chromosome 4L and transferred toL., 90(5): 397–407.

    Chung N J. 2010. Elongation habit of mesocotyls and coleoptiles in weedy rice with high emergence ability in direct-seeding on dry paddy fields., 61(11): 911.

    Custodio E. 2002. Aquifer overexploitation: What does it mean?, 10(2): 254–277.

    Doley D, Barua M, Sarma D, Barua P K. 2018. Screening and enhancement of anaerobic germination of rice genotypes by pre-sowing seed treatments., 115:1185–1190.

    Eizenga G C, Neves P C F, Bryant R J, Agrama H A, Mackill D J. 2016. Evaluation of a M-202 ×advanced backcross mapping population for seedling vigor, yield components and quality., 208(1): 157–171.

    Gaikwad K B, Singh N, Bhatia D, Kaur R, Bains N S, Bharaj T S, Singh K. 2014. Yield-enhancing heterotic QTL transferred from wild species to cultivated riceL., 9(6): e96939.

    Hattori Y, Nagai K, Furukawa S, Song X J, Kawano R, Sakakibara H, Wu J Z, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M. 2009. The ethylene response factorsandallow rice to adapt to deep water., 460: 1026–1030.

    Kretzschmar T, Pelayo M A F, Trijatmiko K R, Gabunada L F M, Alam R, Jimenez R,Mendioro M S, Slamet-Loedin I H, Sreenivasulu N, Bailey-Serres J, Ismail A M, Mackill D J, Septiningsih E M. 2015. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice., 1:15124.

    Kumar K, Sarao P S, Bhatia D, Meelam K, Kaur A, Mangat G S, Brar D S, Singh K. 2018. High-resolution genetic mapping of novel brown planthopper resistance locus,inL.×(Sharma & Shastry) derived interspecific F2population., 131(5):1163–1171.

    Lee J, Kwon S W. 2015. Analysis of quantitative trait loci associated with seed germination and coleoptile length under low temperature condition., 18(4): 273–278.

    Lu B R, Ge S, Sang T, Chen J K, Hong D Y. 2001. The current taxonomy and perplexity of the genus(Poaceae)., 39(4):373–388.

    Lu Q, Zhang M C, Niu X J, Wang C H, Xu Q, Feng Y, Wang S, Yuan X P, Yu H Y, Wang Y P, Wei X H. 2016. Uncovering novel loci for mesocotyl elongation and shoot length inrice through genome-wide association mapping., 243(3): 645–657.

    Luo J, Tang S Q, Hu P S, Louis A, Jiao G A, Tang J. 2007. Analysis on factors affecting seedling establishment in rice., 14(1): 27–32.

    Sidhu B S, Sharda R, Singh S. 2021. Spatio-temporal assessment of groundwater depletion in Punjab, India., 12: 100498.

    Wu J H, Feng F J, Lian X M, Teng X Y, Wei H B, Yu H H, Xie W B, Yan M, Fan P Q, Li Y, Ma X S, Liu H Y, Yu S B, Wang G W, Zhou F S, Luo L J, Mei H W. 2015. Genome-wide association study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice., 15: 218.

    Wu M G, Zhang G H, Lin J R, Cheng S H. 2005. Screening for rice germplasms with specially-elongated mesocotyl., 12(3):226–228.

    Zhu C S, Gore M, Buckler E S, Yu J M. 2008. Status and prospects of association mapping in plants., 1(1):5–20.

    30 October 2021;

    18 February 2022

    Copyright ? 2022, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2022.02.001

    Dharminder Bhatia (d.bhatia@pau.edu)

    √禁漫天堂资源中文www| 国产亚洲av片在线观看秒播厂| 国产精品国产av在线观看| 精品国产一区二区三区久久久樱花| 日韩大码丰满熟妇| 国产精品一区二区在线不卡| 中文乱码字字幕精品一区二区三区| 嫩草影视91久久| 老汉色av国产亚洲站长工具| 国产熟女午夜一区二区三区| 91精品国产国语对白视频| 另类精品久久| 尾随美女入室| 国产精品一国产av| 国精品久久久久久国模美| 日韩 亚洲 欧美在线| 韩国精品一区二区三区| 捣出白浆h1v1| 中文字幕人妻丝袜一区二区 | 久久久久国产一级毛片高清牌| 色综合欧美亚洲国产小说| 国产视频首页在线观看| xxxhd国产人妻xxx| 久久 成人 亚洲| 久久综合国产亚洲精品| 丝袜美足系列| 欧美另类一区| 我的亚洲天堂| 午夜日韩欧美国产| 日韩欧美精品免费久久| 亚洲自偷自拍图片 自拍| www日本在线高清视频| 日韩中文字幕欧美一区二区 | 最近手机中文字幕大全| 99久久综合免费| 99久久99久久久精品蜜桃| 亚洲欧美清纯卡通| av女优亚洲男人天堂| 在线 av 中文字幕| 亚洲精品国产av成人精品| 精品久久久精品久久久| 国产精品一区二区精品视频观看| 韩国av在线不卡| 丰满饥渴人妻一区二区三| 热re99久久精品国产66热6| 亚洲成人一二三区av| 免费黄网站久久成人精品| 午夜福利视频在线观看免费| 欧美97在线视频| 亚洲人成网站在线观看播放| 国产一卡二卡三卡精品 | 国产国语露脸激情在线看| 啦啦啦中文免费视频观看日本| 日韩一区二区三区影片| 黄色视频不卡| 亚洲免费av在线视频| 亚洲欧美一区二区三区久久| 波多野结衣av一区二区av| 国产熟女欧美一区二区| 中文字幕色久视频| 黄色视频在线播放观看不卡| kizo精华| 视频区图区小说| 国产成人a∨麻豆精品| 丝瓜视频免费看黄片| 久久女婷五月综合色啪小说| 自拍欧美九色日韩亚洲蝌蚪91| 免费在线观看视频国产中文字幕亚洲 | 国产成人免费观看mmmm| 9热在线视频观看99| 一区福利在线观看| 青草久久国产| 好男人视频免费观看在线| av线在线观看网站| 亚洲精品aⅴ在线观看| 欧美日韩亚洲国产一区二区在线观看 | 男男h啪啪无遮挡| 成年av动漫网址| 日韩熟女老妇一区二区性免费视频| 日韩精品有码人妻一区| 亚洲四区av| 精品一区二区三卡| 交换朋友夫妻互换小说| √禁漫天堂资源中文www| 97精品久久久久久久久久精品| 国产又色又爽无遮挡免| 免费在线观看黄色视频的| 美女福利国产在线| 男人添女人高潮全过程视频| 日韩一本色道免费dvd| 免费av中文字幕在线| 国产乱来视频区| 亚洲在久久综合| 99精品久久久久人妻精品| 久久国产亚洲av麻豆专区| 午夜精品国产一区二区电影| 国产成人精品在线电影| 一级片'在线观看视频| 丝袜脚勾引网站| 少妇被粗大的猛进出69影院| 免费在线观看黄色视频的| av国产久精品久网站免费入址| 亚洲成人免费av在线播放| 国产免费福利视频在线观看| 丰满迷人的少妇在线观看| 老汉色∧v一级毛片| 国产一区二区三区综合在线观看| 亚洲成国产人片在线观看| 欧美国产精品va在线观看不卡| 在线观看免费视频网站a站| 亚洲人成电影观看| 精品一区二区三区av网在线观看 | 久久精品亚洲av国产电影网| 国产免费视频播放在线视频| 男人添女人高潮全过程视频| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品久久午夜乱码| 午夜影院在线不卡| 亚洲色图 男人天堂 中文字幕| 国精品久久久久久国模美| 精品亚洲乱码少妇综合久久| 亚洲国产欧美一区二区综合| 国产一区二区 视频在线| 18禁动态无遮挡网站| 亚洲人成77777在线视频| 一本—道久久a久久精品蜜桃钙片| 在线 av 中文字幕| 亚洲欧美成人精品一区二区| 日韩伦理黄色片| 欧美日韩国产mv在线观看视频| 国产日韩欧美在线精品| 波多野结衣一区麻豆| 免费观看av网站的网址| 男女高潮啪啪啪动态图| 亚洲美女搞黄在线观看| 日韩人妻精品一区2区三区| 中国国产av一级| 在线亚洲精品国产二区图片欧美| 欧美精品一区二区大全| 丁香六月欧美| 日韩一区二区视频免费看| 久久精品亚洲av国产电影网| 午夜福利视频精品| 国产精品久久久人人做人人爽| 黄片无遮挡物在线观看| 国产精品久久久久成人av| 在线观看免费视频网站a站| 黄网站色视频无遮挡免费观看| 久久久欧美国产精品| 欧美精品一区二区免费开放| 大片免费播放器 马上看| 天天影视国产精品| 汤姆久久久久久久影院中文字幕| 一区二区三区乱码不卡18| 精品一品国产午夜福利视频| 少妇被粗大猛烈的视频| 欧美精品亚洲一区二区| 日本黄色日本黄色录像| av又黄又爽大尺度在线免费看| 少妇 在线观看| 捣出白浆h1v1| 日韩av免费高清视频| 亚洲熟女毛片儿| 19禁男女啪啪无遮挡网站| 99热网站在线观看| 国产精品一二三区在线看| 成人免费观看视频高清| 免费av中文字幕在线| 悠悠久久av| 黄频高清免费视频| 免费观看性生交大片5| 一个人免费看片子| 亚洲色图 男人天堂 中文字幕| 午夜91福利影院| 日韩精品免费视频一区二区三区| 在线观看免费午夜福利视频| 亚洲欧美精品综合一区二区三区| 大陆偷拍与自拍| 国产男女内射视频| 嫩草影视91久久| 中文天堂在线官网| 一区二区三区四区激情视频| 天天影视国产精品| 亚洲欧洲国产日韩| 亚洲国产精品成人久久小说| 国产免费现黄频在线看| 国产精品一区二区在线不卡| 国产成人系列免费观看| 美女主播在线视频| 丝袜脚勾引网站| 老汉色av国产亚洲站长工具| 2018国产大陆天天弄谢| 自线自在国产av| 亚洲av欧美aⅴ国产| 亚洲精品久久午夜乱码| 80岁老熟妇乱子伦牲交| 少妇人妻久久综合中文| 热re99久久精品国产66热6| 一级毛片黄色毛片免费观看视频| 人人妻人人添人人爽欧美一区卜| 在线观看免费视频网站a站| 观看av在线不卡| 国产精品嫩草影院av在线观看| 高清视频免费观看一区二区| 免费久久久久久久精品成人欧美视频| 97在线人人人人妻| 一级,二级,三级黄色视频| 毛片一级片免费看久久久久| 亚洲成人国产一区在线观看 | 欧美乱码精品一区二区三区| 老汉色av国产亚洲站长工具| 亚洲欧洲精品一区二区精品久久久 | 黄色一级大片看看| 国产高清国产精品国产三级| 国产xxxxx性猛交| 日本午夜av视频| 亚洲精品日本国产第一区| 成年人免费黄色播放视频| 啦啦啦在线观看免费高清www| 亚洲精品中文字幕在线视频| 亚洲av欧美aⅴ国产| 少妇猛男粗大的猛烈进出视频| 精品人妻在线不人妻| 国产极品粉嫩免费观看在线| 热re99久久精品国产66热6| 欧美日韩一区二区视频在线观看视频在线| 久久 成人 亚洲| 国产av一区二区精品久久| 亚洲美女视频黄频| 亚洲精品中文字幕在线视频| 这个男人来自地球电影免费观看 | 最新的欧美精品一区二区| 丰满少妇做爰视频| 九草在线视频观看| 青青草视频在线视频观看| 国产又爽黄色视频| 性少妇av在线| 久久久久久久大尺度免费视频| 国产精品久久久久久人妻精品电影 | 久久天堂一区二区三区四区| 2018国产大陆天天弄谢| 亚洲图色成人| 国产精品一国产av| 国产精品国产三级国产专区5o| 99国产综合亚洲精品| 两个人看的免费小视频| 少妇被粗大的猛进出69影院| 一边亲一边摸免费视频| 日本91视频免费播放| 免费观看a级毛片全部| 超碰成人久久| 午夜福利在线免费观看网站| 久久青草综合色| 秋霞伦理黄片| 啦啦啦在线观看免费高清www| 18禁观看日本| 国产精品一国产av| 国产精品一二三区在线看| 国产成人精品久久久久久| 久久 成人 亚洲| 亚洲视频免费观看视频| 国产精品免费大片| 日韩视频在线欧美| 国产精品亚洲av一区麻豆 | 亚洲成国产人片在线观看| 老司机靠b影院| 母亲3免费完整高清在线观看| 久久精品国产综合久久久| 91精品三级在线观看| 国产精品三级大全| 国产精品香港三级国产av潘金莲 | 亚洲欧美一区二区三区久久| 亚洲av日韩精品久久久久久密 | 99久久综合免费| 深夜精品福利| 中国国产av一级| 精品国产一区二区三区四区第35| 精品国产一区二区久久| 国产欧美日韩一区二区三区在线| 哪个播放器可以免费观看大片| 一级a爱视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线| netflix在线观看网站| 男女床上黄色一级片免费看| 成人18禁高潮啪啪吃奶动态图| 男人添女人高潮全过程视频| 亚洲国产欧美在线一区| 国产一区有黄有色的免费视频| 久久ye,这里只有精品| 国产精品麻豆人妻色哟哟久久| 又大又黄又爽视频免费| 一边摸一边做爽爽视频免费| 亚洲激情五月婷婷啪啪| 97人妻天天添夜夜摸| 精品国产乱码久久久久久男人| 国产1区2区3区精品| 国产成人一区二区在线| 亚洲欧洲精品一区二区精品久久久 | 久久人妻熟女aⅴ| 精品少妇内射三级| 90打野战视频偷拍视频| 丁香六月欧美| av有码第一页| 国产成人免费无遮挡视频| 午夜福利,免费看| 高清av免费在线| 国产亚洲av片在线观看秒播厂| 人人妻人人添人人爽欧美一区卜| 久久亚洲国产成人精品v| 国产男女内射视频| 在线观看免费视频网站a站| 狂野欧美激情性xxxx| 免费黄网站久久成人精品| 欧美日韩视频精品一区| 婷婷成人精品国产| 黄片无遮挡物在线观看| 国产无遮挡羞羞视频在线观看| 亚洲精品视频女| av女优亚洲男人天堂| 亚洲第一区二区三区不卡| 王馨瑶露胸无遮挡在线观看| 亚洲人成77777在线视频| 啦啦啦视频在线资源免费观看| 人妻一区二区av| 夫妻午夜视频| 久久狼人影院| av又黄又爽大尺度在线免费看| 极品少妇高潮喷水抽搐| 菩萨蛮人人尽说江南好唐韦庄| 纯流量卡能插随身wifi吗| 两性夫妻黄色片| 国产乱来视频区| 麻豆av在线久日| 97人妻天天添夜夜摸| 亚洲精品aⅴ在线观看| 久久精品亚洲熟妇少妇任你| 国产成人精品久久久久久| av电影中文网址| 久久国产精品大桥未久av| 久久韩国三级中文字幕| 黄色视频不卡| 毛片一级片免费看久久久久| 国产高清不卡午夜福利| 天天躁日日躁夜夜躁夜夜| 亚洲人成77777在线视频| 男男h啪啪无遮挡| 国产精品.久久久| 亚洲 欧美一区二区三区| 亚洲,欧美精品.| 成人18禁高潮啪啪吃奶动态图| 国产又色又爽无遮挡免| 欧美久久黑人一区二区| 在线精品无人区一区二区三| 亚洲色图综合在线观看| videosex国产| 国语对白做爰xxxⅹ性视频网站| 夫妻性生交免费视频一级片| 国产在视频线精品| 丝袜美腿诱惑在线| 超碰成人久久| 精品福利永久在线观看| 侵犯人妻中文字幕一二三四区| 亚洲国产欧美一区二区综合| 99热全是精品| 国产精品无大码| 婷婷色av中文字幕| 欧美日韩一级在线毛片| 亚洲国产精品国产精品| 亚洲av男天堂| 欧美97在线视频| 欧美日韩亚洲国产一区二区在线观看 | 狠狠精品人妻久久久久久综合| 国产熟女午夜一区二区三区| 嫩草影视91久久| 国产麻豆69| 国产乱人偷精品视频| 色婷婷av一区二区三区视频| 午夜影院在线不卡| √禁漫天堂资源中文www| 80岁老熟妇乱子伦牲交| 精品第一国产精品| 亚洲精品美女久久av网站| av在线播放精品| 十八禁网站网址无遮挡| 毛片一级片免费看久久久久| 丝袜美腿诱惑在线| a级毛片黄视频| 老鸭窝网址在线观看| 久久久久国产精品人妻一区二区| 免费人妻精品一区二区三区视频| 999精品在线视频| 美女主播在线视频| 伊人久久国产一区二区| 最近最新中文字幕免费大全7| 亚洲精品一区蜜桃| 久久精品亚洲av国产电影网| 亚洲自偷自拍图片 自拍| 久久午夜综合久久蜜桃| 999久久久国产精品视频| 男的添女的下面高潮视频| 国精品久久久久久国模美| 18禁观看日本| 国产一区二区三区av在线| 欧美精品亚洲一区二区| 一级毛片黄色毛片免费观看视频| 啦啦啦视频在线资源免费观看| 深夜精品福利| 国产高清国产精品国产三级| 精品人妻在线不人妻| 久久久久国产一级毛片高清牌| 黑人巨大精品欧美一区二区蜜桃| 汤姆久久久久久久影院中文字幕| 少妇 在线观看| 中文天堂在线官网| 日本欧美国产在线视频| 人人妻人人澡人人爽人人夜夜| 天美传媒精品一区二区| 久久亚洲国产成人精品v| av网站在线播放免费| 国产野战对白在线观看| 日本午夜av视频| 麻豆精品久久久久久蜜桃| 亚洲七黄色美女视频| 精品久久久精品久久久| av有码第一页| 卡戴珊不雅视频在线播放| 黄色一级大片看看| 综合色丁香网| 欧美人与善性xxx| 男女高潮啪啪啪动态图| 秋霞伦理黄片| 一边亲一边摸免费视频| 国产免费又黄又爽又色| 久久久久国产一级毛片高清牌| 亚洲国产毛片av蜜桃av| 国产97色在线日韩免费| 久久久久久久国产电影| 91aial.com中文字幕在线观看| 99久久99久久久精品蜜桃| 自线自在国产av| 最黄视频免费看| 亚洲精品中文字幕在线视频| 街头女战士在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 91精品三级在线观看| 亚洲精品国产色婷婷电影| 巨乳人妻的诱惑在线观看| 精品久久蜜臀av无| 亚洲国产毛片av蜜桃av| 七月丁香在线播放| 亚洲伊人色综图| 日韩一卡2卡3卡4卡2021年| 中文字幕亚洲精品专区| av福利片在线| 久久久久久免费高清国产稀缺| 欧美在线一区亚洲| 老司机亚洲免费影院| 狠狠婷婷综合久久久久久88av| 大片免费播放器 马上看| 午夜福利在线免费观看网站| 久久国产亚洲av麻豆专区| 91国产中文字幕| 国产精品熟女久久久久浪| 大陆偷拍与自拍| 美女福利国产在线| 国产在线免费精品| 久久99热这里只频精品6学生| 99国产精品免费福利视频| 久久久久久久久免费视频了| 久久天堂一区二区三区四区| 国产视频首页在线观看| 人妻 亚洲 视频| 中文精品一卡2卡3卡4更新| 十八禁高潮呻吟视频| 国产欧美日韩综合在线一区二区| 国产成人欧美| 久久精品久久久久久噜噜老黄| 久久人人97超碰香蕉20202| 国产极品粉嫩免费观看在线| 蜜桃国产av成人99| 国产成人精品无人区| 高清欧美精品videossex| 大香蕉久久网| 中文字幕av电影在线播放| 狠狠婷婷综合久久久久久88av| 少妇人妻精品综合一区二区| 久久久久精品久久久久真实原创| 男人添女人高潮全过程视频| 亚洲欧洲精品一区二区精品久久久 | 新久久久久国产一级毛片| √禁漫天堂资源中文www| 亚洲精品美女久久av网站| 日韩免费高清中文字幕av| 久久天躁狠狠躁夜夜2o2o | 日韩熟女老妇一区二区性免费视频| 免费在线观看视频国产中文字幕亚洲 | 两个人免费观看高清视频| 黄色怎么调成土黄色| 一级毛片黄色毛片免费观看视频| 麻豆乱淫一区二区| 精品一区二区免费观看| 国产av一区二区精品久久| 中文字幕av电影在线播放| 久久精品国产亚洲av高清一级| 国产精品国产三级国产专区5o| 午夜老司机福利片| 人妻 亚洲 视频| 黄色毛片三级朝国网站| 精品福利永久在线观看| 纯流量卡能插随身wifi吗| 亚洲av福利一区| 亚洲久久久国产精品| 亚洲综合精品二区| 丝袜人妻中文字幕| 精品亚洲乱码少妇综合久久| 国产亚洲最大av| 亚洲av电影在线进入| 国产精品99久久99久久久不卡 | 少妇精品久久久久久久| 成人18禁高潮啪啪吃奶动态图| 国产成人精品在线电影| 亚洲精品第二区| 亚洲av成人精品一二三区| 日韩欧美一区视频在线观看| 精品一区二区三区av网在线观看 | 午夜日韩欧美国产| 亚洲精品日韩在线中文字幕| 人人妻,人人澡人人爽秒播 | 午夜日韩欧美国产| 亚洲av国产av综合av卡| 亚洲av在线观看美女高潮| 国产精品欧美亚洲77777| 国产一区二区激情短视频 | 亚洲欧美清纯卡通| 欧美精品一区二区免费开放| 国产日韩欧美在线精品| 久久青草综合色| 国产成人精品久久二区二区91 | 亚洲成色77777| 男男h啪啪无遮挡| 亚洲人成77777在线视频| 99九九在线精品视频| 亚洲人成77777在线视频| 啦啦啦视频在线资源免费观看| 在线精品无人区一区二区三| 天美传媒精品一区二区| 亚洲男人天堂网一区| 久久久久人妻精品一区果冻| 一区二区日韩欧美中文字幕| 啦啦啦在线观看免费高清www| 新久久久久国产一级毛片| 精品国产一区二区久久| av线在线观看网站| 少妇人妻 视频| 亚洲av成人不卡在线观看播放网 | 妹子高潮喷水视频| 一区二区三区精品91| 悠悠久久av| 99香蕉大伊视频| 日韩制服丝袜自拍偷拍| 日日撸夜夜添| 国产免费又黄又爽又色| av网站在线播放免费| 国产成人午夜福利电影在线观看| 久久人人爽av亚洲精品天堂| 不卡视频在线观看欧美| 国产成人a∨麻豆精品| 你懂的网址亚洲精品在线观看| 亚洲一区中文字幕在线| 最新的欧美精品一区二区| 美女视频免费永久观看网站| 少妇人妻 视频| 亚洲欧美色中文字幕在线| 国产男女内射视频| 国产伦理片在线播放av一区| xxxhd国产人妻xxx| 老司机影院毛片| 久久久久网色| 亚洲精品久久久久久婷婷小说| 999精品在线视频| 性少妇av在线| 亚洲国产看品久久| 国产精品一区二区在线不卡| videosex国产| 国产精品一二三区在线看| 在线观看三级黄色| 亚洲av日韩精品久久久久久密 | 亚洲图色成人| 国产精品女同一区二区软件| 成人毛片60女人毛片免费| 国产深夜福利视频在线观看| 欧美久久黑人一区二区| 高清黄色对白视频在线免费看| 亚洲美女搞黄在线观看| 9色porny在线观看| 人成视频在线观看免费观看| 伊人久久国产一区二区| 久久久久久久精品精品| 欧美精品人与动牲交sv欧美| 人人妻,人人澡人人爽秒播 | 国产精品久久久久成人av| 看非洲黑人一级黄片| 亚洲精华国产精华液的使用体验| 热99国产精品久久久久久7| 日韩不卡一区二区三区视频在线| 黄片小视频在线播放| 中文乱码字字幕精品一区二区三区| 少妇人妻 视频| 国产精品二区激情视频| 九色亚洲精品在线播放| 国产成人欧美在线观看 | 国产成人91sexporn| 高清视频免费观看一区二区| 国产精品熟女久久久久浪| 大香蕉久久成人网|