• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rotational failure analysis of spherical-cylindrical shell pressure controllers related to gas hydrate drilling investigations

    2022-06-02 05:00:50CongLiJinLingPiNinHnWuGuiKngLiuWiHungZhiXuDiRuiWngZhoFnChnWiChngLong
    Petroleum Science 2022年2期

    Cong Li ,Jin-Ling Pi ,Nin-Hn Wu ,Gui-Kng Liu ,Wi Hung ,Zhi-Xu Di ,Rui-Z Wng ,Zho-Fn Chn ,Wi-Chng Long

    a MOE Key Laboratory of Deep Earth Science and Engineering,Sichuan University,College of Water Resource and Hydropower,Sichuan University,Chengdu,610065,China

    b Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization,Institute of Deep Earth Sciences and Green Energy,College of Civil and Transportation Engineering,Shenzhen University,Shenzhen,518060,China

    c China Pingmei Shenma Energy and Chemical Industry Group Co.,Ltd.,Pingdingshan,467000,China

    d State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization,Pingdingshan,467000,China

    e Xi'an Research Institute,China Coal Technology and Engineering Group,Xi'an,710077,China

    Keywords:Exploration of oil and gas resources Pressure coring controller Sphere flapper valve Failure modes Stress deviation rate

    ABSTRACT In situ pressure-preserved coring (IPP-Coring) technology is considered one of the most efficient methods for assessing resources.However,seal failure caused by the rotation of pressure controllers greatly affects the success of pressure coring.In this paper,a novel spherical-cylindrical shell pressure controller was proposed.The finite element analysis model was used to analyze the stress distribution and deformation characteristics of the pressure controller at different rotation angles.The seal failure mechanism caused by the rotation of the pressure controller was discussed.The stress deviation rate was defined to quantitatively characterize the stress concentration.Based on the test equipment designed in this laboratory,the ultimate bearing strength of the pressure controller was tested.The results show that the rotation of the valve cover causes an increase in the deformation on its lower side.Furthermore,the specific sealing pressure in the weak zone is greatly reduced by a statistically significant amount,resulting in seal failure.When the valve cover rotates 5° around the major axis,the stress deviation rate is -92.6%.To prevent rotating failure of the pressure controller,it is necessary to control the rotation angle of the valve cover within 1° around the major axis.The results of this research can help engineers reduce failure-related accidents,provide countermeasures for pressure coring,and contribute to the exploration and evaluation of deep oil and gas resources.

    1.Introduction

    Natural gas hydrate is widely considered the most promising clean energy source for the future (Sloan,2003;Pang et al.,2021).Countries worldwide are actively exploring the technology of natural gas-hydrates,which has greatly promoted the development of natural gas hydrates(Hu et al.,2021;Saberi et al.,2021;Gao et al.,2022).The potential impact of NGH development on the global carbon cycle (Dickens et al.,1997),sustainable environmental change (Archer,2007),drilling hazards and future energy production (Boswell and Collett,2011) are issues to be explored at the frontier of science (Singh et al.,1993).Scientific research mainly focuses on the following aspects:

    ●the development of exploration technology and equipment,including physical exploration technology and pressure coring technology,and the establishment of a scientific evaluation system(Jin et al.,2014;Gao et al.,2021;He et al.,2021;Huang et al.,2021;Kida et al.,2021),

    ●the study of the physical and mechanical properties of in-situ NGH and the development of economic and efficient mining methods (Konno et al.,2013;Jing et al.,2015;Aydin and Merey,2021;Fu et al.,2021;Gao et al.,2021;Gao et al.2021,2021;Ruan et al.,2021),and

    ●the assessment of natural hazards brought about by largescale mining and the formulation of corresponding preventive measures (Borowski et al.,1996;Chen and Guo,1998;Collett,2002;Wang and Sun,2009;Gao et al.2018,2020;Veluswamy and Linga,2021).

    However,the formation mechanism of NGH reservoirs is very complex (Zhang et al.,2011;Shagapov and Tazetdinov 2014).During sampling,core recovery or subsequent testing,if the temperature and pressure environment of NGH changes,then the physical properties,internal structure and mechanical properties of hydrate-bearing sediments may change to a statistically significant extent (Gao et al.2020,2021;He et al.,2021).It is difficult to retrieve in situ NGH.To solve this problem,in-situ pressurepreserved coring (IPP-Coring) has been developed as an effective method to extract hydrate deposits from underground sediments and preserve the samples under in situ hydrostatic pressure (Dai and Santamarina,2014).

    There are various pressure coring systems,but all of these systems aim to transfer unchanged cores to the surface(Li et al.,2016).In the 1970s,the early Pressure Core Barrel (PCB) was adopted by the Deep Sea Drilling Project (DSDP).The success rate of core recovery was very low due to the ball valve closing problem.In 1983,the international Ocean Drilling Program (ODP) developed the Pressure Core Sampler(PCS)and obtained samples of NGH without affecting their pressure from the Blake Outer Ridge.The sediment was recovered by a rotary or push rod coring machine and sealed by a ball valve.The operating pressure was 70 MPa.The first systematic pressure core sampling occurred during ODP 164 drilling in 1995.The Hydrate Autoclave Coring Equipment System (HYACE),funded by the European Union's Marine Science and Technology Program,was developed in the late 1990s.Two types of wireline pressure corers were developed within the HYACE:the Fugro Pressure Core (FPC) and the HYACE Rotary Corer (HRC) samplers.The more recent HYACINTH (Deployment of HYACE tools In New Tests on Hydrates) project is designed to transfer the collected cores from the coring device to the measuring chamber without pressure leakage.The HYACINTH system includes not only coring tools,such as the FPC,HRC,the Fugro Rotary Pressure Core(FRPC)and the Submarine Gas Hydraulic Reserves (SUGAR) corer (SUCO)but so a series of subsequent core testing and processing equipment.The MAC (Multiple Autoclave Corer) and DAPC (Dynamic Autoclave Piston Corer) were developed and used in Germany in 2002 and 2003,respectively.In 2005,the Joint Industry Project(JIP)used HYACE FPC and HRC to obtain pressure cores,and the Instrumented Pressure Testing Chamber (IPTC) instrument developed by USGS and Georgia Institute of Technology to analyze cores under in situ pressure environments.PCB,PCS,HRC and FPC could not maintain the in situ temperature.Therefore,Japan Oil,Gas and Metals National Corporation(JOGMEC)invented the PTCS(Pressure Temperature Core Sampler) for the first time,which can work under a pressure of 30 MPa and has been used in the Nankai Trough.The PTCS is effective in sandstone sediments.Since 2000,the Hybrid-Pressure Core Sampler (Hybrid-PCS) or Pressure Core Tool with Ballvalve(PCTB)has been used in offshore drilling projects in China(Zhang et al.,2019),the UK and other countries.The HYACE/Fugro FPC and FRPC systems are also used offshore Korea and in the Gulf of Mexico.In China,Zhejiang University developed a gravity piston-type coring device.Zhu et al.developed an NGH coring device with the Pressure and Temperature Preservation System(PTPS).A brief overview of the IPP-Coring is shown in Fig.1.

    In conclusion,core is the first complete data in the process of petroleum exploration and development.The pressure controller of the coring device is the key to the success of the IPP-Coring (Xie et al.,2021).Ball valve or flap valve is commonly used as the sealing structure in existing pressure coring devices.Among the hydrate-bearing sediment samples retrieved by pressure coring devices,more than 30%of the samples do not retain the pressure or only retain part of the in situ pressure,resulting in high deployments cost.This study proposes a new shell pressure controller with a novel spheric-cylindric structure intended to have a higher ultimate bearing strength and investigates its rotation failure.Further,the recovery rate of pressure maintaining coring is improved through failure mechanism analysis.

    2.Design of spherical-cylindrical shell pressure controllers

    Fig.1.A brief overview of pressure coring technologies.

    The pressure controller is a sealing mechanism(generally a ball valve or flap valve)and determines the ultimate pressure strength of the pressure coring device(Gao et al.,2021).This paper presents a new principle of pressure coring for maintaining the coring pressure.The valve cover of the pressure controller is initially erected in the corer (shown in Fig.2).When the coring is completed,the inner cylinder is released.Then,the valve cover turns over to the matching valve seat.Flapper valve sealing mechanisms can maximize the core diameter and downhole drive mechanisms to ensure core quality.Based on the principle of intersecting spherical shells and cylindrical shells,this new configuration,referred to as a spherical-cylindrical shell pressure controller (Fig.2),is proposed.The spherical-cylindrical shell pressure controller consists of a cylindrical valve cover with a spherical edge and a matching seat.The traditional conical contact has a horizontal thrust,which greatly affects the pressurepreserved capacity of the IPP-Coring.The new structure adjusts the contact form between the valve cover and the valve seat so that there is only a normal support force.Compared with the conventional conical pressure controller,the spherical-cylindrical shell pressure controller has smaller structural deformation and higher bearing strength (Li et al.,2021).However,the contact pattern of the spherical-cylindrical shell pressure controller is similar to that of the spherical hinge.Thus,the two parts easily rotate around the common spherical center (Fig.3).The maintenance of oil and gas pressure puts forward strict requirements for the performance of the structure (Li et al.,2021).The rotation failure of the pressure controller needs to be further studied.

    Fig.2.Spherical-cylindrical shell pressure controller.

    3.Influence of rotation angle on spherical-cylindrical shell pressure controllers

    3.1.Simulation procedures

    ABAQUS is a powerful engineering numerical simulation software based on finite element method,which can solve linear and nonlinear problems in a wide range of fields.In the paper,to analyze the failure mechanism of the structure,numerical simulation is carried out based on ABAQUS software.The elastoplastic model is adopted,which is based on the fundament assumptions of isotropic elasticity continuum,i.e.,elasticity,homogeneity,isotropy and small deformation(see Fig.4).

    Based on the ABAQUS/CAE User's Manual and elasto-plasticity theory (Lubarda,2002),the general constitutive equation for an elastic-plastic material is briefly introduced.The stress increment,{dσ} can be expressed in terms of the elastic strain increment,{dεe},as

    Fig.3.Rotation of spherical-cylindrical shell pressure controllers.

    Fig.4.Establishment of a solid mechanics problem.

    Fig.5.The mesh of a spherical-cylindrical shell pressure controller.

    and

    with

    Fig.6.Boundary conditions.

    where[C]is the tensor of elastic modulus in matrix form,{dε}is the total strain increment,{dεp}is the plastic strain increment,dλ is the scalar function,{?g/?{σ}} is the gradient vector of the plastic potential function,L is the loading criterion function,h is the positive scalar function.The stress calculation will be performed for all Gaussian sampling points.

    3.2.Model setup

    To study the stress distribution and failure mechanism,a geometric model(shown in Fig.5)is established.The sealing groove is simplified.Hexahedral mesh is used.The boundary condition is shown in Fig.6.The underside of the seat is fully restrained.A simulated in situ hydrostatic pressure is applied to the top surface of the valve cover.Alloy 304 stainless steel is used as the test material.The original gauge length of the specimen is 32 mm.The tensile test(shown in Fig.7)is carried out on a Shimadzu electronic testing machine.The yield strength and tensile strength are 613.6 MPa and 828.6 MPa,respectively.The friction coefficient of the contact surface is 0.2.

    Fig.7.Tensile test results of stainless steel.

    Fig.8.Equivalent stress distribution of valve cover with different rotation angles.

    3.3.Simulation results

    The stress distribution of the valve cover is shown in Fig.8 with different rotation angles.There are two low stress zones,A and B,in the middle bottom surface of the valve cover.With the increase in the z-axis rotation angle,the left equivalent stress gradually decreases,and the left low stress area C expands.With the increase in the rotation angle around the x-axis and z-axis,the equivalent stresses in A and D increase continuously.The equivalent stress in zone C decreases continuously.This means that zone C may not be able to provide effective sealing pressure,which is the potential weak site of leakage.

    Three measuring lines are defined(as shown in Fig.9(a))where L1 and L2 are the monitoring lines along the minor axis and major axis,respectively,and L3 is the circumferential monitoring line of the valve cover.Fig.9(b)shows that with increasing z-axis rotation angle,the stress on L1 shows a decreasing trend.The stress deviation rate is defined as

    where ω is the stress deviation rate,and σNand σRare the stress values without rotation and after a certain angle of rotation,respectively.

    The stress deviation rates of L1 are -11.2,-75.4,and -92.6%when rotating 1,3,and 5°around the z-axis and rotating 0°around the x-axis.Fig.9 (c) and Fig.9 (d) show the stress distributions of the L1 and L2 measuring lines with different x-axis rotation angles.With the increase in the x-axis rotation angle,the stress deviation increases gradually.Compared with the x-axis rotation,the rotation around the z-axis has a more obvious effect on the stress deviation of L1.In fact,spherical-cylindrical shell pressure controllers may simultaneously experience the influences of x-axis and z-axis rotations.Fig.10 shows the stress distribution of L1 under the xz compound rotation.When rotating 5°around the x-axis,the stress deviation rates for 0,1,3 and 5°around the z-axis are-10.7,-58.9,-72.2 and-92.4%,respectively.The larger the xaxis rotation angle is,the greater the stress drop.

    According to the numerical simulation results,the valve cover can form a strong support along the major axis.The low stress zone C is likely to be the weak site of leakage.The deformation along the minor axis is the main factor affecting the structural strength of the valve cover.The effect of z-axis rotation on the monitoring line L3 is much higher than that of the x-axis(see Fig.11).For instance,when rotating 5°around the z-axis and 0°around the x-axis,the stress deviation rate reaches 92.6%.It is difficult to provide enough contact pressure for the sealing surface.Finally,the overall strength of the pressure controller is invalid.In the engineering practice of pressure coring,the sealing performance is very important for maintaining oil and gas pressure.Due to the stress redistribution during the rotation of the structure,the stress at the edge of the valve cover is reduced,and the fluid medium with pressure will leak from the contact surfaces.

    Fig.9.Equivalent stress distribution of different measuring lines.

    4.Failure pressure of spherical shell pressure controller

    The deformation characteristics and sealing stability of the pressure controller are very important to the success rate of pressure coring.However,there is no special test device for evaluating pressure controllers domestically and abroad.Therefore,we developed a pressure controller test platform that,according to the size of the coring device,can test the failure pressure of pressure controllers with different configurations.

    4.1.Testing system

    To obtain the failure pressure of the spherical-cylindrical shell pressure controllers under different working conditions,an experimental platform(Fig.12)was designed in this laboratory.The specimen was installed inside the test chamber.Then,water was pumped to the chamber through the injection port until the specimen failed.The watertight joint provided a data channel for the strain gauge at the top of the valve cover.According to the numerical simulations,the positions of three strain gauges were determined.Among them,SG-1,SG-2 and SG-3 were the equivalent stress concentration area,the large deformation area and the stress concentration edge,respectively.

    4.2.Physical experiment results

    Two tests were carried out based on the test system.The pressure controllers before and after the test are shown in Fig.13(a).Under the condition of high pressure,the sealing ring was damaged due to the insufficient contact pressure in the weak area C.

    Fig.14(a)shows that with the increasing load,the strains of SG-1Z and SG-2Z were gradually increasing tensile deformation,while the strains of SG-1X,SG-2X and SG-3X were compressive deformation.After a certain rotation angle,the ultimate bearing strength was only 8.4 MPa.After the failure of the pressure controller,the pressure in the test chamber decreases,and the strain data tended to zero.The compressive strains in SG-1X and SG-2X were the largest,4.02 × 10-4and 4.43 × 10-4,respectively.Torsional instability occurred in the pressure controller,and the force on the valve cover was uneven.There was a notch on one side of the seat(Fig.15).According to the second test results under the same conditions,the maximum bearing strength of the spherical pressure controller was 43.8 MPa (shown in Fig.14(b)).There was a great gap due to the rotation of the structure.Therefore,it was necessary to add a limiting surface to reduce the rotation of the structure.

    According to the numerical simulations and laboratory tests,the bearing strengths are greatly reduced by rotation to any angle.The strains predicted by the numerical simulations are basically consistent with the experimental results.As seen from Fig.16,the strain on the left side of the cover is very small,which means that the contact pressure at this position is small.The sealing ring is extruded from the enlarged gap,which is consistent with the physical experimental results.Therefore,by adjusting the angle of the valve cover,the structural strength is increased from 8.4 to 43.8 MPa.

    Fig.10.Stress distribution of L1 under XZ compound rotation.

    Fig.11.Equivalent stress distributions of L3 under different rotation angles.

    The in situ physical and mechanical properties are crucial for deep oil and gas exploration.The paper focuses on the pressure controllers,which is one of the key components of deep-sea pressure coring device.It can obtain cores with deep-sea in situ pressure.On the one hand,pressure cores are the premise of quantitative evaluation of in situ permeability and saturation of oil and gas.It is of great significance for understanding geological conditions,evaluating recoverable reserves and improving recovery rate.On the other hand,it provides a technical means for the study of in situ mechanical parameters of natural gas hydrate,affecting the efficiency of industrial production.Through the research of this paper,the strength of the developed IPP-Coring can be suitable for in situ applications at depths of thousands of meters,and cores with higher pressures can be obtained.This capability of the newly developed pressure coring device not only effectively ensures the safety and lives of on-site operators,but also brings certain economic benefits.

    Fig.12.Test equipment designed in this laboratory.

    Fig.13.Spherical pressure controller.

    Fig.14.Physical test results.

    5.Conclusion

    The conclusions are as follows:

    1.Based on the principle of intersecting spherical shells and cylindrical shells,a new structure for a spherical-cylindrical shell pressure retaining controller is designed.Through numerical simulation and experimental test,its ultimate bearing strength reaches 43.8 MPa.

    Fig.15.Unbalanced notch in the valve seat caused by structural rotation.

    Fig.16.Strain of the pressure controller.

    2.The rotation of the valve cover increases the deformation of the valve cover,which greatly reduces the contact pressure of the sealing surface,resulting in sealing failure.To quantitatively characterize the stress concentration caused by the rotation,the stress deviation rate is defined.The effect of z-axis rotation is much greater than that of x-axis rotation.When rotating 5°around the z-axis,the equivalent stress drop is -92.6%.

    3.The contact pressure reduction caused by rotation is the root cause of the failure of the pressure maintaining controller.To prevent the rotational failure,an anti-rotation structure should be adopted to control the valve cover rotation within 1°around the major axis.

    IPP-Coring has a great influence on the measurement of oil and gas saturation parameters.The fluid saturation provided by analysis of core obtained by pressure coring can better represent the original reservoir state than that provided by conventional core analysis,especially in cases of the evaluation of gas reservoir reserves and the feasibility of enhanced oil recovery.This study reveals the rotation failure principle of spherical pressure controllers,which can help to improve the success rate of pressure coring and provide technical support for the exploration and evaluation of deep oil and gas resources.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The paper was supported by the Program for Guangdong Introducing Innovative and Enterpreneurial Teams (No.2019ZT08G315) and National Natural Science Foundation of China No.51827901 and U2013603.

    观看美女的网站| 欧美成人性av电影在线观看| 久久久久久国产a免费观看| 亚洲av熟女| 国模一区二区三区四区视频| 女的被弄到高潮叫床怎么办 | 亚洲国产日韩欧美精品在线观看| 国产伦精品一区二区三区四那| 如何舔出高潮| 免费一级毛片在线播放高清视频| 一级黄色大片毛片| 久久人人精品亚洲av| 色吧在线观看| 国产精品精品国产色婷婷| 国产精品日韩av在线免费观看| 国产美女午夜福利| 亚洲精品成人久久久久久| 欧美激情国产日韩精品一区| 久久国产精品人妻蜜桃| 夜夜夜夜夜久久久久| 亚洲最大成人手机在线| 亚洲av熟女| 久久久成人免费电影| 在线观看av片永久免费下载| 日本成人三级电影网站| 91在线观看av| 国产在线男女| 别揉我奶头 嗯啊视频| 成年女人毛片免费观看观看9| 日韩欧美国产在线观看| 91狼人影院| 亚洲成人久久性| 男女下面进入的视频免费午夜| 天堂√8在线中文| 99国产精品一区二区蜜桃av| 乱系列少妇在线播放| 九九爱精品视频在线观看| 97热精品久久久久久| 99热这里只有是精品在线观看| 国产精品久久久久久久久免| 不卡视频在线观看欧美| 一级a爱片免费观看的视频| 九九热线精品视视频播放| 国产一区二区激情短视频| 午夜精品在线福利| 日本一本二区三区精品| 亚洲国产高清在线一区二区三| 少妇被粗大猛烈的视频| 欧美zozozo另类| 成年免费大片在线观看| 欧美日韩国产亚洲二区| 男人舔奶头视频| 麻豆国产97在线/欧美| 高清毛片免费观看视频网站| 日本一本二区三区精品| 一区二区三区高清视频在线| 深夜精品福利| 亚洲国产色片| 免费av观看视频| 色哟哟哟哟哟哟| 日韩欧美三级三区| 久久午夜亚洲精品久久| 国产伦精品一区二区三区四那| 亚洲一区二区三区色噜噜| 亚洲综合色惰| 欧美色视频一区免费| 精品人妻一区二区三区麻豆 | 午夜a级毛片| 岛国在线免费视频观看| 久久精品国产99精品国产亚洲性色| 精品久久久久久久人妻蜜臀av| 在线a可以看的网站| 一a级毛片在线观看| 日本免费a在线| 欧美丝袜亚洲另类 | 欧美日韩乱码在线| 女的被弄到高潮叫床怎么办 | 国产成人影院久久av| 99热这里只有精品一区| 黄色配什么色好看| 婷婷六月久久综合丁香| 国产亚洲精品久久久com| 尤物成人国产欧美一区二区三区| 中文亚洲av片在线观看爽| 99久久精品热视频| 亚洲va在线va天堂va国产| 亚洲精品乱码久久久v下载方式| 亚洲欧美日韩东京热| 午夜影院日韩av| 久久人人爽人人爽人人片va| 在线免费十八禁| 99精品在免费线老司机午夜| av天堂在线播放| 九九热线精品视视频播放| 在线免费十八禁| 国产又黄又爽又无遮挡在线| 日本-黄色视频高清免费观看| 亚洲av免费在线观看| 性色avwww在线观看| 色尼玛亚洲综合影院| 在线观看66精品国产| 丰满的人妻完整版| 日本欧美国产在线视频| 日日摸夜夜添夜夜添小说| 国产乱人视频| 免费观看人在逋| 中出人妻视频一区二区| 亚洲经典国产精华液单| 88av欧美| 99热6这里只有精品| 亚洲中文日韩欧美视频| 日韩,欧美,国产一区二区三区 | 日韩高清综合在线| 99在线人妻在线中文字幕| 国产精品福利在线免费观看| 日本成人三级电影网站| 伦精品一区二区三区| 精品久久久噜噜| av黄色大香蕉| 蜜桃久久精品国产亚洲av| 两人在一起打扑克的视频| 桃色一区二区三区在线观看| 看十八女毛片水多多多| 国产91精品成人一区二区三区| 国产成人影院久久av| 成人美女网站在线观看视频| 97碰自拍视频| 色播亚洲综合网| 亚洲男人的天堂狠狠| 网址你懂的国产日韩在线| 搡女人真爽免费视频火全软件 | 三级毛片av免费| 久久久久久久久中文| 久久久午夜欧美精品| 久久久精品欧美日韩精品| 欧美3d第一页| 国产高清不卡午夜福利| 琪琪午夜伦伦电影理论片6080| 麻豆精品久久久久久蜜桃| 日韩国内少妇激情av| 午夜福利在线在线| 国产精品久久视频播放| 成人一区二区视频在线观看| 亚洲成人精品中文字幕电影| 欧美xxxx黑人xx丫x性爽| 亚洲天堂国产精品一区在线| 日韩精品青青久久久久久| 亚洲狠狠婷婷综合久久图片| 亚洲男人的天堂狠狠| 一级黄色大片毛片| 国产精品三级大全| 国产v大片淫在线免费观看| 波野结衣二区三区在线| 琪琪午夜伦伦电影理论片6080| 韩国av在线不卡| 两性午夜刺激爽爽歪歪视频在线观看| 色综合亚洲欧美另类图片| 国产精品嫩草影院av在线观看 | 国产精品人妻久久久影院| 午夜免费激情av| 性色avwww在线观看| 亚洲aⅴ乱码一区二区在线播放| 俺也久久电影网| 天堂网av新在线| 国产高潮美女av| 噜噜噜噜噜久久久久久91| 久久精品国产99精品国产亚洲性色| 中文字幕久久专区| 淫妇啪啪啪对白视频| 免费观看的影片在线观看| 国产黄色小视频在线观看| 黄色视频,在线免费观看| 久久久精品欧美日韩精品| 日本黄色片子视频| 日韩中文字幕欧美一区二区| 乱人视频在线观看| 国产色爽女视频免费观看| 91午夜精品亚洲一区二区三区 | 婷婷精品国产亚洲av| 97超视频在线观看视频| 麻豆av噜噜一区二区三区| 又黄又爽又免费观看的视频| 最好的美女福利视频网| 99久久久亚洲精品蜜臀av| 国产精品日韩av在线免费观看| 国产aⅴ精品一区二区三区波| 国产精品自产拍在线观看55亚洲| 校园人妻丝袜中文字幕| 色精品久久人妻99蜜桃| 性插视频无遮挡在线免费观看| 久久久久国内视频| 男人和女人高潮做爰伦理| 日本黄色片子视频| 国产av麻豆久久久久久久| 国产黄片美女视频| 麻豆久久精品国产亚洲av| 久久热精品热| av天堂中文字幕网| 中文字幕av在线有码专区| 91av网一区二区| 男人的好看免费观看在线视频| 国产精品电影一区二区三区| eeuss影院久久| 春色校园在线视频观看| 日韩,欧美,国产一区二区三区 | 亚洲美女搞黄在线观看 | 亚洲熟妇中文字幕五十中出| 亚洲欧美精品综合久久99| 国产精品亚洲一级av第二区| 免费观看人在逋| 午夜久久久久精精品| 老熟妇仑乱视频hdxx| 两个人视频免费观看高清| 精品一区二区三区av网在线观看| 五月伊人婷婷丁香| 成人性生交大片免费视频hd| 波野结衣二区三区在线| 一个人免费在线观看电影| 国产aⅴ精品一区二区三区波| 精品人妻1区二区| 一边摸一边抽搐一进一小说| 欧美人与善性xxx| 免费电影在线观看免费观看| 午夜福利成人在线免费观看| 亚洲精品亚洲一区二区| 给我免费播放毛片高清在线观看| 成年版毛片免费区| 一区福利在线观看| 国产精品av视频在线免费观看| 级片在线观看| 亚洲av电影不卡..在线观看| 黄色欧美视频在线观看| 在线观看免费视频日本深夜| 精品久久久久久,| 丰满的人妻完整版| 亚洲狠狠婷婷综合久久图片| 99热6这里只有精品| 欧美高清成人免费视频www| 国内少妇人妻偷人精品xxx网站| 成人特级av手机在线观看| bbb黄色大片| av在线老鸭窝| 伊人久久精品亚洲午夜| 美女免费视频网站| 舔av片在线| 女人十人毛片免费观看3o分钟| 啦啦啦啦在线视频资源| 亚洲av五月六月丁香网| 自拍偷自拍亚洲精品老妇| 精品免费久久久久久久清纯| 亚洲av电影不卡..在线观看| 91狼人影院| 97碰自拍视频| 男女之事视频高清在线观看| 欧美日韩亚洲国产一区二区在线观看| 色综合色国产| 久久国产乱子免费精品| 国产精品自产拍在线观看55亚洲| 欧美成人一区二区免费高清观看| 最近最新中文字幕大全电影3| 伦理电影大哥的女人| 国产免费av片在线观看野外av| 久久天躁狠狠躁夜夜2o2o| 国产精品美女特级片免费视频播放器| 国内久久婷婷六月综合欲色啪| 午夜视频国产福利| 美女免费视频网站| 九九热线精品视视频播放| 久久九九热精品免费| 婷婷丁香在线五月| 亚洲成av人片在线播放无| 国产免费一级a男人的天堂| 黄片wwwwww| 99久久无色码亚洲精品果冻| 午夜福利成人在线免费观看| 婷婷精品国产亚洲av| 久久国产乱子免费精品| 久久久久国内视频| 国产精品电影一区二区三区| 午夜福利欧美成人| 国产精品久久视频播放| 免费观看精品视频网站| 最新中文字幕久久久久| 午夜激情欧美在线| 中文资源天堂在线| 国产乱人视频| 淫秽高清视频在线观看| 狂野欧美白嫩少妇大欣赏| netflix在线观看网站| 午夜免费成人在线视频| 两个人视频免费观看高清| 国产69精品久久久久777片| 欧美日韩瑟瑟在线播放| 精品一区二区免费观看| 久久九九热精品免费| 午夜视频国产福利| 搡老岳熟女国产| 99riav亚洲国产免费| 真人做人爱边吃奶动态| 亚洲欧美日韩无卡精品| 成人无遮挡网站| 久久久久久久久久久丰满 | 两个人视频免费观看高清| 欧美日本视频| 国产精品爽爽va在线观看网站| 国产色婷婷99| 亚洲自偷自拍三级| 真实男女啪啪啪动态图| 亚洲av美国av| 最近最新中文字幕大全电影3| 国产高清激情床上av| 干丝袜人妻中文字幕| 精品人妻偷拍中文字幕| 狂野欧美白嫩少妇大欣赏| 我的老师免费观看完整版| 成人无遮挡网站| 亚洲色图av天堂| 欧美日韩乱码在线| 国产精品乱码一区二三区的特点| 日日摸夜夜添夜夜添av毛片 | 日韩国内少妇激情av| 乱人视频在线观看| 国产午夜精品论理片| 国产精品爽爽va在线观看网站| 国产精品电影一区二区三区| 国产一区二区在线av高清观看| 日本在线视频免费播放| 日本 av在线| 亚洲av不卡在线观看| 亚洲精品一区av在线观看| 99精品久久久久人妻精品| 婷婷精品国产亚洲av| 99国产精品一区二区蜜桃av| 欧美日韩瑟瑟在线播放| 亚洲黑人精品在线| 老熟妇乱子伦视频在线观看| 精品久久久久久久末码| 亚洲人成网站在线播放欧美日韩| 免费观看的影片在线观看| 在线观看免费视频日本深夜| 亚洲欧美日韩卡通动漫| 白带黄色成豆腐渣| 欧美zozozo另类| 日韩在线高清观看一区二区三区 | 国产aⅴ精品一区二区三区波| www.色视频.com| 亚洲男人的天堂狠狠| 日韩中字成人| 校园春色视频在线观看| 国产伦精品一区二区三区视频9| 99久国产av精品| 91av网一区二区| 成人二区视频| 欧美日本亚洲视频在线播放| 夜夜夜夜夜久久久久| 亚洲av中文av极速乱 | 久久精品夜夜夜夜夜久久蜜豆| 国产精品伦人一区二区| 少妇丰满av| 99久国产av精品| av国产免费在线观看| 如何舔出高潮| 在线观看一区二区三区| 精品久久久久久成人av| 他把我摸到了高潮在线观看| 日本一本二区三区精品| 国产黄a三级三级三级人| 黄色欧美视频在线观看| 久久人人爽人人爽人人片va| 麻豆一二三区av精品| 麻豆国产97在线/欧美| 国产欧美日韩精品一区二区| 久久久精品欧美日韩精品| 国产亚洲精品综合一区在线观看| 欧美性猛交╳xxx乱大交人| 色综合婷婷激情| 中文字幕熟女人妻在线| 尾随美女入室| 一夜夜www| 黄色配什么色好看| 国模一区二区三区四区视频| 国产极品精品免费视频能看的| 真人一进一出gif抽搐免费| 午夜福利在线观看免费完整高清在 | 小说图片视频综合网站| 桃红色精品国产亚洲av| 国产女主播在线喷水免费视频网站 | aaaaa片日本免费| 国产精品久久久久久亚洲av鲁大| 性欧美人与动物交配| 无遮挡黄片免费观看| 免费看av在线观看网站| 国内少妇人妻偷人精品xxx网站| 欧美成人一区二区免费高清观看| 中文字幕精品亚洲无线码一区| 午夜老司机福利剧场| 日韩欧美在线二视频| 日本黄色视频三级网站网址| 亚洲性夜色夜夜综合| 国产在视频线在精品| 国产三级在线视频| 美女cb高潮喷水在线观看| 欧美精品啪啪一区二区三区| 久久久久久久午夜电影| 一本精品99久久精品77| www日本黄色视频网| 午夜激情欧美在线| 欧美不卡视频在线免费观看| 亚洲av日韩精品久久久久久密| 成人性生交大片免费视频hd| 伦精品一区二区三区| 国产国拍精品亚洲av在线观看| bbb黄色大片| 亚洲av五月六月丁香网| 男人的好看免费观看在线视频| 国产精品一区二区性色av| 亚洲成人久久爱视频| 午夜福利在线在线| 色av中文字幕| 国产精品国产三级国产av玫瑰| 免费在线观看日本一区| 日韩强制内射视频| 黄色配什么色好看| 美女cb高潮喷水在线观看| 99久久久亚洲精品蜜臀av| 中文字幕精品亚洲无线码一区| 亚洲成人精品中文字幕电影| 欧美国产日韩亚洲一区| 天堂√8在线中文| a级一级毛片免费在线观看| a级毛片a级免费在线| av在线亚洲专区| 99国产精品一区二区蜜桃av| 亚洲国产高清在线一区二区三| 别揉我奶头~嗯~啊~动态视频| 男女啪啪激烈高潮av片| 国产v大片淫在线免费观看| 久久精品国产亚洲av香蕉五月| av在线老鸭窝| 久久久精品欧美日韩精品| 欧美精品啪啪一区二区三区| 桃红色精品国产亚洲av| 97碰自拍视频| 欧美极品一区二区三区四区| 国产91精品成人一区二区三区| 欧美最黄视频在线播放免费| 超碰av人人做人人爽久久| 看免费成人av毛片| 在线观看美女被高潮喷水网站| 老司机深夜福利视频在线观看| 毛片一级片免费看久久久久 | 精品久久久久久久久av| 色综合婷婷激情| 国产高清有码在线观看视频| 国产精品亚洲一级av第二区| 18禁黄网站禁片午夜丰满| 深夜a级毛片| 久久久久久久久久久丰满 | 尤物成人国产欧美一区二区三区| 亚洲内射少妇av| 国产成人一区二区在线| 性插视频无遮挡在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 51国产日韩欧美| 97人妻精品一区二区三区麻豆| 内地一区二区视频在线| 99在线人妻在线中文字幕| 亚洲无线观看免费| 国产精品久久久久久av不卡| 国内精品美女久久久久久| 亚洲va在线va天堂va国产| 12—13女人毛片做爰片一| 日本黄色片子视频| 国产精品久久久久久精品电影| 亚洲在线观看片| 舔av片在线| 看十八女毛片水多多多| 成人av在线播放网站| 2021天堂中文幕一二区在线观| 亚洲不卡免费看| 久久人人爽人人爽人人片va| 老司机深夜福利视频在线观看| 亚洲精品影视一区二区三区av| 亚洲成人久久性| 国产中年淑女户外野战色| 亚洲欧美日韩无卡精品| 最近最新中文字幕大全电影3| 有码 亚洲区| 伊人久久精品亚洲午夜| 亚洲最大成人手机在线| 村上凉子中文字幕在线| 最近最新中文字幕大全电影3| 淫秽高清视频在线观看| 色综合色国产| 午夜爱爱视频在线播放| 男人舔女人下体高潮全视频| ponron亚洲| 两人在一起打扑克的视频| 国产蜜桃级精品一区二区三区| 亚洲av成人精品一区久久| 黄色视频,在线免费观看| 国产亚洲精品av在线| 色精品久久人妻99蜜桃| 不卡一级毛片| 日本黄色片子视频| 美女黄网站色视频| 91狼人影院| 日韩高清综合在线| 亚洲真实伦在线观看| 在线播放国产精品三级| 亚洲国产欧美人成| 亚洲色图av天堂| 国产精品一区www在线观看 | 国产中年淑女户外野战色| 国产高清视频在线播放一区| 午夜福利18| 无人区码免费观看不卡| ponron亚洲| x7x7x7水蜜桃| 午夜免费成人在线视频| xxxwww97欧美| 人人妻,人人澡人人爽秒播| 久久久国产成人精品二区| 搡老岳熟女国产| 亚洲久久久久久中文字幕| 亚洲国产精品sss在线观看| 国产v大片淫在线免费观看| 欧美bdsm另类| 天堂影院成人在线观看| 深夜精品福利| 免费一级毛片在线播放高清视频| 成人特级av手机在线观看| 在线观看舔阴道视频| 欧美一区二区亚洲| 成人国产综合亚洲| 亚洲黑人精品在线| 网址你懂的国产日韩在线| 亚洲精品影视一区二区三区av| 亚洲经典国产精华液单| 嫩草影院入口| 国语自产精品视频在线第100页| 好男人在线观看高清免费视频| 亚洲自拍偷在线| 最近最新中文字幕大全电影3| 极品教师在线免费播放| 成年女人看的毛片在线观看| 99久国产av精品| 九色成人免费人妻av| 99久久九九国产精品国产免费| 精品人妻熟女av久视频| 国产蜜桃级精品一区二区三区| 国产亚洲精品综合一区在线观看| 高清毛片免费观看视频网站| 精品人妻视频免费看| 乱码一卡2卡4卡精品| 在线观看美女被高潮喷水网站| 国产一级毛片七仙女欲春2| 国产69精品久久久久777片| 欧美黑人欧美精品刺激| 成人高潮视频无遮挡免费网站| 亚洲欧美日韩高清专用| 在线观看一区二区三区| 少妇的逼水好多| 99riav亚洲国产免费| 精品久久久久久,| 国产探花在线观看一区二区| 久久亚洲真实| 此物有八面人人有两片| 国产av一区在线观看免费| av在线天堂中文字幕| 欧美日韩黄片免| 精品99又大又爽又粗少妇毛片 | 成人综合一区亚洲| 少妇猛男粗大的猛烈进出视频 | av在线蜜桃| 女的被弄到高潮叫床怎么办 | 色综合色国产| 国产中年淑女户外野战色| 久久中文看片网| 国产精品乱码一区二三区的特点| 可以在线观看的亚洲视频| 色综合亚洲欧美另类图片| 国产成人一区二区在线| 午夜精品久久久久久毛片777| 男女做爰动态图高潮gif福利片| 亚洲国产日韩欧美精品在线观看| 午夜精品在线福利| 精品国产三级普通话版| 午夜日韩欧美国产| 国产伦人伦偷精品视频| 国产精品1区2区在线观看.| 免费大片18禁| 久9热在线精品视频| 国产高潮美女av| 无人区码免费观看不卡| 午夜福利18| 九九爱精品视频在线观看| 亚洲av美国av| 国产精品人妻久久久久久| 99国产精品一区二区蜜桃av| 免费观看在线日韩| x7x7x7水蜜桃| 国产高清激情床上av| 成人综合一区亚洲| 美女xxoo啪啪120秒动态图| 看免费成人av毛片| 美女cb高潮喷水在线观看| 国产爱豆传媒在线观看| 国产精品久久久久久久久免| 色吧在线观看| 免费av观看视频| 亚洲精品影视一区二区三区av| 12—13女人毛片做爰片一| 国产视频内射| 草草在线视频免费看|