• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ce2(MoO4)3 as an efficient catalyst for aerobic oxidative desulfurization of fuels

    2022-06-02 05:01:06XiaoYiLiuXiuPingLiRongXiangZhao
    Petroleum Science 2022年2期

    Xiao-Yi Liu,Xiu-Ping Li,Rong-Xiang Zhao

    School of Petrochemical Engineering,Liaoning Petrochemical University,F(xiàn)ushun,113001,Liaoning,China

    Keywords:Ce2(MoO4)3 Aerobic oxidative desulfurization Dibenzothiophene Reflux Renewability

    ABSTRACT Ce2(MoO4)3 was synthesized by a simple reflux method using cerium nitrate hexahydrate and ammonium molybdate as reactants.The as-prepared Ce2(MoO4)3 was characterized by Fourier transform infrared spectroscopy (FT-IR),X-ray diffraction (XRD),Scanning electron microscope (SEM),and X-ray photoelectron spectroscopy (XPS).The removal of dibenzothiophene (DBT) in model oil was studied using Ce2(MoO4)3 as catalyst and oxygen as oxidant.The reaction factors such as reaction temperature,amount of catalyst,and sulfide type on sulfur removal were researched.The results prove that both Ce3+and play significant role in the conversion from DBT to DBTO2.The Ce2(MoO4)3 catalyst has an excellent performance for the sulfur removal of DBT.Under the optimum reaction conditions,sulfur removal of 99.6% was obtained.After recycling five times,no significant loss in catalyst activity of Ce2(MoO4)3.Mechanism of aerobic oxidative desulfurization was proposed based on the experiment of free radical capture and infrared characterization.

    1.Introduction

    The emission of sulfur oxides(SOX)in vehicle exhaust can cause serious environmental problems and threaten human health.Thus,countries around the world have set up strict limits on the sulfide content in fuels,and it is very urgent to develop efficient deep desulfurization technology.In recent years,hydrodesulfurization(HDS) has been widely used to remove organic sulfur compounds,which is conducted at harsh reaction conditions (300-350°C,2-10 MPa) with expensive hydrogenation catalysts.HDS can effectively remove aliphatic sulfur compounds (Sampieri et al.,2005).Furthermore,removal of aromatic sulfur compounds is difficult because steric hindrance.Some technologies have been developed to overcoming technical defects of HDS,these desulfurization technologies are adsorption desulfurization (ADS) (Luo et al.,2021),extractive desulfurization (EDS) (Li et al.,2013) and oxidative desulfurization (ODS) (Wang et al.,2018),etc.Among them,the ODS technology has been widely researched due to its advantages such as mild operating conditions,low energy consumption,and high removal efficiency of aromatic sulfides.In the ODS process,organic sulfides can be oxidized into sulfones with strong polarity,and then removed by extraction or adsorption(Zhen et al.,2019).Various oxidants,including H2O2,oxygen and organic peroxides have been applied to the ODS process.H2O2is widely used due to its lower cost,higher oxidation performance and environmental protection.However,the production and storage of hydrogen peroxide may cause safety and cost issues (Liu et al.,2021).Oxygen is not only environmentally friendly,moreover it is easy to get.Thus,oxygen as the oxidant in ODS,it has attracted the attention of researchers (Wang et al.,2021).

    In ODS,the reaction between oxygen and sulfide is difficult to be carried out under mild conditions.Therefore,it is very important to develop high activity catalysts.In recent years,some catalysts,such as inert metal-based material(Nakagawa et al.,2019),metal organic frameworks(MOFs)(Tang et al.,2020),polyoxometalate(POMs)(Chi et al.,2019),transition metal oxide(TMO)(Wang et al.,2017)etc.,are applied to the field of aerobic oxidative desulfurization(AODS).TMO has been widely concerned in ODS due to their higher activity and lower cost(Wang et al.,2020).For example,Wang et al.(Wang et al.,2020)synthesized V2O5nanosheets with oxygen vacancies by rapid gas drive stripping method.The sulfur removal can reach 99.7%under the optimum reaction conditions.Shi et al.,(2016)proposed a simple sol-gel method to prepare Ce-Mo-O catalysts.The catalyst can completely remove BT and 4,6-DMDBT,the removal rate of BT is 97%,and the oxidation process does not need to add sacrificial agent.Dong (Dong et al.,2019) et al.has developed ultra-thin a-CO(OH)2nanosheets with molybdate intercalation,its derived Co-Mo-O mixed metal oxide has shown excellent sulfur removal performance.Wu et al.,(2020) found that the interaction of strong metal edges between Pt and h-BN can improve the aerobic oxygen oxidation performance in fuel oil.Liu et al.,(2020)established Co-Ni-Mo-O mixed metal oxide nanotubes with a hollow structure preferred to application of AODS.The preparation of the above catalysts often requires harsh preparation conditions such as calcination or the addition of organic reagents to control the structure of the catalyst.These defects are not conducive to the industrialization process of aerobic oxidative desulfurization.

    Cerium molybdate has been widely applied in the fields of inorganic pigments(Dargahi et al.,2020)and photocatalysts(Xing et al.,2016).At present,there is no report of cerium molybdate used as a catalyst for AODS.In this paper,Ce2(MoO4)3was synthesized and characterized by FT-IR,XRD,SEM,XPS.Compared with the previous TMO,the synthesis of the Ce2(MoO4)3can be carried out under mild reaction conditions (lower temperature and shorter reaction time),and the reaction process does not need to add structure promoter and high-temperature calcination.The oxidative desulfurization of model oil was determined by using Ce2(MoO4)3as the catalyst and oxygen as the oxidant.Furthermore,based on the experimental conclusion,the functions of Ce and MoO4are illustrated in ODS,and proposed possible reaction mechanism.

    2.Experimental

    2.1.Materials and instruments

    Ammonium molybdate (98 wt%),Cerium Nitrate Hexahydrate(AR),Decahydronaphthalene (AR),Dibenzothiophene (AR),4,6-Dimethyldibenzothiophene (AR),Benzothiophene (AR),All above reagents were purchased from Aladdin Reagent Co.,Ltd..Oxygen(99 wt%,Hubei Guangao Biological Technology Co.,Ltd.).

    FT-IR of the synthesized catalysts was characterized by a Nicolet FT-IR spectrophotometer (Nexus 470,Thermo Electron Corporation) with spectral range of 4000-400cm-1 and resolution better than 1.5 cm-1.XRD graphics of the Ce2(MoO4)3sample were obtained using the Philips diffractometer utilizing high-intensity Cu Kα radiation in X’Pert MPD model (40 kV;100 mA;1.5406 ?),and the step scan technique at 2 theta angles range between 10°and 70°.Surface morphology of the Ce2(MoO4)3was characterized by SEM (ZEISS Gemini SEM 500,Germany).The elemental composition of the Ce2(MoO4)3was studied by energy-dispersive X-ray spectroscopy(EDS).XPS(PHI5000 Versaprobe II,Japan)was used to survey and evaluate the elemental composition and surface chemical state of Ce2(MoO4)3.

    2.2.Synthesis of Ce2(MoO4)3

    In this work,the Ce2(MoO4)3catalyst was synthesized by the reflux method.0.5296g ammonium molybdate was dissolved in 40 mL distilled water,marked as solution-A,then,solution-A was added to a triangular flask with a cooling condenser.After that,aqueous solution (40 mL) of 0.8744g cerium nitrate hexahydrate was added dropwise to Solution-A.The triangular flask containing the mixed solution was transferred to an oil bath and stirred at 80°C for 1 h.The pale yellow precipitation was obtained.The products after centrifugal separation were washed three times with absolute ethanol and distilled water,and dried at 90°C for 5 h.

    2.3.Aerobic oxidation desulfurization experiments

    The model oil with S-content of 250 μg/g was prepared by dissolving 0.718g dibenzothiophene in 500 mL decahydronaphthalene.The AODS reaction was carried out in a three-neck flask.Firstly,20 mL simulated oil and a certain amount of Ce2(MoO4)3were added to three-necked flask with reflux device.Then,the three-neck flask was placed in a preheated oil bath.oxygen was injected at a flow rate of 0.2L/min.The AODS reaction begins at a certain temperature and agitation speed.A small amount of upper oil phase is taken as sample every 20 min and the sulfur content of the sample was measured by WK-2D microcoulomb analyzer,then calculation of sulfur removal by formula(1).The reaction device is shown in Fig.1.

    3.Results and discussion

    3.1.Characterization

    3.1.1.FT-IR and XRD analysis

    Fig.1.Device diagram of aerobic oxidative desulfurization.

    Fig.2.(a) FT-IR and (b) XRD spectra of Ce2(MoO4)3.

    The FT-IR and XRD characterization results of the as-synthesized Ce2(MoO4)3are revealed in Fig.2.As shown in Fig.2(a),the infrared absorption peaks at 3382 cm-1and 1616 cm-1are attributed to stretching and bending mode of O-H from water adsorbed on the surface of samples(Xing et al.,2016),the smaller peak at 1384 cm-1corresponds to the bending vibration of the Ce-O-H bond.The narrow peaks between 1070 and 1150 cm-1,the peaks around 870,712 and 634 cm-1associate to the stretching vibration peaks of the Mo-O bond (Yousefi et al.,2012).Crystallinity of Ce2(MoO4)3was determined by XRD analysis.The XRD patterns are shown in Fig.2(b).From the results,typical characteristic peaks of samples associate to Ce2(MoO4)3crystals (JCPDS:00-057-0952) and the structure is amorphous nanocrystal(Kartsonakis and Kordas,2010).The individual peaks at 2θ angles are obtained to 21.19°,24.47°,27.61°,28.33°,29.99°,36.39°and 46.34°,which are assigned to(112),(004),(200),(204),(220),(116),(312) planes of monoclinic Ce2(MoO4)3,respectively.No peak of other crystal phases is observed in the spectrum.

    3.1.2.SEM analysis

    The morphology of the as-prepared Ce2(MoO4)3was investigated by SEM.As shown in Fig.3(a),the sample is composed of nanocrystals with rod-like structure and particles.The particle size of nanocrystals is uneven due to lower reaction temperature and shorter reaction time.Moreover,nanocrystals were revealed high dispersibility and low packing density.According to relevant reports (Xing et al.,2016),the morphology of Ce2(MoO4)3can be changed according to different synthesis conditions.The EDS measurement of the sample is shown in Fig.3(b),indicates that the sample is composed of Ce,Mo and O elements,and its molar ratio is approximately n(Ce):n(Mo):n(O)=2:3:12.It is consistent with the composition of cerium molybdate.

    3.1.3.XPS analysis

    For the benefit of obtaining the composition and chemical state of catalyst,XPS analysis of Ce2(MoO4)3catalysts was performed.As shown in Fig.4(a),the survey curves of catalysts further demonstrate the coexistence of Ce,Mo and O elements,each element has a spin-orbit core energy level.Among them,the spin-orbit energy spectrum of Ce elements can be divided into two multiple energy levels (U and V),they correspond to the core-level spin-orbit splitting of Ce 3d3/2and Ce 3d5/2(Kanai et al.,2017).The highresolution XPS spectrum of Ce 3d was shown in Fig.4(b),the U0,V0,U1,V1peaks corresponding to Ce3+state and the remaining 5 peaks corresponding to Ce4+state (Sakthivel et al.,2015).The presence of Ce3+and Ce4+indicates that the Ce2(MoO4)3catalyst has redox properties.

    The high-resolution XPS spectrum of the spin-orbit core energy level of O1s was displayed Fig.4(c).The sharp peak observed at 530.51 eV assigned to lattice oxygen in the Mo-O bond.And the side peak at 532.55 eV can be corresponded the O2was adsorbed on Ce2(MoO4)3surface (Sakthivel et al.,2015).

    Fig.3.(a) SEM and (b) EDS images of Ce2(MoO4)3.

    Fig.4.XPS spectrum of (a) Ce2(MoO4)3,high resolution spectra of (b) Ce3d,(c) O1s and (d) Mo3d.

    The XPS spectrum of the spin-orbit core energy levels of Mo 3d5/2 and Mo 3d3/2,the binding energy at 232.68 eV related to the Mo6+oxidation state of the Mo 3d5/2spin-orbit core energy level in Fig.4(d).The other peak appears at 235.87 eV is the Mo 3d3/2spin-orbit core energy level of Mo6+oxidation state,it can be attributed to the existence of Mo=O or Mo-O bond,but no additional peaks of Mo4+or Mo5+are observed.These peaks are consistent with the reported XPS spectra of Ce 3d and Mo 3d (Karthik et al.,2017).

    3.2.Effect of various catalysts for AODS

    In order to study the effect of catalyst structure in ADOS,oxidative desulfurization activity of different catalysts such as Ce2(MoO4)3,CeVO4,Ce2(WO4)3and Na2MoO4were investigated under the same experimental conditions.As shown in Fig.5,Thehas the highest sulfur removal in these catalysts owning the same cation.Efficiencies change follows the sequenceSimilarly,based on the fact that the sulfur removal performance of Ce2(MoO4)3is much higher than that of Na2MoO4.It can conclude that Ce3+also play a significant role in ODS.The above results indicate that the synergistic effect between Ce3+and MoO42-leads to higher sulfur removal.

    3.3.Effect of reaction temperature

    The reaction temperature is an important factor affecting the desulfurization rate.In AODS,the catalyst can show high sulfur removal at high temperature (>100°C).The oxidative desulfurization activity of Ce2(MoO4)3at different reaction temperatures was shown the Fig.6,sulfur removal increases from 10.8% at 80°C to 99.6% at 100°C in 120 min.This is because increased the temperature can accelerate the collision rate between reactant molecules(Zhao et al.,2007).When the reaction temperature was increased from 100°C to 110°C,the sulfur removal rate increased to 99.6% in 80min.However,high temperature will also cause side reactions of hydrocarbons oxidation and the increase of energy consumption(Eseva et al.,2021).In conclusion,100°C as the optimum reaction temperature.

    3.4.Effect of catalyst dosage

    Fig.5.Effect of different catalysts for sulfur removal (Reaction conditions:20 mL model oil,O2 airflow rate=0.2L/min,T=100°C,catalyst dosage=0.05g).

    The catalyst dosage is one of the most important parameters for the industrialization of ODS.The effect of Ce2(MoO4)3dosage on sulfur removal was investigated.The results are shown in Fig.7,catalyst dosage increased from 0.02g to 0.05g results in the sulfur removal of DBT increasing from 58.8% to 99.6%.Nevertheless,the catalyst dosage was increased from 0.05g to 0.06g,the sulfur removal decreased from 99.6% to 90.8%.The results show that increasing the amount of catalyst is beneficial to increasing the number of active sites(Qiu et al.,2016).However,excessive catalyst will cause agglomeration and limit the contact area with DBT,which will affect the diffusion of reactants and products,so reduce the sulfur removal (Eseva et al.,2021).Therefore,the optimal catalyst dosage of 0.05g was selected to oxidative desulfurization process.

    3.5.Removal of different types of sulfide

    Fig.6.Effect of reaction temperature on sulfur removal (Reaction conditions:20 mL model oil,O2 airflow rate=0.2L/min,Ce2(MoO4)3=0.05g).

    Fig.7.Effect of the Ce2(MoO4)3 dosage on sulfur removal(Reaction conditions:20 mL model oil,O2 airflow rate=0.2L/min,T=100°C).

    In this experiment,the Ce2(MoO4)3has a high oxidation desulfurization activity on DBT in AODS.However,it is very necessary to study sulfur removal performance of catalysts for other sulfides such as BT and 4,6-DMDBT due to the diversity of sulfides in actual fuel.As shown in Fig.8,the removal rate of 4,6-DMDBT and BT are 94% and 26%,they are lower than that of DBT.According to the literature (Zhao et al.,2017),the difference of removal efficiency can be attributed to the electron cloud density of sulfur atoms and steric hindrance effect.The methyl groups in 4,6-DMDBT would hinder process of oxidative desulfurization reaction,resulting in a lower removal rate of DBT.The higher electron cloud density results the higher the oxidation desulfurization capacity.The electron densities of the S atom in DBT,4,6-DMDBT and BT are 5.758,5.760 and 5.739,respectively (Mao et al.,2017).Therefore,sulfur removal of DBT,4,6-DMDBT and BT are affected by the steric hindrance and electron density (Otsuki et al.,2000).

    3.6.Effects of olefins and aromatics

    In ODS process,the presence of olefins and aromatics will affect the removal of organic sulfide.Here,toluene and cyclohexene are selected as the models of aromatics and olefins,effects of their addition on sulfur removal are explored in Fig.9.Under optimal reaction conditions,when 5 wt%-toluene and 5 wt%-cyclohexene were added to 20 mL model oil,removal efficiency slightly decreased to 97.6%and 94.1%,respectively.It can be seen that both cyclohexene and toluene have a certain influence on the sulfur removal,which may be caused by the competitive reaction among toluene,cyclohexene and DBT (Liu et al.,2021).The results show that the sulfur removal of DBT in the AODS system is less affected by olefins and aromatics.

    3.7.Recycling performance of Ce2(MoO4)3

    After the AODS reaction,the catalyst was filtered from the reaction system,and then washed with CCl4under a magnetic stirrer at 25°C for 30min.Finally,the catalyst was dried at 80°C for 8 h.Thereafter,the recovered Ce2(MoO4)3catalyst was used in the next AODS under the optimal conditions.The exhibited results in Fig.10 illustrates that the sulfur removal of DBT reduced to 94.7%after the five cycles.The recovered Ce2(MoO4)3catalyst was analyzed by FTIR analysis measurement.The FT-IR spectrum was shown in Fig.11.It can be seen that the fresh catalyst and the recovered catalyst have similar absorption peaks,Therefore,the catalyst has high stability.

    Fig.8.Removal efficiency of different sulfides(Reaction conditions:20 mL model oil,O2 airflow rate=0.2L/min,T=100°C,Ce2(MoO4)3=0.05g).

    Fig.9.Effect of olefins and aromatics on sulfur removal(Reaction conditions:20 mL model oil,O2 airflow rate=0.2L/min,T=100°C,Ce2(MoO4)3=0.05g).

    3.8.AODS mechanism in the presence of Ce2(MoO4)3

    In order to investigate aerobic oxidation desulfurization mechanism,a free radical capture experiment was designed.P-benzoquinone (·O2-trapping agents) and isopropanol (·OH trapping agents)were added to AODS system,respectively.The experiment results are shown in Fig.12.Sulfur removal after adding isopropanol can reach 97.2%,while the sulfur removal after adding pbenzoquinone is only 12%,this indicates that a large number of superoxide radicals [] generated during the reaction are captured by p-benzoquinone,leads to reduce sulfur removal.The results show that[]radical is the intermediate activated product of oxidation reaction.

    Fig.10.Recycling performance of Ce2(MoO4)3.

    Fig.11.FT-IR spectra of Ce2(MoO4)3 before and after the reaction.

    After oxidative desulfurization reaction,The Ce2(MoO4)3was washed by CCl4.The CCl4solution was evaporated by rotary evaporator to obtain oxidation products of the sulfur compounds,F(xiàn)T-IR characterization results of oxidation products are shown in Fig.13(a).Two infrared absorption peaks at 1292 and 1166 cm-1,which correspond to the characteristic absorption peaks of dibenzothiophene sulfone (DBTO2).In addition,the obtained CCl4solution was analyzed by GC-MS measurement.The results are shown in Fig.13(b),the strong peak corresponding to DBTO2(m/z=216.0)at 17.604 min was found.The FT-IR and GC-MS analysis proved that DBT was oxidized to DBTO2.

    In the research of aerobic oxidation of molybdenum-based catalysts (Lü et al.,2013;Ma et al.,2020;Xun et al.,2019),molybdenum sites have mixed valence states,the conversion between different valence states leads to the production of active molybdenum species.This experiment is different from these literatures.Through the XPS characterization,it can be seen that there is only Mo6+in the Ce2(MoO4)3catalyst.Mo peroxides may be formed in the presence of oxygen.This phenomenon is very common in the oxidative desulfurization system with molybdenum-based catalyst(Jiang et al.,2019;Zhang et al.,2019).Refer to previous research(Shi et al.,2016,Zhang et al.,2019),the mechanism of oxidative desulfurization was shown in Fig.14.First,oxygen molecules are adsorbed on the Ce3+site of the catalyst to form Ce3+-O2,and some of the Ce3+-O2further formation Ce4+-[]superoxide,then these Ce4+-[] interact with Mo sites on the catalyst to produce some active molybdenum species to further oxidize DBT compounds to DBTO2(Shi et al.,2016;Zhu et al.,2007).

    Fig.12.Free radical capture experiment(Reaction conditions:20 mL model oil,O2 airflow rate=0.2L/min,T=100°C,Ce2(MoO4)3=0.05g).

    Fig.13.(a) FT-IR spectrum and (b) GC-MS of oxidation products.

    Fig.14.AODS mechanism in the presence of Ce2(MoO4)3.

    Fig.15.AODS of diesel fuel.

    3.9.AODS of diesel fuel

    The aerobic desulfurization performance of Ce2(MoO4)3for diesel fuel with S-content of 150 μg/g was also investigated.It can be seen from Fig.15,under optimal conditions,the sulfur removal of 21.1% was obtained.Compared with the model oil,the sulfur removal is too low due to the complexity of components in actual diesel.After the AODS,1 mL of acetonitrile was added to the AODS system to extraction of oxidation products of sulfur,removal of sulfur compounds from diesel was reached 74.8%.When extraction desulfurization in diesel fuel was carried out by acetonitrile as extractant,sulfur removal is only 8.2%.The experimental results show that the AODS-extraction desulfurization system under the action of Ce2(MoO4)3can still remove most of the sulfide in diesel fuel.

    4.Conclusions

    Ce2(MoO4)3was synthesized by a simple reflux method using ammonium molybdate and cerium nitrate hexahydrate as raw materials.Ce2(MoO4)3was used as the catalyst in AODS systems.Sulfur removal of 99.6%for DBT,94%for 4,6-DMDBT and 26%for BT were obtained under the optimized conditions of 20 mL model oil,catalyst dosage of 0.05g,oxygen flow rate of 0.2L/min,100°C,respectively.The introduction of both olefin and aromatic hydrocarbon cannot significantly change the oxidative desulfurization activity of the catalyst.The superoxide radical generated by oxygen under the action of catalyst is the key factor for the oxidation of sulfide.The Ce2(MoO4)3has a strong regenerative capacity and the sulfur removal reached 94.7% after five cycles.

    Acknowledgements

    The authors also acknowledge the financial support of the Natural Science Foundation of Liaoning Province (2019-ZD-0064);Doctoral Fund of Liaoning Province (201501105).

    少妇的逼水好多| 午夜福利在线在线| 亚洲五月婷婷丁香| 18禁在线播放成人免费| 日韩人妻高清精品专区| 人人妻人人看人人澡| 亚洲第一电影网av| x7x7x7水蜜桃| 热99在线观看视频| 国产 一区 欧美 日韩| 欧美黑人巨大hd| 中文字幕人妻丝袜一区二区| 久久久久亚洲av毛片大全| 最新美女视频免费是黄的| 午夜免费激情av| 国产精品自产拍在线观看55亚洲| 日韩 欧美 亚洲 中文字幕| 国内精品一区二区在线观看| 国产激情欧美一区二区| 色av中文字幕| 18禁裸乳无遮挡免费网站照片| 有码 亚洲区| 免费看光身美女| 欧美极品一区二区三区四区| 美女cb高潮喷水在线观看| 国产高清视频在线观看网站| 色综合婷婷激情| 毛片女人毛片| 日日干狠狠操夜夜爽| ponron亚洲| 久久精品国产综合久久久| 首页视频小说图片口味搜索| 日本一二三区视频观看| 国产精品精品国产色婷婷| 丰满人妻一区二区三区视频av | 精品国内亚洲2022精品成人| 99在线视频只有这里精品首页| 亚洲国产欧洲综合997久久,| 成人av一区二区三区在线看| 亚洲成av人片在线播放无| 亚洲第一欧美日韩一区二区三区| 18禁裸乳无遮挡免费网站照片| 中文字幕熟女人妻在线| 亚洲片人在线观看| 人妻夜夜爽99麻豆av| 欧美+日韩+精品| 99热这里只有是精品50| 国产视频内射| 最后的刺客免费高清国语| 久久久国产精品麻豆| 男人舔女人下体高潮全视频| 身体一侧抽搐| 国产探花极品一区二区| 一级毛片女人18水好多| 国产av一区在线观看免费| 一本一本综合久久| 国产精品,欧美在线| eeuss影院久久| 国产一级毛片七仙女欲春2| 中文字幕人妻熟人妻熟丝袜美 | 窝窝影院91人妻| 真实男女啪啪啪动态图| 亚洲第一电影网av| 男女那种视频在线观看| 国产在线精品亚洲第一网站| 女警被强在线播放| 俄罗斯特黄特色一大片| 19禁男女啪啪无遮挡网站| a级毛片a级免费在线| 中文字幕人成人乱码亚洲影| 国产精品野战在线观看| 免费在线观看亚洲国产| 高清毛片免费观看视频网站| 国产精品 国内视频| 欧美黑人巨大hd| 日本 av在线| 每晚都被弄得嗷嗷叫到高潮| 黄色日韩在线| 久久久精品欧美日韩精品| 欧美三级亚洲精品| 国产精品1区2区在线观看.| 啦啦啦韩国在线观看视频| 性欧美人与动物交配| 老汉色av国产亚洲站长工具| 精品人妻偷拍中文字幕| 999久久久精品免费观看国产| 亚洲专区国产一区二区| 欧美中文日本在线观看视频| 欧美zozozo另类| 国产伦人伦偷精品视频| 亚洲av一区综合| 国产蜜桃级精品一区二区三区| 99国产极品粉嫩在线观看| 动漫黄色视频在线观看| 欧美区成人在线视频| 国产精品98久久久久久宅男小说| 两性午夜刺激爽爽歪歪视频在线观看| 波多野结衣巨乳人妻| svipshipincom国产片| 色av中文字幕| 在线播放国产精品三级| 亚洲av不卡在线观看| 黄片大片在线免费观看| 日日干狠狠操夜夜爽| 成人国产一区最新在线观看| 国产精品99久久99久久久不卡| 亚洲成av人片在线播放无| 久久九九热精品免费| 黄色视频,在线免费观看| 免费看a级黄色片| 国内精品美女久久久久久| 一个人看视频在线观看www免费 | 麻豆久久精品国产亚洲av| 亚洲av五月六月丁香网| 国产精品国产高清国产av| 一卡2卡三卡四卡精品乱码亚洲| 国产美女午夜福利| 99在线视频只有这里精品首页| 国产精品久久久久久人妻精品电影| 国产乱人视频| 不卡一级毛片| 天天一区二区日本电影三级| 亚洲成av人片在线播放无| 九色国产91popny在线| 黄片大片在线免费观看| 久久性视频一级片| 欧美日韩福利视频一区二区| 99热6这里只有精品| 丰满乱子伦码专区| 最好的美女福利视频网| 久久香蕉精品热| 黄色成人免费大全| 国产精品一区二区三区四区免费观看 | 夜夜爽天天搞| 久久久久久国产a免费观看| 床上黄色一级片| 深夜精品福利| 国产精品免费一区二区三区在线| 嫩草影视91久久| 国产免费一级a男人的天堂| 国产视频一区二区在线看| 色哟哟哟哟哟哟| 日韩精品青青久久久久久| 婷婷精品国产亚洲av| 很黄的视频免费| 91久久精品国产一区二区成人 | 露出奶头的视频| 欧美一区二区亚洲| 岛国在线免费视频观看| 欧美一区二区国产精品久久精品| 亚洲内射少妇av| 国产精品一区二区三区四区久久| 88av欧美| 国产欧美日韩精品亚洲av| 哪里可以看免费的av片| 少妇的逼好多水| 国产精品精品国产色婷婷| 国产精品日韩av在线免费观看| 国产黄a三级三级三级人| 久久久久久久久大av| 丁香欧美五月| 亚洲自拍偷在线| 国产野战对白在线观看| 成人国产一区最新在线观看| 亚洲人成网站高清观看| 国产蜜桃级精品一区二区三区| 国产成人系列免费观看| 久久婷婷人人爽人人干人人爱| 国产主播在线观看一区二区| 最好的美女福利视频网| 亚洲片人在线观看| 日韩欧美三级三区| 身体一侧抽搐| 九九在线视频观看精品| 1000部很黄的大片| 欧美+亚洲+日韩+国产| 亚洲国产精品999在线| 88av欧美| 成人特级av手机在线观看| 亚洲狠狠婷婷综合久久图片| 久久亚洲真实| 国产美女午夜福利| 亚洲人成网站在线播| 特大巨黑吊av在线直播| 国产精品美女特级片免费视频播放器| 国产成人影院久久av| 制服丝袜大香蕉在线| 18禁美女被吸乳视频| 两个人视频免费观看高清| 听说在线观看完整版免费高清| 亚洲国产精品999在线| avwww免费| 中文字幕人妻丝袜一区二区| 亚洲美女视频黄频| 中文字幕人成人乱码亚洲影| 91麻豆精品激情在线观看国产| 亚洲熟妇熟女久久| 性色av乱码一区二区三区2| 精品免费久久久久久久清纯| 在线观看午夜福利视频| 狂野欧美白嫩少妇大欣赏| 少妇人妻精品综合一区二区 | 麻豆国产av国片精品| 制服丝袜大香蕉在线| 天天添夜夜摸| 免费观看人在逋| 桃红色精品国产亚洲av| 精品无人区乱码1区二区| 香蕉丝袜av| 日韩欧美免费精品| av视频在线观看入口| 桃红色精品国产亚洲av| 中文字幕精品亚洲无线码一区| 成人亚洲精品av一区二区| 国产成人a区在线观看| 在线观看舔阴道视频| 精品福利观看| 在线a可以看的网站| 国产视频一区二区在线看| 两个人的视频大全免费| 一区二区三区高清视频在线| 欧美又色又爽又黄视频| 亚洲国产精品999在线| 九九久久精品国产亚洲av麻豆| 午夜免费观看网址| 一二三四社区在线视频社区8| or卡值多少钱| 岛国在线免费视频观看| 久久久久九九精品影院| 无人区码免费观看不卡| 国产69精品久久久久777片| 一卡2卡三卡四卡精品乱码亚洲| 中文在线观看免费www的网站| 真人做人爱边吃奶动态| 亚洲va日本ⅴa欧美va伊人久久| 日本免费一区二区三区高清不卡| 日本免费一区二区三区高清不卡| 午夜福利18| АⅤ资源中文在线天堂| 午夜福利在线在线| 午夜影院日韩av| 美女黄网站色视频| 亚洲av第一区精品v没综合| 在线看三级毛片| 美女cb高潮喷水在线观看| 日韩有码中文字幕| 美女 人体艺术 gogo| 熟女少妇亚洲综合色aaa.| 在线国产一区二区在线| 麻豆久久精品国产亚洲av| 成人国产一区最新在线观看| 成人永久免费在线观看视频| 精品不卡国产一区二区三区| 婷婷精品国产亚洲av在线| 精品一区二区三区视频在线观看免费| 国产av一区在线观看免费| 1024手机看黄色片| 首页视频小说图片口味搜索| 国产又黄又爽又无遮挡在线| 成年版毛片免费区| 色在线成人网| 五月玫瑰六月丁香| 亚洲性夜色夜夜综合| 日韩欧美免费精品| 亚洲最大成人手机在线| 老司机福利观看| 中文在线观看免费www的网站| 亚洲国产欧美网| 91久久精品电影网| 88av欧美| 18美女黄网站色大片免费观看| 国产真实乱freesex| 欧美中文日本在线观看视频| 亚洲中文日韩欧美视频| 亚洲一区二区三区不卡视频| 国产精品乱码一区二三区的特点| 久久精品人妻少妇| 久久久久久久久大av| 夜夜爽天天搞| 欧美日韩一级在线毛片| 国产麻豆成人av免费视频| 欧美成人免费av一区二区三区| 脱女人内裤的视频| 日本成人三级电影网站| 搡女人真爽免费视频火全软件 | 国产高清videossex| av专区在线播放| 岛国在线观看网站| 嫩草影视91久久| 免费av毛片视频| 亚洲av第一区精品v没综合| 丝袜美腿在线中文| 美女高潮的动态| 蜜桃久久精品国产亚洲av| 夜夜躁狠狠躁天天躁| 少妇熟女aⅴ在线视频| 亚洲人成网站在线播放欧美日韩| 国产三级在线视频| 中文字幕人妻丝袜一区二区| 欧美zozozo另类| 日本一二三区视频观看| 亚洲人与动物交配视频| 欧美极品一区二区三区四区| 午夜免费男女啪啪视频观看 | 怎么达到女性高潮| 麻豆一二三区av精品| 久久久久久人人人人人| 亚洲熟妇中文字幕五十中出| 色精品久久人妻99蜜桃| a级毛片a级免费在线| 岛国视频午夜一区免费看| 亚洲国产欧洲综合997久久,| 亚洲精品美女久久久久99蜜臀| 99在线人妻在线中文字幕| 国产真实伦视频高清在线观看 | 老司机深夜福利视频在线观看| 天堂影院成人在线观看| 亚洲av电影不卡..在线观看| 色av中文字幕| 免费在线观看亚洲国产| 日日干狠狠操夜夜爽| 一个人免费在线观看电影| 欧美日韩中文字幕国产精品一区二区三区| 久久香蕉国产精品| 美女高潮喷水抽搐中文字幕| 一进一出好大好爽视频| 国产av不卡久久| 亚洲狠狠婷婷综合久久图片| 国产精品精品国产色婷婷| 日韩欧美精品免费久久 | 国模一区二区三区四区视频| 国产美女午夜福利| 真实男女啪啪啪动态图| 又黄又粗又硬又大视频| 男女午夜视频在线观看| 亚洲精品粉嫩美女一区| 免费观看的影片在线观看| 九色国产91popny在线| 日本熟妇午夜| 精品一区二区三区视频在线观看免费| 亚洲精品在线观看二区| 久久99热这里只有精品18| 男女之事视频高清在线观看| xxxwww97欧美| 成人永久免费在线观看视频| 精品人妻偷拍中文字幕| 草草在线视频免费看| 精品免费久久久久久久清纯| 老司机午夜十八禁免费视频| 麻豆一二三区av精品| 国产高潮美女av| 国产av不卡久久| 99在线视频只有这里精品首页| 精品久久久久久久久久免费视频| 国产亚洲精品久久久久久毛片| 国产精品影院久久| 亚洲熟妇中文字幕五十中出| 久久性视频一级片| 久久九九热精品免费| 中出人妻视频一区二区| 亚洲午夜理论影院| 日韩欧美 国产精品| 欧美黄色片欧美黄色片| 99国产精品一区二区蜜桃av| 精品无人区乱码1区二区| 国产探花在线观看一区二区| 亚洲中文字幕日韩| www.色视频.com| 日韩av在线大香蕉| 99久国产av精品| 伊人久久精品亚洲午夜| 亚洲精品亚洲一区二区| 有码 亚洲区| 别揉我奶头~嗯~啊~动态视频| 国产综合懂色| 九九在线视频观看精品| 欧美午夜高清在线| 精品久久久久久久末码| 亚洲久久久久久中文字幕| 国产毛片a区久久久久| 18禁黄网站禁片免费观看直播| 乱人视频在线观看| 99久久精品国产亚洲精品| 真人做人爱边吃奶动态| 日韩免费av在线播放| 有码 亚洲区| bbb黄色大片| 一级毛片高清免费大全| 亚洲 国产 在线| 亚洲内射少妇av| 亚洲欧美激情综合另类| 久久久久久久亚洲中文字幕 | 综合色av麻豆| 91久久精品国产一区二区成人 | 国产精品女同一区二区软件 | 18美女黄网站色大片免费观看| 午夜老司机福利剧场| e午夜精品久久久久久久| 国产在线精品亚洲第一网站| 久久久久国产精品人妻aⅴ院| av天堂中文字幕网| 两个人的视频大全免费| 美女免费视频网站| 国产一区二区在线av高清观看| 一本一本综合久久| 成人永久免费在线观看视频| 国产成人系列免费观看| 一个人观看的视频www高清免费观看| 一级黄片播放器| 窝窝影院91人妻| 亚洲 欧美 日韩 在线 免费| 久久中文看片网| 狂野欧美白嫩少妇大欣赏| 激情在线观看视频在线高清| 色吧在线观看| 久9热在线精品视频| 窝窝影院91人妻| 老汉色∧v一级毛片| 丰满乱子伦码专区| 99久国产av精品| 亚洲精品一卡2卡三卡4卡5卡| 搡女人真爽免费视频火全软件 | www.色视频.com| 欧美成人一区二区免费高清观看| 看免费av毛片| 欧美日本亚洲视频在线播放| 中国美女看黄片| 久久久久久久久中文| 日韩欧美精品v在线| 夜夜爽天天搞| 成人欧美大片| 一a级毛片在线观看| 久久性视频一级片| 香蕉久久夜色| 国产精品一及| 国产欧美日韩一区二区精品| 亚洲人成网站高清观看| 国产极品精品免费视频能看的| 丁香欧美五月| 亚洲国产精品成人综合色| 级片在线观看| 99久久久亚洲精品蜜臀av| 99在线人妻在线中文字幕| av女优亚洲男人天堂| 少妇的逼水好多| 少妇丰满av| 真人一进一出gif抽搐免费| 欧美日韩国产亚洲二区| 国产欧美日韩一区二区三| 国产麻豆成人av免费视频| 老熟妇乱子伦视频在线观看| 高清日韩中文字幕在线| 亚洲人成伊人成综合网2020| 欧美日韩精品网址| 深夜精品福利| 狂野欧美激情性xxxx| 欧美一区二区精品小视频在线| 国产伦人伦偷精品视频| 日本在线视频免费播放| 在线观看66精品国产| 90打野战视频偷拍视频| 欧美色欧美亚洲另类二区| 国产野战对白在线观看| 国产精品久久久久久人妻精品电影| 日本三级黄在线观看| 亚洲一区二区三区色噜噜| 嫩草影院精品99| 级片在线观看| 亚洲真实伦在线观看| 免费观看的影片在线观看| 老司机深夜福利视频在线观看| 天堂动漫精品| 91麻豆av在线| 久久久久久人人人人人| 女人十人毛片免费观看3o分钟| 美女被艹到高潮喷水动态| 黄色女人牲交| 欧美3d第一页| 国内精品美女久久久久久| 欧美激情在线99| 亚洲午夜理论影院| 18禁国产床啪视频网站| 中文字幕精品亚洲无线码一区| 又紧又爽又黄一区二区| 久久精品影院6| 国产v大片淫在线免费观看| 成人av一区二区三区在线看| 两个人视频免费观看高清| 精品久久久久久久人妻蜜臀av| 午夜免费观看网址| 亚洲第一欧美日韩一区二区三区| ponron亚洲| 嫁个100分男人电影在线观看| 欧美高清成人免费视频www| 国产免费av片在线观看野外av| 老司机午夜十八禁免费视频| 成年女人看的毛片在线观看| 91在线精品国自产拍蜜月 | 日本与韩国留学比较| 十八禁人妻一区二区| 757午夜福利合集在线观看| 成人特级av手机在线观看| 久久久久久久亚洲中文字幕 | 精品人妻1区二区| 最后的刺客免费高清国语| 又黄又粗又硬又大视频| 国产精品爽爽va在线观看网站| 亚洲欧美日韩高清在线视频| 男人舔女人下体高潮全视频| av女优亚洲男人天堂| 小说图片视频综合网站| 搡老妇女老女人老熟妇| 久久久久久久久中文| 中文字幕人妻丝袜一区二区| 蜜桃久久精品国产亚洲av| 色在线成人网| 久99久视频精品免费| 午夜两性在线视频| 久久久久久久精品吃奶| 亚洲av成人精品一区久久| 午夜福利18| 女警被强在线播放| 国产精品久久久久久久电影 | 9191精品国产免费久久| 五月玫瑰六月丁香| 成人亚洲精品av一区二区| 午夜福利在线在线| 久久久国产成人免费| av天堂中文字幕网| 一个人免费在线观看电影| 午夜视频国产福利| 国产成年人精品一区二区| 久久伊人香网站| 亚洲精品成人久久久久久| 97超级碰碰碰精品色视频在线观看| 成人av一区二区三区在线看| 俺也久久电影网| 网址你懂的国产日韩在线| 在线观看美女被高潮喷水网站 | 日韩欧美精品免费久久 | 国产成+人综合+亚洲专区| 亚洲精品色激情综合| 熟女少妇亚洲综合色aaa.| 女人高潮潮喷娇喘18禁视频| 好男人在线观看高清免费视频| 欧美日韩精品网址| 免费大片18禁| 一级毛片高清免费大全| 国产成年人精品一区二区| 亚洲精品乱码久久久v下载方式 | 国产亚洲精品久久久com| 国产精品亚洲美女久久久| 女生性感内裤真人,穿戴方法视频| 人妻久久中文字幕网| 午夜免费成人在线视频| 日本一二三区视频观看| 国内精品一区二区在线观看| 长腿黑丝高跟| 国产在线精品亚洲第一网站| 色噜噜av男人的天堂激情| 又爽又黄无遮挡网站| 2021天堂中文幕一二区在线观| 亚洲欧美激情综合另类| 国内少妇人妻偷人精品xxx网站| 午夜精品久久久久久毛片777| 午夜两性在线视频| 日本 欧美在线| 18+在线观看网站| 免费高清视频大片| 国产色爽女视频免费观看| 国产精品一及| 级片在线观看| 宅男免费午夜| 亚洲人成网站高清观看| 欧美黑人欧美精品刺激| xxx96com| 亚洲国产欧洲综合997久久,| 观看免费一级毛片| www.色视频.com| 国产高清videossex| 日韩欧美一区二区三区在线观看| 国产久久久一区二区三区| 国产高清激情床上av| svipshipincom国产片| 久久婷婷人人爽人人干人人爱| 精品久久久久久成人av| 国产精品香港三级国产av潘金莲| 欧美极品一区二区三区四区| 五月伊人婷婷丁香| 国产精品亚洲av一区麻豆| 欧美bdsm另类| 高清在线国产一区| 99热只有精品国产| 美女被艹到高潮喷水动态| 床上黄色一级片| 可以在线观看毛片的网站| 天堂√8在线中文| 国产探花在线观看一区二区| 少妇的逼好多水| av专区在线播放| 九九热线精品视视频播放| 欧美高清成人免费视频www| 嫩草影院精品99| 国产成+人综合+亚洲专区| 观看美女的网站| 久久久久国产精品人妻aⅴ院| 少妇裸体淫交视频免费看高清| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲七黄色美女视频| 免费无遮挡裸体视频| 欧美黑人巨大hd| 日韩中文字幕欧美一区二区| 嫁个100分男人电影在线观看| 亚洲中文字幕日韩| 麻豆国产av国片精品|