腸道菌群被稱(chēng)為腸道內(nèi)的“隱形器官”,對(duì)維持機(jī)體健康發(fā)揮重要作用。腸神經(jīng)系統(tǒng)(enteric nervous system,ENS)屬于自主神經(jīng)系統(tǒng),對(duì)調(diào)控胃腸功能有重要作用。腸道菌群可以通過(guò)多種方式影響ENS的發(fā)育。本文擬就腸道菌群對(duì)ENS發(fā)育的影響及機(jī)制研究作一概述。
腸道菌群是定植在哺乳動(dòng)物腸道內(nèi)的一個(gè)龐大而復(fù)雜的共生菌落。人類(lèi)的腸道細(xì)菌總數(shù)高達(dá)10
,是人類(lèi)細(xì)胞總數(shù)的10倍以上。腸道菌群編碼的基因總數(shù)約為人類(lèi)編碼基因總數(shù)的150倍,提示腸道菌群影響宿主功能的強(qiáng)大潛力
。腸道菌群與宿主之間存在明確的相互作用,一方面宿主飲食、服藥、應(yīng)激、患病等均有可能造成腸道菌群結(jié)構(gòu)和功能的變化,另一方面,腸道菌群也會(huì)通過(guò)其組成成分或代謝產(chǎn)物影響宿主的神經(jīng)、免疫、內(nèi)分泌等多種生理功能
。
“玉笛誰(shuí)家聽(tīng)落梅”乃是肉菜,一條小羊坐臀、一條小豬耳朵、一條小牛腰子、一條獐腿肉加兔肉,拼作一盤(pán),難免有油膩過(guò)頭的嫌疑。但因?yàn)榻鲜骄傻牡豆ぁ叭鈼l形如笛子”,和繁復(fù)的口味組合“有二十五變,合五五梅花之?dāng)?shù)”而深得老叫花之心。
常見(jiàn)的細(xì)菌成分包括脂多糖(lipopolysaccharide,LPS)、多糖A(polysaccharide A,PSA)和鞭毛蛋白等,它們影響宿主的過(guò)程通常由一系列可以識(shí)別病原相關(guān)分子模式(pathogen-associated molecular patterns,PAMP)的受體來(lái)介導(dǎo),如Toll樣受體(Toll-like receptors,TLRs),其中TLR-2可以識(shí)別LPS和PSA,TLR-4則主要識(shí)別LPS
。常見(jiàn)的代謝產(chǎn)物主要有3類(lèi):(1)短鏈脂肪酸(short chain fat acids,SCFAs)在人結(jié)腸中的主要成分是乙酸、丙酸和丁酸,GPR41和GPR43是乙酸和丙酸主要的受體
,GPR109A單獨(dú)受到丁酸的刺激
;(2)膽汁酸代謝物(非結(jié)合膽汁酸和次級(jí)膽汁酸)的主要受體是G蛋白偶聯(lián)膽汁酸受體1(G protein coupled bile acid receptor 1,GPBAR1/TGR5)及法尼醇X受體(farnesoid X receptor,F(xiàn)XR)
,代謝后的膽汁酸對(duì)這兩種受體的激活效果強(qiáng)于原發(fā)性膽汁酸
;(3)色氨酸代謝物(吲哚-3-乙酸、吲哚-3-硫酸鹽等)則通過(guò)芳香烴受體(aryl hydrocarbon receptor,AHR)影響胃腸功能
。
式中,Xi j為指標(biāo)xi j無(wú)量綱化的數(shù)值,xi j為 j列 xi指標(biāo)原值,xj·min為 j列中指標(biāo)原值的最小值,xj·max為 j列中指標(biāo)原值的最大值。
ENS由腸神經(jīng)嵴干細(xì)胞(enteric neural crest-derived cells,ENCC)分化而來(lái)。ENS在不同物種的發(fā)育時(shí)間是不同的,在小鼠體內(nèi)為從胚胎期的第8天到產(chǎn)后3周,在人體內(nèi)則是從胚胎期的第4周到斷奶后
。由于有關(guān)嚙齒類(lèi)動(dòng)物ENS發(fā)育的研究遠(yuǎn)多于人類(lèi),故這里以小鼠為例進(jìn)行闡述。在小鼠中,迷走神經(jīng)來(lái)源的ENCC首先在胚胎期9.5 d左右進(jìn)入前腸并向尾部遷移,并緊隨遷移波增殖、分化為神經(jīng)元和神經(jīng)膠質(zhì)細(xì)胞。ENCC在胚胎期14.5 d左右到達(dá)腸道末端,構(gòu)成了最原始的MP,并開(kāi)始聚集形成肌間神經(jīng)節(jié)。在完成縱向的遷移后,來(lái)自MP的ENCC亞群向黏膜方向遷移,逐漸形成SMP。SMP在胚胎期18.5 d左右初步形成,并在產(chǎn)后3 d開(kāi)始排列成神經(jīng)節(jié)
。隨著腸神經(jīng)節(jié)在發(fā)育過(guò)程中形成,腸神經(jīng)元也分化出不同亞型,它們?cè)谔囟òl(fā)育時(shí)間點(diǎn)開(kāi)始分化和退出細(xì)胞周期,如5-羥色胺(5-hydroxytryptamine,5-HT)陽(yáng)性神經(jīng)元在胚胎期8~14 d完成分化,膽堿乙酰轉(zhuǎn)移酶(choline acetyltransferase,ChAT)陽(yáng)性神經(jīng)元的分化則從胚胎期第8天一直持續(xù)到產(chǎn)后第7天
。ENS的發(fā)育異??赡艹霈F(xiàn)在產(chǎn)前、產(chǎn)后的各個(gè)階段,進(jìn)而引起如先天性巨結(jié)腸、Waardenburg-Shah綜合征等疾病
。
ENS由腸神經(jīng)元和腸神經(jīng)膠質(zhì)細(xì)胞(enteric glia cells,EGC)構(gòu)成,分布于胃腸道的全長(zhǎng)。腸神經(jīng)節(jié)及連接這些神經(jīng)節(jié)的神經(jīng)纖維構(gòu)成了兩種主要的神經(jīng)叢:分布于縱行肌和環(huán)形肌之間的肌間叢(myenteric plexus,MP)和位于黏膜下層的黏膜下叢(submucosal plexus,SMP)。MP主要控制肌肉的舒張和收縮功能,SMP可以調(diào)節(jié)上皮分泌和局部血流
。ENS的神經(jīng)元總數(shù)為2~6億,超過(guò)所有交感神經(jīng)節(jié)和副交感神經(jīng)節(jié)的總數(shù),與脊髓中神經(jīng)元的總數(shù)相當(dāng)
。目前已鑒定出約20種腸神經(jīng)元,可能會(huì)有更多類(lèi)型的腸神經(jīng)元被認(rèn)識(shí)
。根據(jù)腸神經(jīng)元的結(jié)構(gòu)與功能大致可將其分為3類(lèi):感受刺激的內(nèi)在初級(jí)傳入神經(jīng)元(intrinsic primary afferent neurons,IPAN),傳遞信息的中間神經(jīng)元(interneurons),以及調(diào)控運(yùn)動(dòng)、體液分泌等功能的運(yùn)動(dòng)神經(jīng)元(motoneurons)
。人們對(duì)ENS調(diào)控胃腸功能方式的認(rèn)識(shí)不斷提高,目前認(rèn)為ENS的影響不僅局限于胃腸道的運(yùn)動(dòng)及分泌功能,還能調(diào)控免疫功能
,維持與修復(fù)上皮屏障
,并可能通過(guò)與中樞神經(jīng)系統(tǒng)(central nervous system,CNS)的相互作用來(lái)參與多種疾病的發(fā)生和發(fā)展
。
尚不清楚母體腸道菌群能否影響孕期ENS發(fā)育,但已有研究表明母體腸道菌群的代謝產(chǎn)物可以影響其他神經(jīng)系統(tǒng)的發(fā)育。如:Kimura等
發(fā)現(xiàn)SCFAs可以通過(guò)血液穿過(guò)胎盤(pán),促進(jìn)外周交感神經(jīng)元的分化及其向心臟的投射。Vuong等
的研究表明,孕期抗生素?cái)z入可以導(dǎo)致胎鼠的丘腦皮質(zhì)軸突發(fā)育異常,給母體補(bǔ)充三甲胺-N-氧化物(trimethylamine-N-oxide,TMAO)等代謝物可以有效改善這種現(xiàn)象。目前暫無(wú)關(guān)于胚胎ENS中GPR41和GPR43表達(dá)的報(bào)道,未來(lái)可以對(duì)這一方向進(jìn)行深入研究。
楊秋香聽(tīng)他這么一說(shuō),更來(lái)火了,她把眼睛瞪得圓圓的:“楊力生,你想找事兒咋的?說(shuō)是不愿意吃面條,以前我看你吃得也挺香,偏偏今天這飯就得另做?!”
小鼠ENS的發(fā)育一直持續(xù)到產(chǎn)后3周左右。在這一時(shí)期,ENS的神經(jīng)元和EGC的數(shù)量增加,各類(lèi)神經(jīng)元的比例趨于穩(wěn)定,神經(jīng)節(jié)也逐漸發(fā)育成熟
。與產(chǎn)前階段的研究不同,子代的腸道菌群改變可以影響ENS的發(fā)育。新生小鼠攝入萬(wàn)古霉素可導(dǎo)致ENS改變,包括神經(jīng)元密度降低、ChAT陽(yáng)性神經(jīng)元增加、NO能神經(jīng)元減少及結(jié)腸轉(zhuǎn)運(yùn)速度增加
。對(duì)斷奶期幼年小鼠使用廣譜抗生素會(huì)導(dǎo)致其MP神經(jīng)元丟失、EGC結(jié)構(gòu)改變及NO能神經(jīng)元總數(shù)減少
,與西方(高脂)飲食類(lèi)似
。因此,腸道菌群、飲食和產(chǎn)后ENS發(fā)育之間的關(guān)系可能會(huì)對(duì)ENS的穩(wěn)態(tài)和一些疾病的發(fā)生產(chǎn)生潛在影響。此外,有研究
表明,哺乳期母體腸道菌群改變會(huì)間接影響子代健康,而哺乳期母體攝入益生菌、益生元可有效改善這種影響作用
,這些發(fā)現(xiàn)能否推論在ENS的發(fā)育上,需在未來(lái)的研究中加以明確(見(jiàn)圖2)。
ENS的發(fā)育,尤其是其產(chǎn)后發(fā)育階段可能由腸道細(xì)菌產(chǎn)物調(diào)節(jié)。腸神經(jīng)元及EGC均可表達(dá)TLR,包括TLR-2、TLR-3、TLR-4、TLR-7和TLR-9
。Anitha等
的研究表明,選擇性敲除ENS中的TLR-4或其關(guān)鍵接頭分子Myd88會(huì)導(dǎo)致小鼠的NO能神經(jīng)元數(shù)量減少,并影響腸道蠕動(dòng)功能。相反,西方飲食導(dǎo)致的血LPS升高會(huì)導(dǎo)致小鼠肌層神經(jīng)元的丟失,神經(jīng)元型一氧化氮合酶(neuronal nitric oxide synthase,nNOS)活性升高及胃腸蠕動(dòng)減慢
,這一過(guò)程涉及Casp11和gasdermin D的激活導(dǎo)致的腸神經(jīng)元焦亡
。Brun等
發(fā)現(xiàn),TLR-2敲除小鼠MP的NO能神經(jīng)元數(shù)量減少,SMP的結(jié)構(gòu)和功能發(fā)生紊亂,并伴有胃腸運(yùn)動(dòng)障礙。Yarandi等
發(fā)現(xiàn),TLR-2激動(dòng)劑在體外可以促進(jìn)腸神經(jīng)元的發(fā)育,誘導(dǎo)NO能神經(jīng)元分化,在體內(nèi)也能部分恢復(fù)無(wú)菌小鼠發(fā)生改變的ENS結(jié)構(gòu)。
Step1確定凝聚點(diǎn)以及初始分類(lèi).凝聚點(diǎn)的選擇將會(huì)直接決定初始分類(lèi),對(duì)分類(lèi)結(jié)果也產(chǎn)生一定影響,Spss軟件會(huì)按照一定的原則自動(dòng)選擇凝聚點(diǎn).
腸道菌群的代謝產(chǎn)物是腸道菌群調(diào)節(jié)ENS發(fā)育的重要途徑。Soret等
的研究表明,丁酸通過(guò)抑制組蛋白去乙?;?histone deacetylase,HDAC)并激活Src激酶相關(guān)信號(hào)通路來(lái)上調(diào)膽堿能神經(jīng)元的比例,這一過(guò)程需要腸神經(jīng)元上表達(dá)的單羧酸轉(zhuǎn)運(yùn)蛋白2(monocarboxylate transporter-2,MCT-2)參與。給腸道菌群耗竭的小鼠補(bǔ)充SCFAs也可以有效修復(fù)其損傷的ENS。色氨酸代謝物可被AHR識(shí)別,這是一種廣泛分布的配體激活轉(zhuǎn)錄因子。Obata等
發(fā)現(xiàn),AHR主要分布于結(jié)腸肌層神經(jīng)元,與腸道菌群的分布有關(guān)。小鼠敲除AHR后,胃腸運(yùn)動(dòng)減慢,腸道轉(zhuǎn)運(yùn)時(shí)間(intestinal transit time,ITT)延長(zhǎng),轉(zhuǎn)入AHR則會(huì)逆轉(zhuǎn)這種現(xiàn)象。
其他PAMP也可能影響ENS。脆弱擬桿菌的成分PSA對(duì)IPAN的激活必不可少,缺乏PSA的脆弱擬桿菌無(wú)法激活I(lǐng)PAN
。鼠李糖乳桿菌會(huì)增強(qiáng)小鼠的胃腸動(dòng)力,這種促進(jìn)作用由腸神經(jīng)元表達(dá)的甲酰肽受體1(formyl peptide receptor 1,F(xiàn)PR1)介導(dǎo),與下游ROS激活和pErk1/2磷酸化相關(guān)。直接將細(xì)菌產(chǎn)物甲酰肽作用于含F(xiàn)PR1的腸神經(jīng)節(jié)也可以引起類(lèi)似反應(yīng),提示菌群可能通過(guò)甲酰肽影響ENS的發(fā)育與功能
。
研究表明,孕期腸道菌群改變可以影響胚胎發(fā)育,并導(dǎo)致后代出現(xiàn)相關(guān)異常,如對(duì)結(jié)腸炎的易感性增強(qiáng)
。同樣,孕期發(fā)生在母體的變化可以影響ENS發(fā)育。飲食方面,孕期低蛋白飲食
和維生素A缺乏
均導(dǎo)致子鼠ENS的發(fā)育異常和功能紊亂;感染方面,宮內(nèi)脲原體感染會(huì)導(dǎo)致綿羊胎兒的腸神經(jīng)元和EGC的損失
。雖然母體腸道菌群對(duì)ENS發(fā)育的影響尚不清楚,但Collins等
發(fā)現(xiàn),無(wú)菌小鼠產(chǎn)后早期即可出現(xiàn)空腸MP排列異常、腸神經(jīng)元總數(shù)減少及一氧化氮(nitric oxide,NO)能神經(jīng)元的比例升高,間接表明這種發(fā)育異??赡芘c孕期關(guān)系密切。盡管如此,上述發(fā)現(xiàn)僅能提示孕期腸道菌群影響ENS發(fā)育的可能性,需要進(jìn)一步研究來(lái)證實(shí)(見(jiàn)圖1)。
神經(jīng)-免疫-內(nèi)分泌系統(tǒng)之間的相互作用也可能在腸道菌群對(duì)ENS發(fā)育的影響過(guò)程中發(fā)揮重要作用。腸道駐留巨噬細(xì)胞(gut-resident macrophages,gMacs)是一類(lèi)可以長(zhǎng)期自我維持的Mφ,在腸道中主要分為兩類(lèi),一類(lèi)位于固有層中,稱(chēng)固有層巨噬細(xì)胞(lamina propria Mφ,LPMφ),一類(lèi)位于肌層中,稱(chēng)肌層巨噬細(xì)胞(muscularis Mφ,mMφ)。研究表明,腸神經(jīng)元和mMφ之間可能形成突觸
,而且mMφ通過(guò)分泌集落刺激因子1(colony stimulating factor 1,CSF-1)來(lái)促進(jìn)MP神經(jīng)元的存活并維持其功能
。De Schepper等
使用白喉毒素(diphtheria toxin,DTx)來(lái)耗竭小鼠的gMacs,發(fā)現(xiàn)這會(huì)導(dǎo)致小鼠結(jié)腸MP和SMP的腸道神經(jīng)元損失50%以上,并引起腸道運(yùn)動(dòng)減慢和腸道分泌功能減弱。Cipriani等
的研究指出,如果小鼠缺失mMφ會(huì)導(dǎo)致其N(xiāo)O能神經(jīng)元的比例升高,而膽堿能神經(jīng)元的比例基本不變。Matheis等
發(fā)現(xiàn),腸道感染會(huì)引起興奮性腸神經(jīng)元死亡,這一過(guò)程由Nlrp-6和caspase 11所介導(dǎo);mMφ可以對(duì)腸道感染做出應(yīng)答,通過(guò)β2-腎上腺素-精氨酸酶1-多胺軸(β2-adrenergic-arginase 1-polyamine axis)信號(hào)通路來(lái)限制腸道炎癥小體釋放并減少神經(jīng)元的死亡。
肥大細(xì)胞(mast cells,MC)是構(gòu)成固有免疫的一類(lèi)重要的免疫細(xì)胞,在腸道中廣泛分布于黏膜層和黏膜下層,是機(jī)體抵御病原體入侵的第一道防線。不同種類(lèi)的微生物會(huì)對(duì)MC的脫顆粒造成不同影響,其中肺炎鏈球菌(
)、金黃色葡萄球菌(
)和大腸埃希菌(
)可能增強(qiáng)MC的脫顆粒,而乳酸桿菌、糞腸球菌(
)和非致病性大腸埃希菌可能對(duì)MC細(xì)胞脫顆粒有抑制作用
。黏膜MC與腸神經(jīng)元緊密接觸,約70%的黏膜MC直接與神經(jīng)纖維相互作用,約20%的黏膜MC與神經(jīng)纖維的距離不超過(guò)2 μm
。MC與ENS可以相互活化,Bell等
刺激大鼠的黏膜MC,發(fā)現(xiàn)活化的MC可以釋放組胺,進(jìn)而引起大鼠MP神經(jīng)元的Ca
濃度和短路電流升高,進(jìn)而增強(qiáng)了ENS的興奮性。然而,目前的研究尚未證實(shí)MC對(duì)ENS發(fā)育的影響。進(jìn)一步研究可以在明確MC與ENS發(fā)育的關(guān)系后,關(guān)注腸道微生物是否可以通過(guò)影響MC脫顆粒進(jìn)而調(diào)節(jié)ENS的發(fā)育。
5-HT是一種神經(jīng)遞質(zhì),其受體廣泛分布于平滑肌、腸內(nèi)分泌細(xì)胞、免疫細(xì)胞、神經(jīng)細(xì)胞等,在調(diào)節(jié)胃腸功能方面具有重要作用。孕期的抗抑郁治療顯著改變了腸道菌群和母體5-HT水平,這與后代患胃腸道疾病的風(fēng)險(xiǎn)增加相關(guān)
。De Vadder等
發(fā)現(xiàn),腸道菌群在成年無(wú)菌小鼠的定植能明顯提升腸神經(jīng)元及腸黏膜分泌5-HT的水平,而且通過(guò)5-HT受體5-HT4R特異的信號(hào)傳導(dǎo)促進(jìn)了無(wú)菌小鼠ENS的恢復(fù),證實(shí)了腸道菌群與5-HT共同維持并改變ENS結(jié)構(gòu)的作用。腸嗜鉻細(xì)胞(enterochromaffin cells,EC)包含人體總量95%左右的5-HT,并且是胃腸道5-HT的主要來(lái)源
。腸道菌群的代謝產(chǎn)物如次級(jí)膽汁酸和SCFAs可以促進(jìn)EC細(xì)胞產(chǎn)生5-HT
,多枝梭菌(
)還可以促進(jìn)腸道干細(xì)胞分化為EC細(xì)胞,提高5-HT的釋放,并促進(jìn)腸道細(xì)胞系對(duì)5-HT的利用
。上述研究表明,腸道菌群很可能通過(guò)調(diào)控EC細(xì)胞及5-HT水平影響ENS的發(fā)育。
腸道菌群對(duì)ENS的發(fā)育有著廣泛的影響,但ENS發(fā)育過(guò)程復(fù)雜,并且與其他系統(tǒng)之間存在交互作用,腸道菌群對(duì)ENS發(fā)育的影響必然建立在多中心、多層次、相互串聯(lián)的基礎(chǔ)上。目前來(lái)看,現(xiàn)有的研究結(jié)果還遠(yuǎn)未闡明腸道菌群究竟以哪些機(jī)制影響了ENS的發(fā)育。另外,由于人類(lèi)胎兒腸道的獲取難度較大,多數(shù)關(guān)于ENS發(fā)育的研究仍然依賴(lài)小鼠模型,因此,對(duì)人類(lèi)ENS發(fā)育的了解嚴(yán)重不足。未來(lái)的研究一方面需要繼續(xù)深入研究腸道菌群在不同時(shí)間、空間、物種對(duì)ENS發(fā)育的作用,另一方面則需要關(guān)注病理狀態(tài)下ENS發(fā)育的變化及如何對(duì)腸道菌群進(jìn)行合理干預(yù),對(duì)治療腸道疾病提出新的觀念。
[1]Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing [J]. Nature, 2010, 464(7285): 59-65. DOI: 10.1038/nature08821.
[2]Cryan JF, O'Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis [J]. Physiol Rev, 2019, 99(4): 1877-2013. DOI: 10.1152/physrev.00018.2018.
[3]Donia MS, Fischbach MA. HUMAN MICROBIOTA. Small molecules from the human microbiota [J]. Science, 2015, 349(6246): 1254766. DOI: 10.1126/science.1254766.
[4]Kim SJ, Kim HM. Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14 [J]. BMB Rep, 2017, 50(2): 55-57. DOI: 10.5483/bmbrep.2017.50.2.011.
[5]Brown AJ, Goldsworthy SM, Barnes AA, et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids [J]. J Biol Chem, 2003, 278(13): 11312-11319. DOI: 10.1074/jbc.M211609200.
[6]Taggart AKP, Kero J, Gan X, et al. (D)-beta-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G [J]. J Biol Chem, 2005, 280(29): 26649-26652. DOI: 10.1074/jbc.C500213200.
[7]Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis [J]. Nat Rev Gastroenterol Hepatol, 2018, 15(2): 111-128. DOI: 10.1038/nrgastro.2017.119.
[8]Beuers U, Trauner M, Jansen P, et al. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond [J]. J Hepatol, 2015, 62(1 Suppl): S25-37. DOI: 10.1016/j.jhep.2015.02.023.
[9]Kawamata Y, Fujii R, Hosoya M, et al. A G protein-coupled receptor responsive to bile acids [J]. J Biol Chem, 2003, 278(11): 9435-9440. DOI: 10.1074/jbc.M209706200.
[10]Moriguchi T, Motohashi H, Hosoya T, et al. Distinct response to dioxin in an arylhydrocarbon receptor (AHR)-humanized mouse [J]. Proc Natl Acad Sci U S A, 2003, 100(10): 5652-5657. DOI: 10.1073/pnas.1037886100.
[11]Furness JB. The enteric nervous system [M]. Massachusetts: Blackwell Publishing, 2006.
[12]Furness JB, Callaghan BP, Rivera LR, et al. The enteric nervous system and gastrointestinal innervation: integrated local and central control [J]. Adv Exp Med Biol, 2014, 817: 39-71. DOI: 10.1007/978-1-4939-0897-4_3.
[13]Schneider S, Wright CM, Heuckeroth RO. Unexpected roles for the second brain: enteric nervous system as master regulator of bowel function [J]. Annu Rev Physiol, 2019, 81: 235-259. DOI: 10.1146/annurev-physiol-021317-121515.
[14]Yoo BB, Mazmanian SK. The enteric network: interactions between the immune and nervous systems of the gut [J]. Immunity, 2017, 46(6): 910-926. DOI: 10.1016/j.immuni.2017.05.011.
[15]Avetisyan M, Wang H, Schill EM, et al. Hepatocyte growth factor and MET support mouse enteric nervous system development, the peristaltic response, and intestinal epithelial proliferation in response to injury [J]. J Neurosci, 2015, 35(33): 11543-11558. DOI: 10.1523/jneurosci.5267-14.2015.
[17]Semar S, Klotz M, Letiembre M, et al. Changes of the enteric nervous system in amyloid-β protein precursor transgenic mice correlate with disease progression [J]. J Alzheimers Dis, 2013, 36(1): 7-20. DOI: 10.3233/jad-120511.
[18]Foong JPP. Postnatal development of the mouse enteric nervous system [J]. Adv Exp Med Biol, 2016, 891: 135-143. DOI: 10.1007/978-3-319-27592-5_13.
[19]Kang YN, Fung C, Vanden Berghe P. Gut innervation and enteric nervous system development: a spatial, temporal and molecular tour de force [J]. Development, 2021, 148(3): dev182543. DOI: 10.1242/dev.182543.
[20]Bergner AJ, Stamp LA, Gonsalvez DG, et al. Birthdating of myenteric neuron subtypes in the small intestine of the mouse [J]. J Comp Neurol, 2014, 522 (3): 514-527. DOI: 10.1002/cne.23423.
[21]Rao M, Gershon MD. Enteric nervous system development: what could possibly go wrong? [J]. Nat Rev Neurosci, 2018, 19(9): 552-565. DOI: 10.1038/s41583-018-0041-0.
[22]Jin G, Tang Q, Ma J, et al. Maternal emulsifier P80 intake induces gut dysbiosis in offspring and increases their susceptibility to colitis in adulthood [J]. mSystems, 2021, 6(2): e01337-20. DOI: 10.1128/mSystems.01337-20.
[23]Aubert P, Oleynikova E, Rizvi H, et al. Maternal protein restriction induces gastrointestinal dysfunction and enteric nervous system remodeling in rat offspring [J]. Faseb J, 2019, 33(1): 770-781. DOI: 10.1096/fj.201800079R.
[24]Uribe RA, Hong SS, Bronner ME. Retinoic acid temporally orchestrates colonization of the gut by vagal neural crest cells [J]. Dev Biol, 2018, 433(1): 17-32. DOI: 10.1016/j.ydbio.2017.10.021.
[25]Heymans C, de Lange IH, Hütten MC, et al. Chronic intra-uterine ureaplasma parvum infection induces injury of the enteric nervous system in ovine fetuses [J]. Front Immunol, 2020, 11: 189. DOI: 10.3389/fimmu.2020.00189.
[26]Collins J, Borojevic R, Verdu EF, et al. Intestinal microbiota influence the early postnatal development of the enteric nervous system [J]. Neurogastroenterol Motil, 2014, 26(1): 98-107. DOI: 10.1111/nmo.12236.
[27]Hung LY, Boonma P, Unterweger P, et al. Neonatal antibiotics disrupt motility and enteric neural circuits in mouse colon [J]. Cell Mol Gastroenterol Hepatol, 2019, 8(2): 298-300. e296. DOI: 10.1016/j.jcmgh.2019.04.009.
[28]Caputi V, Marsilio I, Filpa V, et al. Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice [J]. Br J Pharmacol, 2017, 174(20): 3623-3639. DOI: 10.1111/bph.13965.
[29]McMenamin CA, Clyburn C, Browning KN. High-fat diet during the perinatal period induces loss of myenteric nitrergic neurons and increases enteric glial density, prior to the development of obesity [J]. Neuroscience, 2018, 393: 369-380. DOI: 10.1016/j.neuroscience.2018.09.033.
[30]Nyangahu DD, Lennard KS, Brown BP, et al. Disruption of maternal gut microbiota during gestation alters offspring microbiota and immunity [J]. Microbiome, 2018, 6(1): 124. DOI: 10.1186/s40168-018-0511-7.
[31]Lebovitz Y, Kowalski EA, Wang X, et al. Lactobacillus rescues postnatal neurobehavioral and microglial dysfunction in a model of maternal microbiome dysbiosis [J]. Brain Behav Immun, 2019, 81: 617-629. DOI: 10.1016/j.bbi.2019.07.025.
[32]Liu X, Li X, Xia B, et al. High-fiber diet mitigates maternal obesity-induced cognitive and social dysfunction in the offspring via gut-brain axis [J]. Cell Metab, 2021, 33(5): 923-938. e926. DOI: 10.1016/j.cmet.2021.02.002.
[33]Brun P, Giron MC, Qesari M, et al. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system [J]. Gastroenterology, 2013, 145(6): 1323-1333. DOI: 10.1053/j.gastro.2013.08.047.
[34]Barajon I, Serrao G, Arnaboldi F, et al. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia [J]. J Histochem Cytochem, 2009, 57(11): 1013-1023. DOI: 10.1369/jhc.2009.953539.
[36]Arnaboldi F, Sommariva M, Opizzi E, et al. Expression of Toll-like receptors 4 and 7 in murine peripheral nervous system development [J]. Ann Anat, 2020, 231: 151526. DOI: 10.1016/j.aanat.2020.151526.
[37]Anitha M, Vijay-Kumar M, Sitaraman SV, et al. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling [J]. Gastroenterology, 2012, 143(4): 1006-1016. e1004. DOI: 10.1053/j.gastro.2012.06.034.
[38]Ye L, Li G, Goebel A, et al. Caspase-11-mediated enteric neuronal pyroptosis underlies Western diet-induced colonic dysmotility [J]. J Clin Invest, 2020, 130(7): 3621-3636. DOI: 10.1172/jci130176.
[39]Yarandi SS, Kulkarni S, Saha M, et al. Intestinal bacteria maintain adult enteric nervous system and nitrergic neurons via Toll-like receptor 2-induced neurogenesis in mice [J]. Gastroenterology, 2020, 159(1): 200-213. e208. DOI: 10.1053/j.gastro.2020.03.050.
[40]Mao YK, Kasper DL, Wang B, et al. Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons [J]. Nat Commun, 2013, 4: 1465. DOI: 10.1038/ncomms2478.
[41]Chandrasekharan B, Saeedi BJ, Alam A, et al. Interactions between commensal bacteria and enteric neurons, via FPR1 induction of ROS, increase gastrointestinal motility in mice [J]. Gastroenterology, 2019, 157(1): 179-192. e2. DOI: 10.1053/j.gastro.2019.03.045.
[42]Soret R, Chevalier J, De Coppet P, et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats [J]. Gastroenterology, 2010, 138(5): 1772-1782. DOI: 10.1053/j.gastro.2010.01.053.
[44]Kimura I, Miyamoto J, Ohue-Kitano R, et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice [J]. Science, 2020, 367(6481): eaaw8429. DOI: 10.1126/science.aaw8429.
[45]Vuong HE, Pronovost GN, Williams DW, et al. The maternal microbiome modulates fetal neurodevelopment in mice [J]. Nature, 2020, 586(7828): 281-286. DOI: 10.1038/s41586-020-2745-3.
[46]Phillips RJ, Powley TL. Macrophages associated with the intrinsic and extrinsic autonomic innervation of the rat gastrointestinal tract [J]. Auton Neurosci, 2012, 169(1): 12-27. DOI: 10.1016/j.autneu.2012.02.004.
[47]Gabanyi I, Muller PA, Feighery L, et al. Neuro-immune interactions drive tissue programming in intestinal macrophages [J]. Cell, 2016, 164(3): 378-391. DOI: 10.1016/j.cell.2015.12.023.
[48]De Schepper S, Verheijden S, Aguilera-Lizarraga J, et al. Self-maintaining gut macrophages are essential for intestinal homeostasis [J]. Cell, 2018, 175(2): 400-415. e413. DOI: 10.1016/j.cell.2018.07.048.
[49]Cipriani G, Terhaar ML, Eisenman ST, et al. Muscularis propria macrophages alter the proportion of nitrergic but not cholinergic gastric myenteric neurons [J]. Cell Mol Gastroenterol Hepatol, 2019, 7(3): 689-691. e684. DOI: 10.1016/j.jcmgh.2019.01.005.
[50]Matheis F, Muller PA, Graves CL, et al. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss [J]. Cell, 2020, 180(1): 64-78. e16. DOI: 10.1016/j.cell.2019.12.002.
[51]Wesolowski J, Paumet F. The impact of bacterial infection on mast cell degranulation [J]. Immunol Res, 2011, 51(2-3): 215-226. DOI: 10.1007/s12026-011-8250-x.
[52]Forsythe P. Microbes taming mast cells: implications for allergic inflammation and beyond [J]. Eur J Pharmacol, 2016, 778: 169-175. DOI: 10.1016/j.ejphar.2015.06.034.
[53]Bell A, Althaus M, Diener M. Communication between mast cells and rat submucosal neurons [J]. Pflugers Arch, 2015, 467(8): 1809-1823. DOI: 10.1007/s00424-014-1609-9.
[54]Salisbury AL, Papandonatos GD, Stroud LR, et al. Prenatal antidepressant exposures and gastrointestinal complaints in childhood: a gut-brain axis connection? [J]. Dev Psychobiol, 2020, 62(6): 816-828. DOI: 10.1002/dev.21966.
[55]De Vadder F, Grasset E, Manner?s Holm L, et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks [J]. Proc Natl Acad Sci U S A, 2018, 115(25): 6458-6463. DOI: 10.1073/pnas.1720017115.
[56]Banskota S, Ghia JE, Khan WI. Serotonin in the gut: blessing or a curse [J]. Biochimie, 2019, 161: 56-64. DOI: 10.1016/j.biochi.2018.06.008.
[57]Reigstad CS, Salmonson CE, Rainey JF, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells [J]. Faseb J, 2015, 29(4): 1395-1403. DOI: 10.1096/fj.14-259598.