劉淼,羅根祥,喬鈺,楊江
低滲透油氣藏用陽(yáng)離子型乳液表面活性和潤(rùn)濕性研究
劉淼,羅根祥,喬鈺,楊江
(遼寧石油化工大學(xué) 石油化工學(xué)院,遼寧 撫順 113001)
以自制的一種長(zhǎng)鏈陽(yáng)離子表面活性劑(SFC111)和低界面能物質(zhì)(SFC115)構(gòu)建出陽(yáng)離子型乳液,研究其作為低滲透油氣藏用表面活性劑性能。通過(guò)粒度儀考察乳液在水中的分散性,通過(guò)接觸角測(cè)定儀考察經(jīng)乳液處理前后巖心的接觸角,通過(guò)旋轉(zhuǎn)滴界面張力儀測(cè)試表面張力;通過(guò)計(jì)算得到乳液在20、70 ℃的熱力學(xué)參數(shù)。結(jié)果表明,質(zhì)量分?jǐn)?shù)為0.5%的乳液在20 ℃時(shí)50=420.8 nm,70 ℃時(shí)50=728.0 nm;清水在巖心表面上的接觸角從10°最大可增至120°;70 ℃下乳液可將清水的表面張力降至24 mN/m,表現(xiàn)出良好的防水鎖性能。乳液符合langmuir吸附理論,其熱力學(xué)結(jié)果表明,隨著溫度的升高,乳液表面吸附量降低,乳液表面分子所占面積減小,吸附層厚度降低。
低滲透油藏; 乳液; 表面張力; 接觸角; 熱力學(xué)計(jì)算
低滲透油氣藏已經(jīng)成為油氣開發(fā)的熱點(diǎn),而低滲透油氣藏通常具有泥質(zhì)含量高、毛細(xì)管壓力高、孔喉細(xì)、結(jié)構(gòu)復(fù)雜、致密性差、油氣流動(dòng)阻力高等特點(diǎn),在鉆井過(guò)程中極易發(fā)生水鎖損害[1?2]。
在鉆井液中加入表面活性劑是處理水鎖效應(yīng)的較好方法[3]。特定的表面活性劑會(huì)有效地吸附在油水界面和低滲透儲(chǔ)層巖石表面上,進(jìn)而使儲(chǔ)層巖石產(chǎn)生潤(rùn)濕反轉(zhuǎn)作用[4?5]:當(dāng)巖石接觸角大于90°時(shí),由于張力的作用,孔喉道的外來(lái)體使孔喉內(nèi)出現(xiàn)向外排斥的傾向,進(jìn)而極大地削弱儲(chǔ)層巖石的自吸效應(yīng),從而降低溶液所受的毛細(xì)管力,減少孔喉道的自吸,緩解水鎖效應(yīng)[6?7]。
中石化勝利油田某區(qū)塊天然巖心;低界面能疏水試劑(SFC115),分子質(zhì)量17 000~25 000 g/mol,國(guó)藥集團(tuán)化學(xué)試劑有限公司;長(zhǎng)鏈陽(yáng)離子表面活性劑(SFC111),分子質(zhì)量200~500 g/mol,實(shí)驗(yàn)室自制;SFC115和SFC111混合物分子質(zhì)量16 000~23 000 g/mol;實(shí)驗(yàn)室用水均為去離子水。
OCA15EC接觸角表面性能測(cè)定儀,德國(guó)Dataphysics公司;TX?500C型旋轉(zhuǎn)滴界面張力儀,上海中晨數(shù)字技術(shù)設(shè)備有限公司;Winner 2000ZD型激光粒度儀,濟(jì)南微納顆粒技術(shù)有限公司;DF?101S集熱式恒溫加熱磁力攪拌器,山東鄄城華魯電熱儀器有限公司;SU8010場(chǎng)發(fā)射電子掃描顯微鏡,日本日立公司;YKA?100L高剪切乳化分散機(jī)(3 000 r/min),上海依凱機(jī)械制造有限公司;DZF?6050型真空干燥箱,上海精宏實(shí)驗(yàn)設(shè)備有限公司。
將SFC111和SFC115的混合物5 g加入到500 mL去離子水中,用高剪切乳化分散機(jī)攪拌10 min至完全分散,得到低滲透油氣藏用陽(yáng)離子型乳液防水鎖劑母液。取適量母液于容量瓶中,稀釋至質(zhì)量分?jǐn)?shù)為0.001%~1.000%,待用。
1.3.1溫度對(duì)表面張力影響實(shí)驗(yàn) 取不同質(zhì)量分?jǐn)?shù)陽(yáng)離子型乳液防水鎖劑于樣品管中,向樣品管注射約1 mL氣泡,放置到保溫套中,利用TX?500C型旋轉(zhuǎn)滴界面張力儀于5 000 r/min下攪拌15 min,待氣泡穩(wěn)定,通過(guò)讀取穩(wěn)定氣泡的直徑(),分別記錄溶液在20、70 ℃時(shí)的表面張力。
1.3.2吸附計(jì)算 根據(jù)20、70 ℃溶液表面張力測(cè)試所得數(shù)據(jù),采用origin擬合,并根據(jù)Gibbs吸附式(式(1))、langmuir型等溫吸附式(式(2))、標(biāo)準(zhǔn)吉布斯自由能式(式(3)),計(jì)算最大吸附量(max)、標(biāo)準(zhǔn)吸附自由能(Δθ)、飽和吸附層厚度()、最小分子面積(min)等熱力學(xué)參數(shù)[10?13]。
將天然巖心制備成1 cm×1 cm大小的小石塊,使用600目砂紙將巖心兩側(cè)表面磨至光滑,準(zhǔn)備不同質(zhì)量分?jǐn)?shù)的陽(yáng)離子型乳液防水鎖劑于50 mL燒杯中,為方便接觸角測(cè)量,將打磨后巖心光滑面朝上放置在50 mL燒杯中,用保鮮膜封住燒杯,在不同質(zhì)量分?jǐn)?shù)乳液中浸泡8 h,用鑷子輕輕取出,陰干24 h后,測(cè)試巖石表面的靜態(tài)接觸角及動(dòng)態(tài)接觸角。
將5 gSFC111和SFC115混合物放到高速攪拌機(jī)中攪拌10 min后,稀釋至質(zhì)量分?jǐn)?shù)為0.5%的溶液,通過(guò)測(cè)試溶液粒徑考察其分散性能。
乳液粒徑分布如圖1所示。隨著溫度的升高,降低了油相黏度,增強(qiáng)了相密度之間的差異,致使膠束碰撞次數(shù)增加,乳液發(fā)生破乳,故粒徑增大[14]。膠束粒徑分布較窄且為單峰分布,顆粒粒徑達(dá)到微納米級(jí)別。20 ℃時(shí)50=420.8 nm,70 ℃時(shí)50=728.0 nm。對(duì)于我國(guó)非常規(guī)油氣致密儲(chǔ)層微觀結(jié)構(gòu),以勝利油田低滲油藏孔隙結(jié)構(gòu)為例,一般低滲油藏平均孔喉半徑為1 647 nm,故該乳液能進(jìn)入到低滲油藏孔喉中,減少水鎖損害[15]。
為了直觀地了解吸附情況,以復(fù)配體系在巖心上的吸附為例,用掃描電鏡觀察陽(yáng)離子型乳液防水鎖劑吸附前后巖心表面的微觀結(jié)構(gòu),結(jié)果如圖2所示,其中圖2(b)為用質(zhì)量分?jǐn)?shù)為0.5%陽(yáng)離子型乳液防水鎖劑浸泡后的巖石表面微觀形貌。由圖2可知,粗糙的巖石表面經(jīng)處理后,陽(yáng)離子型乳液在巖石表面發(fā)生了吸附[16?17],表面由顆粒狀變?yōu)榫W(wǎng)狀結(jié)構(gòu)。
圖1 20、70 ℃時(shí)SFC111和SFC115混合物質(zhì)量分?jǐn)?shù)為0.5%的乳液粒徑分布
巖心處理前后接觸角測(cè)試結(jié)果如圖3、表1所示。由圖3、表1可知,經(jīng)乳液處理后的巖心接觸角普遍大于90°,動(dòng)態(tài)接觸角前進(jìn)角、后退角差值均小于2°,前進(jìn)角均大于后退角,表現(xiàn)出良好的潤(rùn)濕反轉(zhuǎn)性能[18?20];但是,隨著陽(yáng)離子型乳液防水鎖劑質(zhì)量分?jǐn)?shù)的增加,接觸角有所減小。這是由于陽(yáng)離子型乳液防水鎖劑吸附密度增大,空間排布方式由平面單層變?yōu)闄M向雙層[21?22],親水性有所增強(qiáng),接觸角減小。
圖2 巖石表面微觀形貌
圖3 陽(yáng)離子型乳液防水鎖劑質(zhì)量分?jǐn)?shù)對(duì)巖心接觸角的影響
表1 陽(yáng)離子型乳液防水鎖劑處理巖心前后接觸角測(cè)量結(jié)果
圖4 陽(yáng)離子型乳液防水鎖劑在不同溫度下的表面張力
2.4.2吸附量計(jì)算 為了更好地理解表面活性劑的表面張力與吸附的關(guān)系,利用表面張力origin擬合曲線,采用Szyszkowsk公式及式(1)計(jì)算乳液的吸附量[24],并運(yùn)用langmuir吸附公式[25]擬合出吸附量曲線,結(jié)果如圖5所示。
圖5 陽(yáng)離子型乳液防水鎖劑在20、70 ℃時(shí)的吸附曲線
由圖5可知,陽(yáng)離子型乳液防水鎖劑的吸附量隨溫度升高而降低,這是由于吸附為放熱過(guò)程,溫度升高會(huì)阻礙吸附過(guò)程,且較高的溫度增加了陽(yáng)離子型乳液防水鎖劑在溶液中的溶解度,降低了陽(yáng)離子型乳液防水鎖劑的吸附量,故吸附量隨著溫度升高而降低[17]。同時(shí),隨著陽(yáng)離子型乳液防水鎖劑質(zhì)量濃度的增加,吸附量先增加后趨于穩(wěn)定,這是由于隨著陽(yáng)離子型乳液防水鎖劑質(zhì)量濃度的增加,陽(yáng)離子型乳液防水鎖劑以單分子層的形式吸附在吸附劑表面,陽(yáng)離子型乳液防水鎖劑質(zhì)量濃度進(jìn)一步增加,吸附量趨于穩(wěn)定。
由圖4和式(1)擬合出吸附量和質(zhì)量濃度的關(guān)系曲線,結(jié)果如圖6所示。根據(jù)圖6得到式(2)中的飽和吸附量和吸附平衡常數(shù),再由式(1)-(5)計(jì)算出體系熱力學(xué)參數(shù)[25],結(jié)果如表2所示。
圖6 陽(yáng)離子型乳液防水鎖劑在20、70 ℃時(shí)c/Γ?c曲線
表2 陽(yáng)離子型乳液防水鎖劑吸附計(jì)算結(jié)果
由表2可知,陽(yáng)離子型乳液防水鎖劑在20、70 ℃下的Δθ分別為-40.93、-56.54 kJ/mol,故在標(biāo)準(zhǔn)狀態(tài)下表面吸附可以自發(fā)進(jìn)行;提高溫度減少了陽(yáng)離子型乳液防水鎖劑單位表面吸附量,增大了分子平均占有面積[26?27],降低了表面吸附層厚度。初步分析認(rèn)為,溫度升高使陽(yáng)離子型表面活性劑溶解度升高達(dá)到krafft點(diǎn),低界面能物質(zhì)開始析出并在溶液表面發(fā)生聚集,故雖然表面吸附量降低,但是溶液的表面張力仍然減小。
(1)該陽(yáng)離子型乳液防水鎖劑在較低質(zhì)量濃度時(shí)具有良好的表面活性,在70 ℃時(shí)表面張力值低至24 mN/m。親水巖石表面經(jīng)表面活性劑處理后,接觸角大于90°。
(2)膠束粒徑分布較窄且為單峰分布,顆粒粒徑達(dá)到微納米級(jí)別:20 ℃時(shí)50=420.8 nm,70 ℃時(shí)50=728.0 nm。
(3)該陽(yáng)離子型乳液防水鎖劑表面吸附屬于Langmuir型吸附,根據(jù)熱力學(xué)計(jì)算可知,溫度升高時(shí),乳液表面吸附量降低,乳液表面分子所占面積減小,吸附層厚度降低。吉布斯自由能均為負(fù)數(shù),該陽(yáng)離子型乳液防水鎖劑表面吸附在標(biāo)準(zhǔn)狀態(tài)下可自發(fā)進(jìn)行。
[1] Liang T B,Gu F Y,Yao E D,et al.Formation damage due to drilling and fracturing fluids and its solution for tight naturally fractured sandstone reservoirs[J].Geofluids,2017,5(8):1?9.
[2] Wang W,Yue X A,Chen Y X.A laboratory feasibility study of surfactant?polymer combinational flooding in low permeability reservoirs[J].Journal of Dispersion Science and Technology,2013,34(5):639?643.
[3] 耿學(xué)禮,吳智文,黃毓祥,等.低滲儲(chǔ)層新型防水鎖劑的研究及應(yīng)用[J].斷塊油氣田,2019,26(4):537?540.
Geng X L,Wu Z W,Huang Y X,et al,Research and application of new waterproof locking agent for low permeability reservoir[J].Fault?Block Oil & Gas Field,2019,26(4):537?540.
[4] 安一梅,李麗華,趙凱強(qiáng),等.低滲透油氣藏用防水鎖劑體系的制備與性能評(píng)價(jià)[J].油田化學(xué),2021,38(1):19?23.
An Y M,Li L H,Zhao K Q,et al.Preparation and performance evaluation of waterproof lock agent system for low permeability oil and gas reservoir[J].Oil Field Chemistry,2021,38(1):19?23.
[5] Guan Q Z,Dong D Z,Zhang H L,et al.Types of biogenic quartz and its coupling storage mechanism in organic?rich shales:A case study of the upper ordovician Wufeng formation to lower silurian Longmaxi formation in the Sichuan basin, SW China[J].Petroleum Exploration and Development,2021,48(4):813?823.
[6] Edwards A M J,Rodrigo L A,Newton M,et al.Not spreading in reverse:The dewetting of a liquid film into a single drop[J].Science Advances,2016,2(9):160?183.
[7] Liu X F,Kang Y L,Li J F,et al.Percolation characteristics and fluid movability analysis in tight sandstone oil reservoirs[J].ACS Omega,2020,5(24):14316?14323.
[8] 周毓棠,唐雨佳,金勇.含氟表面活性劑的復(fù)配及其應(yīng)用研究進(jìn)展[J].皮革科學(xué)與工程,2020,30(5):26?32.
Zhou Y T,Tang Y J,Jin Y.Progress in research and application of fluorinated surfactants mixed systems[J].Leather Science and Engineering,2020,30(5):26?32.
[9] Yayayürük A E,Yayayürük O.Applications of green chemistry approaches in environmental analysis[J].Curr.Nal.Chem.,2019,15(7):745?758.
[10] Ishiguro M,Koopal L K.Surfactant adsorption to soil components and soils[J].Advances in Colloid & Interface Science,2016,231:59?102.
[11] Mao J C,Wang D L,Yang X J,et al.Adsorption of surfactant on stratum rocks:Exploration of low adsorption surfactants for reservoir stimulation[J].Journal Taiwan Institute of Chemical Engineers,2019,95:423?431.
[12] Zhang D,Sha M,Pan R M,et al.Synthesis and properties study of novel fluorinated surfactants with perfluorinated branched ether chain[J].Journal of Fluorine Chemistry,2019,219:62?69.
[13] Chen W D,Schechter D S.Surfactant selection for enhanced oil recovery based on surfactant molecular structure in unconventional liquid reservoirs[J].Journal of Petroleum Science and Engineering,2021,196:107702.
[14] Elise A,Christophe B,Ahmad M,et al.Mesoporous silica colloids:Wetting,surface diffusion,and cationic surfactant adsorption[J].The Journal of Physical Chemistry C,2019,123(43):26226?26235.
[15] Zolfaghari R,Razi A F,Luqman C,et al.Demulsification techniques of water?in?oil and oil?in?water emulsions in petroleum industry[J].Separation and Puridication Technology,2016,170:377?407.
[16] 蘇海波,王曉宏,張世明,等.低滲透油藏油水相對(duì)滲透率模型的分形表征方法[J].東北石油大學(xué)學(xué)報(bào),2019,43(5):88?94.
Su H B,Wang X H,Zhang S M,et al.Fractal characterization method of oil water relative permeability model in low permeability reservoirs[J].Journal of Northeast Petroleum University,2019,43(5):88?94.
[17] Huang K,Peng H L.Solubilities of carbon dioxide in 1?ethyl?3?methylimidazolium thiocyanate,1?ethyl?3?methylimidazo?lium dicyanamide,and 1?Ethyl?3?methylimidazolium tricyanomethanide at (298.2 to 373.2) K and (0 to 300.0) kPa[J].J. Chem. Eng. Data,2017,62(12):4108?4116.
[18] 王克亮,張偉,莊永濤,等.堿和表面活性劑用量對(duì)弱堿三元體系乳狀液穩(wěn)定性的影響[J].東北石油大學(xué)學(xué)報(bào),2020,44(4):48?55.
Wang K L,Zhang W,Zhuang Y T,et al. Effect of alkali and surfactant concentration on the stability of weak alkali ASP composition emulsion[J].Journal of Northeast Petroleum University,2020,44(4):48?55.
[19] Ding B,Xiong C M,Geng X F,et al.Characteristics and EOR mechanisms of nanofluids permeation flooding for tight oil[J].Petroleum Exploration and Development,2020,47(4):810?819.
[20] Xu D R,Li Z,Bai B J,et al.A systematic research on spontaneous imbibition of surfactant solutions for low permeability sandstone reservoirs[J].Journal of Petroleum Science and Engineering,2021,206:109003.
[21] Zeng F H,Zhang Q,Guo J C,et al.Mechanisms of shale hydration and water block removal[J].Petroleum Exploration and Development,2021,48(3):752?761.
[22] Magdalena A,Tomasz B.Modifification of bentonite with cationic and nonionic surfactants:Structural and textural features[J].Materials,2019,12(22):3772.
[23] Yin Q Y,Xian W Z,Ping F X.Effects of temperature on the emulsification in surfactant?water?oil systems[J].International Journal of Modern Physics B,2003,17(14):2773?2780.
[24] 王夢(mèng)霞,車曉宇,呂夢(mèng)璇,等.無(wú)機(jī)鹽與表面活性劑在低階煤表面的協(xié)同吸附[J].潔凈煤技術(shù),2019,25(1):77?85.
Wang M X,Che X Y,Lü M X,et al.Synergistic adsorption of inorganic salt and surfactants onthe surface of low rank coal[J].Clean Coal Technology,2019,25(1):77?85.
[25] 李從虎,劉文濤,田振華,等.未變性膠原生物表面活性劑的表面張力及其表面吸附[J].功能材料,2014,45(23):23075?23079.
Li C H,Liu W T,Tian Z H,et al.Surface tension and surface absorbption of undenatured collagen bio?surfactant[J].Journal of Functional Materials,2014,45(23):23075?23079.
[26] Hu W R,Wei Y,Bao J W.Development of the theory and technology for low permeability reservoirs in China[J].Petroleum Exploration and Development,2018,45(4):125?137.
[27] Qin L,Wang X B.Surface adsorption and thermodynamic properties of mixed system of ionic liquid surfactants with cetyltrimethyl ammonium bromide[J].RSC Advances,2017,7(81):51426?51435.
Study on the Surface Activity and Wettability of Cationic Emulsions for Low Permeability Oil and Gas Reservoirs
Liu Miao, Luo Genxiang, Qiao Yu, Yang Jiang
(School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun Liaoning 113001,China)
A self?made long?chain cationic surfactant (SFC111) and a low interfacial energy substance (SFC115) were used to prepare a cationic emulsion for further application as surfactant for low permeability oil and gas reservoirs. The dispersion of the emulsion in water, the contact angle of the core before and after the emulsion treatment and the surface tension were investigated by particle size analyzer, contact angle meter, and rotating drop interfacial tension meter, respectively. The thermodynamic parameters of the emulsion at 20 ℃ and 70 ℃ were calculated. Particle size of 0.5% concentration emulsion is50=420.8 nm at 20 ℃,50=728.0 nm at 70 ℃.The contact angle of clear water on the surface of the core increases from 10° to 120°. The emulsion could reduce the surface tension of water to 24 mN/m at 70 ℃, indicating the good waterproof lock performance. The adsorption characteristic of emulsion conforms to the langmuir adsorption theory. The thermodynamic results show that as the temperature increases, the amount of adsorption on the surface of the emulsion decreases, the area occupied by the molecules on the surface of the emulsion goes down, and the thickness of the adsorption layer decreases.
Low permeability reservoir; Emulsion; Surface tension; Contact angle; Thermodynamic calculation
TE258
A
10.3969/j.issn.1006?396X.2022.02.009
1006?396X(2022)02?0056?06
2021?05?13
2021?06?22
中國(guó)石化科技部項(xiàng)目(219032?3);遼寧省興遼英才計(jì)劃項(xiàng)目(XLYC1902053);遼寧石油化工大學(xué)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(2020101480093)。
劉淼(1996?),男,碩士研究生,從事表面活性劑方面研究;E?mail:366431939@qq.com。
羅根祥(1965?),男,碩士,教授,從事無(wú)機(jī)化學(xué)研究;E?mail:gxluo1965@163.com。
(編輯 王戩麗)