• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feasibility of Improving Unmanned Aerial Vehicle-Based Seeding Efficiency by Using Rice Varieties with Low Seed Weight

    2022-06-16 11:39:32WangXinyuYangGuodongPanXiangchengXiangHongshunPengShaobingXuLe
    Rice Science 2022年4期

    Wang Xinyu, Yang Guodong, Pan Xiangcheng, Xiang Hongshun, Peng Shaobing, Xu Le

    Letter

    Feasibility of Improving Unmanned Aerial Vehicle-Based Seeding Efficiency by Using Rice Varieties with Low Seed Weight

    Wang Xinyu, Yang Guodong, Pan Xiangcheng, Xiang Hongshun, Peng Shaobing, Xu Le

    ()

    Unmanned aerial vehicle (UAV) has offered a promising platform for rice direct seeding that can substantially reduce labor input in the crop establishment process. However, the insufficient payload capacity of UAV-based seeders is currently limiting its intensive and large-scale use for rice direct seeding. This study indicated a large variation in seed weight across varieties, ranging from 15.0 to 36.5 mg and 14.0 to 31.3 mg for inbred and hybrid varieties, respectively, with average seed weights of 25.3 mg for inbred and 24.7 mg for hybrid varieties. Seed weights of 160 out of 4 106 inbred varieties and 17 out of 311 hybrid varieties ranged from 15.0 to 20.0 mg. Reducing seed weight from 25.0 to 15.0 mg increased the seeding area per UAV flight by 67% regardless of inbred and hybrid varieties, although the absolute increase in seeding area for hybrid variety was greater than that for inbred variety because of the difference in seeding rate. The grain yield of inbred varieties was reduced when the seed weight was less than 24 mg. Moreover, 87% of inbred varieties with a seed weight ≤ 20 mg were distributed in South China where rice consumers prefer small rice grains. Therefore, the use of low-seed-weight inbred varieties for improving UAV seeding efficiency might be considered in South China. Unlike inbred rice, 64% of hybrid varieties had higher grain weights compared with their seed weights, and reducing seed weights did not necessarily cause yield loss. Therefore, the small-seed-and-large-grain strategy in hybrid rice could be used for improving UAV seeding efficiency without yield loss. This strategy can be considered for improving UAV seeding efficiency in rice production regions other than South China.

    The majority of rice crop in China is established by transplanting that is labor-, water- and energy-intensive (Peng et al, 2009; Kumar and Ladha, 2011; Liu et al, 2015). Rapid urbanization and natural resource scarcity are driving a major shift in rice crop establishment method from transplanting to direct seeding in recent years (Peng, 2014; Xu et al, 2022). Until now, direct-seeded rice accounts for about 30% of the total planting area in China (Dai et al, 2020).

    Rice direct seeding is primarily done by manual broadcast in China (Luo and Wang, 2014). In the United States, direct seeding is mostly done by broadcasting seeds in standing water using airplanes or mechanical drilling in dry soil (Kumar and Ladha, 2011; Zhang et al, 2018). Scientists and technicians in China have invested heavily in developing on-ground rice seeding machines and their corresponding crop managements in recent years (Zhang et al, 2018, 2021). However, the extension of the rice seeding machines is quite limited and the number of rice seeding machines in China is only 24200 currently (China Agriculture Yearbook Editorial Committee, 2019). Therefore, there is still tremendous opportunities to reduce labor input and to improve rice production efficiency through the mechanization of direct seeding (Zhang and Gong, 2014).

    Recently, technology advances in UAV have provided a promising platform for rice direct seeding by the means of broadcasting or seeding in lines(Diao et al, 2020; Xiao et al, 2021). Compared with airplanes and on-ground seeding machines, UAV-based seeders largely bring the adaptability and flexibility for small fields with a variety of terrains and irregular shapes, because UAV-based seeders can conduct the autonomous operations by planning the routine of flight campaign ahead (Li et al, 2016; Wu et al, 2020). UAV-based seederscan also largely improve seeding efficiency compared to on-ground seeding machines (Li et al, 2016). Diao et al (2020) stated that the average seeding efficiency of UAV-based seeders can be increased by more than five times compared with that of the on-ground seeders. Several on-farm studies have proved the feasibility of UAV-based direct seeding for rice production (Li et al, 2016; Wu et al, 2020). However, most UAV-based seeders are powered by electric batteries,which restricts the payload capacity to less than 15 kg (Yang et al, 2018; Xiao et al, 2021). Insufficient payload capacity of UAV-based seeders is the major factor limiting its intensive and large-scale use for rice direct seeding. Despite the payload or battery capacity might be improved through the advancement in engineering technology, it is worthwhile to explore the feasibility of improving the UAV-based seeding efficiency by selecting rice varieties with low seed weights.

    For inbred rice,grain weight is approximately equal to its seed weight, while the grain weight of hybrid rice is often different from its seed weight due to genetic changes (Xu E B et al, 2015; Tang et al, 2020). Decreasing grain weight might cause the reduction of rice yield to some extent (Xu Q et al, 2015). In addition, rice consumers have their preference for certain grain size (Liu et al, 2010). Therefore, when inbred rice varieties with low seed weights are used for improvingthe UAV-based seeding efficiency, grain yield and local consumers’ preference for grain size should be taken into consideration. For hybrid rice, this is not a problem because one can choose hybrid varieties with small seed weight and large grain weight (thereafter refers to small-seed-and-large-grain strategy) (Tang et al, 2020). Previous studies have found significant genotypic variations in grain weight among both traditional and improved rice varieties (Anandan et al, 2011; Xu Q et al, 2015). However, the information is limited about the seed weight distribution of commercial inbred varieties in China. Furthermore, there is a lack of comprehensive analysis on the difference between seed weight and grain weight for commercial hybrid varieties in China. Based on the data of China National Rice Database (RiceData, 2021), we assessed the feasibility of improving UAV-based seeding efficiency by using varieties with low seed weight for both inbred and hybrid varieties. This study aimed to(1) determine the seed weight distribution of commercial inbred and hybrid rice varieties in China,(2) quantify the increased magnitude in UAV-based seeding efficiency by using inbred varieties with low seed weight, (3) assess the feasibility of using small-seed-and-large-grain strategy in hybrid varieties for improving UAV-based seeding efficiency, and (4) determine whether low seed weight has a negative impact on grain yield.

    Table 1. Number, minimum, median, mean, maximum and coefficient of variation (CV) for seed weight of inbred varieties, and seed and grain weights of hybrid varieties in China.

    A large variation in seed weight was observed across 4 417 inbred and hybrid varieties. The seed weight of inbred and hybrid varieties ranged from 15.0 to 36.5 mg and 14.0 to 31.3 mg, respectively (Table 1).In inbred varieties, the median and mean seed weights were 25.5 and 25.3 mg, respectively. In hybrid varieties, the median and mean seed weights were 25.0 and 24.7 mg, respectively. Seed weights of 3 561 out of 4 106 inbred varietiesand 268 out of 311 hybrid varietiesranged from 22.0 to 28.0 mg (Fig. 1-A and -B), while 160 out of 4 106 inbred varieties and 17 out of 311 hybrid varietieshad a seed weight of 15.0–20.0 mg (thereafter seed weight ≤20.0 mg refers to low-seed-weight varieties). These results suggested that low-seed-weight varieties are available for improving the UAV-based seeding efficiency. The seeding area could be increased substantially with a decrease in seed weight based on our scenario assessment, especially for hybrid varieties due to lower seeding rate compared with inbred varieties (Fig. 1-C). In inbred varieties, compared to those with the seed weight of 25.0 mg, the use of the varieties with the seed weight of 15.0 mg increased the seeding area per payload from 0.400 to 0.667 hm2based on UAV seeder’s payload capacity of 15 kg and seeding rate of 150 seeds/m2. In hybrid varieties, compared to those with the seed weight of 25.0 mg, the use of the varieties with the seed weight of 15.0 mg increased the seeding area per payload from 1.000 to 1.667 hm2based on UAV seeder’s payload capacity of 15 kg and seeding rate of 60 seeds/m2. The seeding efficiency was increased by 67% regardless of inbred and hybrid varieties when seed weight was reduced from25.0 to 15.0 mg.

    Fig. 1. Seed weight distribution of inbred (A) and hybrid (B) rice varieties, effect of seed weight on seeding area per payload by unmanned aerial vehicle (C), and relationship between grain weight and seed weight for hybrid rice varieties (D) in China.

    Grain weight is an important yield component(Xu Q et al, 2015; Chen et al, 2020). We evaluated the relationship between seed weight and grain yield for all commercial inbred and hybrid varieties. Our results indicated that the grain yield of an inbred variety was reduced when seed weight was lower than 24.0 mg (Fig. S1). Therefore, one must be cautious when an inbred variety with low seed weight is used to improve UAV-based seeding efficiency. However, inbred varieties with low seed weight of 16.0–19.0 mg are commonly planted in South China such as Guangxi Province (Chen et al, 2017). This is also supported by the fact that 87% of China’s inbred varieties with seed weight ≤ 20.0 mg are distributed in South China (Fig. S2). In addition to the preference of local consumers for small size of rice grains (Liu et al, 2010), inbred varieties with low seed weight are often planted in South China to overcome high temperature stress (Chen et al, 2017). High temperature often occurs during the ripening phase of early-season rice and deteriorates grain quality by increasing chalkiness in South China (Shi et al, 2015; Kong et al, 2017). Reducing seed weight to less than 18.0 mg has been advocated as an important breeding strategy for mitigating the negative impact of high temperature on rice grain quality (Su, 2001).

    The grain weights of hybrid varieties were positively related with their seed weights, but the seed weights only explained about 22% variation of the grain weights (Fig. 1-D). Minimum, median, mean and maximum values of seed weights were all lower than those of grain weights in hybrid varieties(Table 1). Among 311 hybrid varieties, 64% had lower seed weights compared with their grain weights (Fig. S3). Grain weights of hybrid varieties are generally higher than those of their parents due to heterosis (Yuan, 2002). Zeng et al (1979) reported that out of 34 hybrid varieties, 23 show higher grain weight than the parent with higher grain weight. In a study conducted by Jiangxi Academy of Agricultural Sciences in China, 68% of 400 hybrid varieties showed positive heterosis in grain weight (Yuan, 2002). These results suggested that seed weights are generally lower than grain weights in hybrid varieties because the seed weights of hybrid varieties are the same as the grain weights of male sterile lines (the female parents) (Xu E B et al, 2015). It was found that the seed weight of hybrid varieties was not necessarily associated with their yield performance (Fig. S1). Low-seed-weight hybrid varieties could also achieve high grain yield (Fig. S1 and Table S1). For example, three hybrid varieties with low seed weight, Zhuoliangyou 0985, Lijingyou 570 and Linyou 1005, had the grain weight of 22.4, 21.9 and 26.5 mg and produced a relatively high grain yield of 10.21, 8.99, and 8.34 t/hm2in the middle, early and late seasons, respectively. The yield levels of 8.5 and 10.0 t/hm2were similar to previous studies on hybrid varieties in the early/late and middle seasons, respectively (Zhang et al, 2009; Zhou et al, 2018). Therefore, the phenomenon of small-seed-and-large-grain in hybrid rice could be used for improving UAV-based seeding efficiency without the negative impact on grain yield.

    In rice production, inbred varieties with high seeding rates are commonly practiced by farmers to mitigate undesirable seed germination under unfavorable environmental conditions (Farooq et al, 2011), and farmers generally use lower seeding rate for hybrid than inbred varieties to save seed cost (Peng, 2016). Previous study have confirmed that the seeding rate of hybrid varieties can be reduced from 150 to 60 seed/m2without yield penalty, but the grain yield of inbred varieties decreases significantly under the same conditions (Sun et al, 2015).Morphological advantages of heterosis, such as early vigor, high tillering capacity, large leaf area index and more spikelet number per panicle can compensate for the negative effects of decreased seeding rate on panicle number and grain yield in hybrid rice (Sun et al, 2015; Peng, 2016), which explained why the recommended seeding rates of hybrid varieties can be less than half that of inbred varieties under direct-seeded conditions (Huang, 2022). In fact, high seeding rates limit individual plant growth and increase lodging risk under direct-seeded conditions, which is not suitable for achieving high grain yield in hybrid varieties (Wang et al, 2014). However, the negative consequences of low seeding rate in hybrid varieties, such as high weed infestation or poor crop establishment, should be overcome to prevent yield loss (Sun et al, 2015). Moreover, Lin et al (2014) reported that seed weight is not necessarily related to rice seed vigor and seedling emergence. Therefore, the use of hybrid instead of inbred varieties offers a promising way for increasing UAV-based seeding efficiency due to low seeding rate and the phenomenon of small-seed-and-large-grain in hybrid rice.

    In this study, large genotypic variability in seed weight was observed among commercial inbred and hybrid rice varieties in China, in which low-seed-weight varieties (≤ 20.0 mg) were available to increase the seeding area per UAV flight. Considering that the grain yield of inbred varieties might be reduced with lower seed weight, the use of low-seed-weight inbred varieties for improving UAV seeding efficiency is limited only in South China where rice consumers prefer small size of rice grains. In contrast, small-seed-and-large-grain strategy could be used for improving UAV seeding efficiency without the risk of yield loss in hybrid rice.

    ACKNOWLEDGEMENTS

    This study was supported by the National Natural Science Foundation of China (Grant Nos. 32101819 and 31971845), the China Postdoctoral Science Foundation (Grant No. 2021M691179), the earmarked fund for China Agriculture Research System (Grant No. CARS-01-20). We thank E Zhiguo (China National Rice Research Institute), Mi Jiaming (Huazhong Agricultural University) and Liu Yue (Wuhan University) for their technological assistance.

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Grain yield of inbred and hybrid rice varieties under different seed weights in China.

    Fig. S2. Number of low-seed-weight inbred rice varieties in five regions of China.

    Fig. S3. Distribution of seed weight to grain weight ratio for hybrid rice varieties in China.

    Table S1. Male sterile line, year of release, growing season, seed weight, grain weight and grain yield of hybrid varieties with low seed weight.

    Anandan A, Rajiv G, Eswaran R, Prakash M. 2011. Genotypic variation and relationships between quality traits and trace elements in traditional and improved rice (L.) genotypes., 76(4): H122–H130.

    Chen C H, Liu G L, Li H, Chen Y M, Luo Q C. 2017. The breeding strategy and practice of high-grade conventional rice with long grain in Guangxi., 36(10): 91–98. (in Chinese with English abstract)

    Chen Y Y, Zhu A K, Xue P, Wen X X, Cao Y R, Wang B F, Zhang Y, Liaqat S, Cheng S H, Cao L Y, Zhang Y X. 2020. Effects ofandfor grain size editing by CRISPR/Cas9 in rice., 27(5): 405–413.

    China Agriculture Yearbook Editorial Committee. 2019. 2018 China Agriculture Yearbook. Beijing: China Agriculture Press: 337. (in Chinese)

    Dai Y Z, Luo X W, Zhang M H, Lan F, Zhou Y J, Wang Z M. 2020. Design and experiments of the key components for centralized pneumatic rice day direct seeding machine., 36(10): 1–8. (in Chinese with English abstract)

    Diao Y, Zhu C H, Ren D H, Yu J Q, Luo X, Ouyang Y Y, Zheng J G, Li X Y. 2020. Key points and prospect of rice direct seeding technology by unmanned aerial vehicle., 26(5): 22–25. (in Chinese with English abstract)

    Farooq M, Siddique K H M, Rehman H, Aziz T, Lee D J, Wahid A. 2011. Rice direct seeding: Experiences, challenges and opportunities., 111(2): 87–98.

    Huang M. 2022. The decreasing area of hybrid rice production in China: Causes and potential effects on Chinese rice self- sufficiency., 14(1): 267–272.

    Kong L L, Ashraf U, Cheng S R, Rao G S, Mo Z W, Tian H, Pan S G, Tang X R. 2017. Short-term water management at early filling stage improves early-season rice performance under high temperature stress in South China., 90: 117–126.

    Kumar V, Ladha J K. 2011. Direct seeding of rice recent developments and future research needs., 111: 297–413.

    Li J Y, Lan Y B, Zhou Z Y, Zeng S, Huang C, Yao W X, Zhang Y, Zhu Q Y. 2016. Design and test of operation parameters for rice air broadcasting by unmanned aerial vehicle., 9(5): 24–32.

    Lin M Q, Xue T, Hu S D, Cao D D, Ji H, Zhao G W. 2014. The preliminary analysis on the effects of seed size and weight on seed vigor of hybrid rice., 33(9): 46–50. (in Chinese with English abstract)

    Liu C G, Zhang G Q, Zhou H Q, Feng D J, Zheng H B. 2010. Genetic improvement of yield and plant-type traits of inbredrice cultivars in South China., 43(19): 3901–3911. (in Chinese with English abstract)

    Liu H Y, Hussain S, Zheng M M, Peng S B, Huang J L, Cui K H, Nie L X. 2015. Dry direct-seeded rice as an alternative to transplanted-flooded rice in Central China., 35(1): 285–294.

    Luo X W, Wang Z M. 2014. Research progress in rice mechanization technology., 1: 23–29. (in Chinese with English abstract)

    Peng S B, Tang Q Y, Zou Y B. 2009. Current status and challenges of rice production in China., 12(1): 3–8.

    Peng S B. 2014. Reflection on China’s rice production strategies during the transition period., 44(8): 845–850. (in Chinese with English abstract)

    Peng S B. 2016. Dilemma and way-out of hybrid rice during the transition period in China., 42(3): 313–319. (in Chinese with English abstract)

    RiceData. 2021. Online statistical database: The database for Chinese rice varieties and their genealogy. [2021-7-31]. http://www.ricedata.cn/variety/.

    Shi P H, Tang L, Wang L H, Sun T, Liu L L, Cao W X, Zhu Y. 2015. Post-heading heat stress in rice of South China during 1981–2010., 10(6): e0130642.

    Su X J. 2001. Quality breeding in three-line hybrid rice., 14(1): 106–110. (in Chinese with English abstract)

    Sun L M, Hussain S, Liu H Y, Peng S B, Huang J L, Cui K H, Nie L X. 2015. Implications of low sowing rate for hybrid rice varieties under dry direct-seeded rice system in Central China., 175: 87–95.

    Tang W B, Zhang G L, Deng H B. 2020. Technology exploration and practice of hybrid rice mechanized seed production., 34(2): 95–103. (in Chinese with English abstract)

    Wang D Y, Chen S, Wang Z M, Ji C L, Xu C M, Zhang X F, Chauhan B S. 2014. Optimizing hill seeding density for high- yielding hybrid rice in a single rice cropping system in South China., 9(10): e109417.

    Wu Z J, Li M L, Lei X L, Wu Z Y, Jiang C K, Zhou L, Ma R C, Chen Y. 2020. Simulation and parameter optimisation of a centrifugal rice seeding spreader for a UAV., 192: 275–293.

    Xiao H X, Li Y F, Yuan L Y, Zhang Z F. 2021. Application and prospect of China agricultural unmanned aerial vehicle in rice production., 48(8): 139–147. (in Chinese with English abstract)

    Xu E B, Wang Y X, Ni S, Chen H Q, Zhu X D. 2015. Application of small grain recessive gene in the mechanical sorting of hybrid rice seeds., 21(3): 8–11. (in Chinese with English abstract)

    Xu L, Yuan S, Wang X Y, Chen Z F, Li X X, Cao J, Wang F, Huang J L, Peng S B. 2022. Comparison of yield performance between direct-seeded and transplanted double-season rice using ultrashort- duration varieties in central China., 10(2): 515–523.

    Xu Q, Chen W F, Xu Z J. 2015. Relationship between grain yield and quality in rice germplasms grown across different growing areas., 65(3): 226–232.

    Yang S L, Yang X B, Mo J Y. 2018. The application of unmanned aircraft systems to plant protection in China., 19(2): 278–292.

    Yuan L P. 2002. Hybrid rice. Beijing, China: China Agriculture Press: 4. (in Chinese)

    Zeng S X, Lu Z W, Yang X Q. 1979. Studies on the heterosis of F1hybrids in rice and its relation to the parents., 5(8): 23–34. (in Chinese with English abstract)

    Zhang H C, Gong J L. 2014. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China., 47(7): 1273–1289. (in Chinese with English abstract)

    Zhang M H, Wang Z M, Luo X W, Zang Y, Yang W W, Xing H, Wang B L, Dai Y Z. 2018. Review of precision rice hill-drop drilling technology and machine for paddy., 11(3): 1–11.

    Zhang M H, Mo Z W, Liao J, Pan S G, Chen X F, Zheng L, Luo X W, Wang Z M. 2021. Lodging resistance related to root traits for mechanized wet-seeding of two super rice cultivars., 28(2): 200–208.

    Zhang Y B, Tang Q Y, Zou Y B, Li D Q, Qin J Q, Yang S H, Chen L J, Xia B, Peng S B. 2009. Yield potential and radiation use efficiency of ‘super’ hybrid rice grown under subtropical conditions., 114(1): 91–98.

    Zhou Y J, Li X X, Cao J, Li Y, Huang J L, Peng S B. 2018. High nitrogen input reduces yield loss from low temperature during the seedling stage in early-season rice., 228: 68–75.

    28 October 2021;

    18 February 2022

    Copyright ? 2022, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2022.05.001

    Xu Le (Le.Xu@mail.hzau.edu.cn)

    丰满迷人的少妇在线观看| 欧美成人精品欧美一级黄| 一级毛片久久久久久久久女| 97在线视频观看| 爱豆传媒免费全集在线观看| 一级毛片 在线播放| av免费在线看不卡| 精品国产一区二区久久| 人人妻人人澡人人看| 国产成人91sexporn| 一区二区av电影网| 亚洲怡红院男人天堂| 午夜激情久久久久久久| 久久韩国三级中文字幕| 亚洲色图综合在线观看| 精品一区二区三卡| 秋霞伦理黄片| 精品一品国产午夜福利视频| 又黄又爽又刺激的免费视频.| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品视频女| 91午夜精品亚洲一区二区三区| 纵有疾风起免费观看全集完整版| 男人舔奶头视频| 久久国产乱子免费精品| 最黄视频免费看| av免费在线看不卡| 久久久国产一区二区| 成人特级av手机在线观看| 91久久精品国产一区二区三区| 亚洲av免费高清在线观看| av黄色大香蕉| 免费观看av网站的网址| 日本猛色少妇xxxxx猛交久久| 亚洲四区av| 国产亚洲av片在线观看秒播厂| 久久女婷五月综合色啪小说| 丰满人妻一区二区三区视频av| 国模一区二区三区四区视频| 国产色婷婷99| 国产黄色免费在线视频| 观看美女的网站| 青春草国产在线视频| 国产精品人妻久久久久久| 日韩人妻高清精品专区| 人人澡人人妻人| 麻豆精品久久久久久蜜桃| 国产又色又爽无遮挡免| 亚洲精品亚洲一区二区| 人人澡人人妻人| 国产无遮挡羞羞视频在线观看| 人人妻人人爽人人添夜夜欢视频 | videossex国产| 国产深夜福利视频在线观看| 午夜福利在线观看免费完整高清在| 99久久中文字幕三级久久日本| 人妻人人澡人人爽人人| 一个人免费看片子| 久久热精品热| 9色porny在线观看| 亚洲人成网站在线播| 国产成人精品福利久久| 我的女老师完整版在线观看| a 毛片基地| 日韩一区二区视频免费看| 91久久精品电影网| 免费大片18禁| 黑人巨大精品欧美一区二区蜜桃 | 不卡视频在线观看欧美| 亚洲国产精品专区欧美| 夜夜骑夜夜射夜夜干| 免费黄频网站在线观看国产| 亚洲精品自拍成人| 亚洲精品久久午夜乱码| 纯流量卡能插随身wifi吗| 久久久久国产网址| 日韩大片免费观看网站| 欧美xxxx性猛交bbbb| 赤兔流量卡办理| 亚洲精品日韩在线中文字幕| 一区二区三区四区激情视频| 蜜桃久久精品国产亚洲av| 亚洲经典国产精华液单| 亚洲精品色激情综合| 国产精品熟女久久久久浪| 黄色欧美视频在线观看| av播播在线观看一区| 免费不卡的大黄色大毛片视频在线观看| 91精品伊人久久大香线蕉| 久久精品国产a三级三级三级| 黄色日韩在线| 亚州av有码| 老司机亚洲免费影院| h视频一区二区三区| 久久免费观看电影| 啦啦啦中文免费视频观看日本| 极品教师在线视频| 高清午夜精品一区二区三区| 亚洲精品国产成人久久av| 日本黄色片子视频| 成人亚洲欧美一区二区av| 丰满人妻一区二区三区视频av| av在线播放精品| 熟女人妻精品中文字幕| 亚洲人与动物交配视频| 久久久久久久久大av| 国产男人的电影天堂91| 男男h啪啪无遮挡| 99热全是精品| 一级毛片aaaaaa免费看小| 国产伦在线观看视频一区| av福利片在线观看| 亚洲第一区二区三区不卡| 91久久精品电影网| 国产精品人妻久久久影院| 高清不卡的av网站| 亚洲精品日本国产第一区| 国产91av在线免费观看| 午夜福利,免费看| 夫妻性生交免费视频一级片| 日本色播在线视频| av天堂久久9| 亚洲国产精品一区三区| 人妻少妇偷人精品九色| 国产亚洲av片在线观看秒播厂| 久久亚洲国产成人精品v| 老司机影院毛片| 欧美精品一区二区免费开放| 亚洲av成人精品一二三区| 免费观看性生交大片5| 高清不卡的av网站| 少妇 在线观看| 18禁动态无遮挡网站| 91成人精品电影| 另类亚洲欧美激情| 久久免费观看电影| 国产亚洲最大av| 欧美xxxx性猛交bbbb| 在线播放无遮挡| 久久国产乱子免费精品| 成人漫画全彩无遮挡| 国产精品久久久久久精品电影小说| 观看免费一级毛片| 伊人久久精品亚洲午夜| 国产永久视频网站| 亚洲精品色激情综合| 久久综合国产亚洲精品| 性色avwww在线观看| 久久99热6这里只有精品| 丝瓜视频免费看黄片| 日韩精品免费视频一区二区三区 | 国产国拍精品亚洲av在线观看| 午夜免费鲁丝| 国产 精品1| 日日啪夜夜爽| 赤兔流量卡办理| 亚洲电影在线观看av| av播播在线观看一区| 久久久久视频综合| 亚洲欧美日韩卡通动漫| 丰满饥渴人妻一区二区三| 一级毛片aaaaaa免费看小| 国产高清不卡午夜福利| 如日韩欧美国产精品一区二区三区 | 最近中文字幕2019免费版| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩人妻高清精品专区| 久久久久视频综合| 亚洲成人av在线免费| 九草在线视频观看| 久久国产乱子免费精品| 免费观看无遮挡的男女| 性色av一级| 国产日韩欧美亚洲二区| 国产日韩欧美在线精品| 女性生殖器流出的白浆| 天天操日日干夜夜撸| 视频区图区小说| 美女xxoo啪啪120秒动态图| 精品久久久精品久久久| 美女视频免费永久观看网站| 99久久精品一区二区三区| 国产av码专区亚洲av| 久久久午夜欧美精品| 免费久久久久久久精品成人欧美视频 | 国产成人a∨麻豆精品| 欧美 日韩 精品 国产| 久久狼人影院| 我的老师免费观看完整版| 国产精品免费大片| 国产深夜福利视频在线观看| 日韩人妻高清精品专区| 成人无遮挡网站| av视频免费观看在线观看| 久久精品国产自在天天线| 欧美 亚洲 国产 日韩一| 亚洲国产精品999| 国产成人91sexporn| 99热6这里只有精品| 欧美最新免费一区二区三区| 校园人妻丝袜中文字幕| a级一级毛片免费在线观看| 国产一区二区在线观看日韩| 亚洲欧美日韩另类电影网站| 中文字幕人妻丝袜制服| 亚洲精品国产成人久久av| 妹子高潮喷水视频| 亚洲av欧美aⅴ国产| 亚洲欧美日韩卡通动漫| 熟女av电影| 女人精品久久久久毛片| 欧美日韩亚洲高清精品| freevideosex欧美| 国产精品熟女久久久久浪| 一个人看视频在线观看www免费| 亚洲精品色激情综合| 亚洲欧美一区二区三区国产| 午夜福利在线观看免费完整高清在| 综合色丁香网| 亚洲人成网站在线观看播放| 亚洲国产欧美在线一区| 如何舔出高潮| 亚洲精品自拍成人| www.av在线官网国产| 亚洲国产欧美在线一区| 久久久久久久国产电影| 亚洲真实伦在线观看| 久久午夜福利片| 午夜视频国产福利| 爱豆传媒免费全集在线观看| 亚洲精品乱码久久久v下载方式| 一级,二级,三级黄色视频| 99久久综合免费| 国产精品国产av在线观看| 搡女人真爽免费视频火全软件| 最近2019中文字幕mv第一页| 亚洲欧美精品自产自拍| 精品少妇内射三级| 久久av网站| 免费播放大片免费观看视频在线观看| 欧美性感艳星| 一区在线观看完整版| 18禁在线播放成人免费| 下体分泌物呈黄色| 亚洲人成网站在线观看播放| 男女啪啪激烈高潮av片| 大片电影免费在线观看免费| 99久久精品国产国产毛片| 伊人久久国产一区二区| 日本黄色日本黄色录像| 亚洲精品日韩av片在线观看| 青青草视频在线视频观看| 免费在线观看成人毛片| 国产成人午夜福利电影在线观看| 最近中文字幕2019免费版| 极品人妻少妇av视频| 毛片一级片免费看久久久久| 黑人巨大精品欧美一区二区蜜桃 | 曰老女人黄片| 大陆偷拍与自拍| 综合色丁香网| 国产毛片在线视频| 一级片'在线观看视频| 久久久久久人妻| 蜜臀久久99精品久久宅男| 丰满少妇做爰视频| 三级经典国产精品| 最近中文字幕高清免费大全6| 国产av一区二区精品久久| 一级毛片 在线播放| 国产精品蜜桃在线观看| 国产 一区精品| 国产成人aa在线观看| 国产精品.久久久| 偷拍熟女少妇极品色| 日韩精品免费视频一区二区三区 | 肉色欧美久久久久久久蜜桃| 好男人视频免费观看在线| 一个人看视频在线观看www免费| 欧美国产精品一级二级三级 | 在线观看国产h片| 久久国产精品男人的天堂亚洲 | 一区在线观看完整版| 欧美xxxx性猛交bbbb| 中文字幕人妻丝袜制服| 久久影院123| 亚洲精品中文字幕在线视频 | 成人漫画全彩无遮挡| 极品教师在线视频| 久久久亚洲精品成人影院| 国产高清有码在线观看视频| 中文字幕亚洲精品专区| 精品国产露脸久久av麻豆| 久久影院123| 99热这里只有是精品50| 亚州av有码| 久久精品国产a三级三级三级| 亚洲熟女精品中文字幕| 丰满饥渴人妻一区二区三| 国内少妇人妻偷人精品xxx网站| 欧美 亚洲 国产 日韩一| 免费av不卡在线播放| 久久午夜综合久久蜜桃| 亚洲欧美成人精品一区二区| 狂野欧美激情性xxxx在线观看| 男人添女人高潮全过程视频| 777米奇影视久久| 亚洲图色成人| 极品人妻少妇av视频| 国产精品蜜桃在线观看| 最黄视频免费看| 免费黄色在线免费观看| 三级经典国产精品| 日韩不卡一区二区三区视频在线| 日本-黄色视频高清免费观看| 高清av免费在线| 午夜精品国产一区二区电影| 九九在线视频观看精品| 日本午夜av视频| 免费观看无遮挡的男女| 又爽又黄a免费视频| 男女免费视频国产| 欧美国产精品一级二级三级 | 精品国产露脸久久av麻豆| 欧美国产精品一级二级三级 | 亚洲精品日韩av片在线观看| 亚洲高清免费不卡视频| 中文在线观看免费www的网站| 男人舔奶头视频| 91久久精品国产一区二区成人| av在线老鸭窝| 久久久午夜欧美精品| 日本av手机在线免费观看| 国产乱人偷精品视频| a级毛片在线看网站| 国产高清有码在线观看视频| 99热这里只有是精品50| 欧美亚洲 丝袜 人妻 在线| 人人澡人人妻人| 久久久久久久亚洲中文字幕| 免费观看a级毛片全部| 国产片特级美女逼逼视频| 久久久久国产网址| 日日摸夜夜添夜夜爱| 在线精品无人区一区二区三| 人人妻人人添人人爽欧美一区卜| 国产伦在线观看视频一区| 国产日韩一区二区三区精品不卡 | 久久久久久久久久久免费av| 久久午夜福利片| 久久女婷五月综合色啪小说| 能在线免费看毛片的网站| av天堂中文字幕网| 热re99久久国产66热| 91久久精品电影网| 免费黄色在线免费观看| 国产黄频视频在线观看| 啦啦啦啦在线视频资源| 免费观看a级毛片全部| 亚洲精品456在线播放app| 日本av免费视频播放| 欧美3d第一页| 看非洲黑人一级黄片| 久久久久久久大尺度免费视频| 午夜av观看不卡| 一级av片app| 国产真实伦视频高清在线观看| 韩国高清视频一区二区三区| 日本色播在线视频| 自线自在国产av| 视频区图区小说| 亚洲精品国产av蜜桃| 婷婷色综合大香蕉| 欧美成人午夜免费资源| 色婷婷av一区二区三区视频| 午夜影院在线不卡| 日本猛色少妇xxxxx猛交久久| h视频一区二区三区| 一级a做视频免费观看| 久久精品熟女亚洲av麻豆精品| av又黄又爽大尺度在线免费看| 亚洲第一av免费看| 精品久久国产蜜桃| 亚洲精华国产精华液的使用体验| 人人妻人人添人人爽欧美一区卜| 性高湖久久久久久久久免费观看| 午夜91福利影院| 精品国产露脸久久av麻豆| 亚洲va在线va天堂va国产| 夜夜看夜夜爽夜夜摸| 中文字幕精品免费在线观看视频 | 色5月婷婷丁香| 日本猛色少妇xxxxx猛交久久| 在线免费观看不下载黄p国产| 久久国内精品自在自线图片| a级片在线免费高清观看视频| 各种免费的搞黄视频| 麻豆精品久久久久久蜜桃| 在线天堂最新版资源| 免费大片18禁| 男女无遮挡免费网站观看| 久久精品久久久久久噜噜老黄| 欧美 亚洲 国产 日韩一| 日韩,欧美,国产一区二区三区| 久久久久视频综合| 在线亚洲精品国产二区图片欧美 | 欧美精品人与动牲交sv欧美| 能在线免费看毛片的网站| 亚洲久久久国产精品| 国产国拍精品亚洲av在线观看| 国产91av在线免费观看| 久久热精品热| 春色校园在线视频观看| 免费大片黄手机在线观看| 男女边吃奶边做爰视频| av线在线观看网站| 亚洲真实伦在线观看| 日韩亚洲欧美综合| 少妇高潮的动态图| 精品一区在线观看国产| 99热这里只有是精品50| 最新中文字幕久久久久| 水蜜桃什么品种好| 成人亚洲精品一区在线观看| 国产精品一区二区在线不卡| 成人综合一区亚洲| 亚洲国产精品专区欧美| 丝袜在线中文字幕| 这个男人来自地球电影免费观看 | 久久久久精品性色| 国产精品久久久久久久电影| 人妻少妇偷人精品九色| 午夜av观看不卡| 九九爱精品视频在线观看| 十分钟在线观看高清视频www | 成人国产av品久久久| 性高湖久久久久久久久免费观看| 男男h啪啪无遮挡| 国产精品久久久久久久电影| 亚洲人与动物交配视频| 观看av在线不卡| 亚洲精品一区蜜桃| 亚洲内射少妇av| 久久亚洲国产成人精品v| 国产av国产精品国产| 人人妻人人澡人人爽人人夜夜| 一级毛片久久久久久久久女| 亚洲久久久国产精品| 毛片一级片免费看久久久久| 亚洲国产精品一区二区三区在线| 国产精品国产三级国产专区5o| 精品久久久久久久久亚洲| 18禁动态无遮挡网站| 美女国产视频在线观看| 国产伦精品一区二区三区四那| 久久影院123| 国产在线免费精品| 久久国内精品自在自线图片| freevideosex欧美| 免费黄网站久久成人精品| 久久久久视频综合| 91精品一卡2卡3卡4卡| 久久97久久精品| 99视频精品全部免费 在线| 丝袜脚勾引网站| 亚洲美女黄色视频免费看| 自线自在国产av| xxx大片免费视频| 国产在线男女| 校园人妻丝袜中文字幕| 国产有黄有色有爽视频| 狂野欧美激情性bbbbbb| 26uuu在线亚洲综合色| 丝袜喷水一区| 国产高清国产精品国产三级| 亚洲中文av在线| av不卡在线播放| freevideosex欧美| 免费看日本二区| 国产精品成人在线| 在现免费观看毛片| 丰满饥渴人妻一区二区三| 男女啪啪激烈高潮av片| 51国产日韩欧美| 国产黄色免费在线视频| 丰满饥渴人妻一区二区三| 日产精品乱码卡一卡2卡三| 日韩亚洲欧美综合| 夜夜看夜夜爽夜夜摸| 热99国产精品久久久久久7| 夜夜看夜夜爽夜夜摸| 六月丁香七月| 国产白丝娇喘喷水9色精品| 观看美女的网站| 97超碰精品成人国产| 少妇的逼好多水| 国产淫语在线视频| 午夜激情久久久久久久| 日韩视频在线欧美| 大码成人一级视频| 亚洲第一av免费看| 啦啦啦在线观看免费高清www| 亚洲av成人精品一区久久| 爱豆传媒免费全集在线观看| 一个人免费看片子| 五月玫瑰六月丁香| 亚洲第一av免费看| 亚洲国产欧美在线一区| 日本欧美视频一区| 亚洲国产欧美在线一区| 欧美一级a爱片免费观看看| 777米奇影视久久| 国产色婷婷99| 亚洲欧洲日产国产| 人妻 亚洲 视频| 伦理电影免费视频| 人人妻人人看人人澡| 丰满迷人的少妇在线观看| 国产精品一区二区在线观看99| 国产 精品1| 日韩伦理黄色片| 男人添女人高潮全过程视频| 一区二区三区四区激情视频| kizo精华| 亚洲婷婷狠狠爱综合网| 日韩av在线免费看完整版不卡| 蜜桃久久精品国产亚洲av| 日本猛色少妇xxxxx猛交久久| www.av在线官网国产| 国产淫片久久久久久久久| 婷婷色综合大香蕉| 久久精品熟女亚洲av麻豆精品| 亚洲,一卡二卡三卡| 人体艺术视频欧美日本| 久久99热6这里只有精品| 女人精品久久久久毛片| 久久av网站| 春色校园在线视频观看| 午夜av观看不卡| 日本欧美视频一区| 国精品久久久久久国模美| 欧美精品一区二区大全| 狠狠精品人妻久久久久久综合| 一级a做视频免费观看| 看十八女毛片水多多多| 在线免费观看不下载黄p国产| 亚洲伊人久久精品综合| 亚洲精品一二三| 午夜福利影视在线免费观看| 亚洲美女黄色视频免费看| 成人美女网站在线观看视频| 国产精品一区二区在线不卡| 久久久久久久久久成人| 午夜激情久久久久久久| 一区二区三区四区激情视频| 国产一区二区三区综合在线观看 | 伊人久久国产一区二区| 女人精品久久久久毛片| 亚洲国产毛片av蜜桃av| 国产一区亚洲一区在线观看| 久久这里有精品视频免费| 国产视频首页在线观看| 亚洲性久久影院| 亚洲,一卡二卡三卡| 国产男女超爽视频在线观看| 2021少妇久久久久久久久久久| 日韩欧美 国产精品| 建设人人有责人人尽责人人享有的| 免费观看a级毛片全部| 国产深夜福利视频在线观看| 各种免费的搞黄视频| a级一级毛片免费在线观看| 亚洲情色 制服丝袜| 国产精品一区二区三区四区免费观看| 好男人视频免费观看在线| 亚洲国产精品一区二区三区在线| 51国产日韩欧美| 成人黄色视频免费在线看| 亚洲美女搞黄在线观看| 日韩中文字幕视频在线看片| 秋霞伦理黄片| 综合色丁香网| 欧美日韩综合久久久久久| 国产老妇伦熟女老妇高清| 日日啪夜夜撸| 纯流量卡能插随身wifi吗| 亚洲国产精品专区欧美| 卡戴珊不雅视频在线播放| 欧美高清成人免费视频www| 国产黄片视频在线免费观看| 日韩熟女老妇一区二区性免费视频| 精品少妇内射三级| av.在线天堂| 丝袜脚勾引网站| 只有这里有精品99| 欧美成人午夜免费资源| 丰满迷人的少妇在线观看| 免费观看在线日韩| 中文字幕制服av| 亚洲精品国产色婷婷电影| 欧美三级亚洲精品| 99热这里只有精品一区| 成人18禁高潮啪啪吃奶动态图 | 国产精品一区二区三区四区免费观看| 国产在视频线精品| 国产黄色免费在线视频| 精品午夜福利在线看| 熟妇人妻不卡中文字幕| 日韩中文字幕视频在线看片| 91精品一卡2卡3卡4卡| 国产免费视频播放在线视频| 欧美三级亚洲精品| 99热全是精品| 精品国产一区二区久久| 成年女人在线观看亚洲视频|