• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-source information fused generative adversarial network model and data assimilation based history matching for reservoir with complex geologies

    2022-06-02 05:00:30KiZhngHiQunYuXioPengJinDingZhngJinWngChunJinYoYongFeiYngHiSunJunYoJinWng
    Petroleum Science 2022年2期

    Ki Zhng ,Hi-Qun Yu ,Xio-Peng M *,Jin-Ding Zhng ,Jin Wng ,Chun-Jin Yo ,Yong-Fei Yng ,Hi Sun ,Jun Yo ,Jin Wng

    a School of Petroleum Engineering,China University of Petroleum (East China),Qingdao,Shandong,266580,China

    b School of Science,China University of Petroleum (East China),Qingdao,Shandong,266580,China

    c Shengli Oil Field Exploration and Development Research Institute,Dongying,Shandong,266071,China

    Keywords:Multi-source information Automatic history matching Deep learning Data assimilation Generative model

    ABSTRACT For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network (MSIGAN) model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder (VAE) and generative adversarial network (GAN) are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation (ESMDA) method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.

    1.Introduction

    The efficient development of oil and gas needs reliable reservoir numerical model.Automatic history matching technology is one of the most effective means to achieve reliable reservoir modeling(Oliver and Chen,2011).The main work of automatic history matching is to adjust the initial reservoir models built by logging,core analysis,and other static data according to the dynamic production data.Ensemble-based data assimlation methods are now one of the most successful and effective techniques for history matching in oil and gas industry.However,the ensemble-based data assimilation methods are difficult to be directly applied to the reservoir model with non-Gaussian parameters.

    In last decades,a variety of parameterization methods have been developed for non-Gaussian parameter field.The kernel principal component analysis algorithm(K-PCA)maps the original parameters to a high-dimensional space through a kernel function and then uses the PCA algorithm to reduce the dimensionality(Sarma et al.,2008).Discrete cosine transform (DCT) converts original image information blocks into coefficient sets representing different frequency components,thereby achieving lossy compression of signals and images (Zhao et al.,2016).Although these methods can transform the non-Gaussian parameters to a low-dimensional Gaussian space,they are not accurate enough for the preservation of original geological characteristics.

    Recently,the rise of generative neural network in the deep learning community has proposed a different solution to the parameterization problem in history matching(Canchumuni et al.,2021).The generative model in the deep learning is mainly used for feature extraction and image generation (Salakhutdinov and Application,2015),which is similar to the dimension reduction and reconstruction of uncertain parameters in history matching.Therefore,some studies have investigated the generative models to parameterize the geological model(Chan and Elsheikh,2017;Laloy et al.,2017;Mosser et al.,2017).Canchumuni and Emerick (2019)utilized the convolution variational autoencoder(CVAE)model for history matching with complex geologies.Liu and Durlofsky(2020)proposed a CNN-PCA model which combines the PCA and convolution neural network (CNN) to perform parameterization of complex geological facies.However,existing studies only consider using the uncertain parameters for parameterization and the model parameters generated by these methods are difficult to maintain consistency with geological features.

    In fact,reservoir modeling involves a variety of data,such as the distribution of sedimentary facies,permeability distribution,complex fault distribution,etc.Traditional decomposition-based methods such as PCA,SVD and DCT are difficult to make comprehensive use of these data,but deep learning methods provide the possibility for comprehensive modeling and dimensionality reduction.In this work,we propose a multi-source information fused generative adversarial network(MSIGAN)model.This model realizes the comprehensive parameterization of complex geological features by sharing the latent space,and integrates them to reconstruct the geological parameters,thus maintaining the consistency of the geological features in the whole process of parameterization and history matching.Our inspiration comes from the multi-view learning (Zhao et al.,2017;Li et al.,2019;Yao et al.,2020).The idea is to build a multi-input neural network and output a model that integrates multiple information.

    In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models,variational autoencoder (VAE) (Kingma and Welling,2014) and generative adversarial network (GAN) (Goodfellow et al.,2014;Radford et al.,2015),are combined in our model.VAE and GAN are two popular generative models in the deep learning community.On the one hand,VAE can learn the latent features through variational inference and representation learning.However,the image generated by VAE has few details and is not high-resolution.On the other hand,the image generated by GAN has richer details but may be missing some features(Lai et al.,2019).Combining the VAE and GAN(Bao et al.,2017)can tackle the above problem.The proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ES-MDA)(Emerick and Reynolds,2013;Emerick,2017;Evensen,2018) method to conduct history matching.We tested the proposed method on two reservoir models with complex fluvial facies.The numerical results show that our MSIGAN model can preserve the facies distribution features by integrating the boundary and permeability information.Previous studies (Ma et al.,2020,2021;Zhang et al.,2016,2017,2019) have shown that maintaining geological features can effectively alleviate the multisolution of history matching.

    We arrange the rest of this paper as follows.In the next two sections,we briefly introduce the two major generative models in deep learning,including VAE and GAN,as well as our proposed MSIGAN model.After that,we introduce the combination of the MSIGAN model with ES-MDA for history matching in section 4.In section 5,we apply our model in three test cases to show the effectiveness of our proposed method in history matching compared with the existing parameterization methods.The last part is a summary of our conclusions.

    2.Background

    2.1.Variational autoencoder

    VAE is a deep generative model,which mainly includes two parts:encoder and decoder.The two parts cooperate to complete the modeling of prior data distribution.In the whole process,the encoder first maps the high-level features of the data distribution to the low-level representations of the data,which are the eigenvectors.Then the decoder absorbs the low-level representations of the data and outputs the high-level representations of the same data (Doersch,2016).Different from autoencoder searching for a single-valued mapping:z=f(x),VAE looks for a mapping of data distribution:p(x)→p(z).Fig.1 shows the basic structure of VAE model.

    Assuming that m-dimensional data is input,the encoder outputs two n-dimensional parameters,(μ1,μ2,...,μn)and(σ1,σ2,...,σn).At the same time,an n-dimensional parameter(e1,e2,...,en)is sampled from the normal distribution N(0,1)and the feature vector(z1,z2,...,zn)is generated by the operation zi=exp(σi)×ei+μi.Finally,(z1,z2,...,zn)is input into the decoder network to obtain m-dimensional output data ^X.The loss function of the whole network is as follows:

    The first term on the right side of the equation represents the reconstruction loss,that is,the loss of the entire process X~z~^X.The second term behind represents the regular term,where q(z|x)means a posterior distribution of z derived from x,and P(z)means a prior distribution of z.

    Fig.1.Structure diagram of the variational autoencoder.

    Fig.2.Structure diagram of generative adversarial network.

    Fig.3.Structure diagram of MSIGAN.

    2.2.Generative adversarial network (GAN)

    GAN is also a deep generative model and it provides a way of adversarial learning for neural networks.The main inspiration of GAN comes from the idea of zero-sum game.It is to continuously play the game by generating network G (Generator) and discriminating network D (Discriminator),so that G can learn the distribution of data.Fig.2 shows the structure of the network.

    The optimization loss function of the whole process is:

    The training process first needs to keep the generator G unchanged and train the discriminator D.Firstly,for the maxD part,the training goal of D is to correctly distinguish between true and false.Since the sigmoid activation function is used for the dichotomy problem,the output D(x)is a probability value in the range[0,1].For the first term,x~pdatarepresents the distribution of x samples from real data.Since we expect D(x)to be close to 1,it is better for logD(x)to be larger because of D(x)∈[0,1].The second term represents the generated data sampled from G.We expect it to be better for D(G(z))to approach 0,which means the second term is bigger and better.In summary,we expect to make the overall value of the first item plus the second item larger through training.Through the iterative optimization of G and D,the final generated model can achieve the purpose of being fake.

    3.Proposed MSIGAN model

    Fig.4.Workflow of MSIGAN that integrates constraint information for parameterization.

    The MSIGAN model needs to fusion a dual encoder network based on VAE and GAN to realize dual input of permeability and facies constraint information.In this work,we use the Keras(Manaswi and Kumar,2018) to create the model.Fig.3 shows the overall architecture of the MSIGAN.As shown in Fig.3,S represents the uncertain parameter such as permeability,S′represents the reconstruction model,and C represents the constraint information such as facies boundary.

    The network maps the S and the constraint information C to the sharing latent space via two encoders.In the shared latent space,the feature vectors z1and z2output by the two encoders are combined into z=(z1+z2)/2.Then the decoder reconstructs the input z into the uncertain parameters space,and the discriminator of GAN determines whether it is true or false,and returns the information to the decoder and discriminator.After continuous optimization of the performance of the decoder and discriminator,the Nash equilibrium is finally reached and the optimal reconstruction model is obtained.

    The workflow of the entire MSIGAN architecture is shown in Fig.4.We use g to represent the reconstruction function of uncertain parameters:

    And we introduce the reconstruction loss L1:

    Besides minimizing the reconstruction loss L1,VAE also regularizes the encoder by imposing a prior on the potential distribution p(z)of z~N(0,1).Therefore,we add the KL regularization loss LKL:

    where z,σ,and μ represent(z1+z2)/2,(σ1+σ2)/2 and(μ1+μ2)/2.Finally,the GAN network alternately trains the discriminator D and the generator G by maximizing the loss function Ldisand minimizing the loss function Lgen:

    4.History matching workflow combined with ES-MDA

    ES-MDA shows unique advantages over other algorithms in histroy matching problems.The basic idea of the ES-MDA method is to perform data assimilation by multiplying an inflation factor α to the error covariance matrix Cdof the observation data and then iterating multiple times.The update of uncertain parameters in the ES-MDA method is as follows:

    Fig.5.The workflow of automatic history matching.

    Fig.6.Real permeability field and first 16 models in initial reservoir data set(mD).Circles represent oil production wells and triangles represent water injection wells.Test case 1.

    Fig.7.Eight templates of Kirsch operator.

    Fig.8.First 16 samples in extracted edge model data set.Test case 1.

    Fig.9.Comparison of reconstructed permeability by different parameterization methods with reference permeability.Test case 1.

    where j=1,...,Nerepresents each ensemble member;CMDis the cross-covariance matrix between the model parameter vector and the prediction data vector;CDDis the autocovariance matrix of the prediction data;dobsis the dynamic response of reservoir development and production;εjis the observation error of the production dynamic response;g(·)is the reservoir system numerical simulation or reservoir numerical simulator;m is the reservoir model parameter;t is the tth data assimilation.Inflation factor αtis the only auxiliary parameter that needs to be determined in the ESMDA and has a significant impact on the solution result.Some people have done work on how to choose the expansion factor(Le et al.,2020;Emerick,2016).In this paper,the setting of the inflation factor in the standard ES-MDA method is used,that is,αt=1/Na,Nausually takes a value of 4-10.

    The integrated history matching workflow combining ES-MDA and MSIGAN is shown in Fig.5.At first,the initial latent vectorrandomly sampled from the normal distribution is sent to the generator network to generate the realization of the uncertain parameters,which are used in the reservoir simulation to calculate the production data.Then the ES-MDA algorithm updates the latent variablesaccording to the simulation data and observation date.Afterward,the updated latent variables is sent to the generator network and starting next iteration.

    5.Case study

    5.1.Test case 1

    In this case,we carried out the history matching study of a twodimensional fluvial reservoir to adjust the permeability in each gridblock.The data set used in the test case is as the same as that used in Canchumuni et al.(2019),more details can be found in their work.Fig.6(a) shows the true permeability filed.The model includes two facies,in which the permeability of the highpermeability fluvial facies is 5000 mD,and the permeability of the background facies is 500 mD.The model has 45×45 gridblocks and it contains four production wells and three water injection wells.There are 20,000 random models in the data sets,and we select 18,000 for training and another 2,000 for testing the MSIGAN model.Fig.6(b) shows the first 16 models in the data set.

    5.1.1.Parameterization of permeability

    Before training the MSIGAN model,we first acquire the data setof edge using the Kirsch operator.Kirsch operator is an edge detection algorithm proposed by Kirsch (1971),which uses 8 templates to control the gradient magnitude and to direct the gradient as shown in Fig.7.

    These 3 × 3 templates convolve the image,each template responds to a specific edge direction and takes the maximum value as the edge of the image.Kirsch operator has a good effect in keeping image details and anti-noise.The gradient magnitude of the kirsch operator is:

    We use the Kirsch operator to extract the edges of the fluvial facies model,and Fig.8 shows the edge of first 16 initial models.

    In this case,the dual encoders E1and E2in the MSIGAN both contain 3 convolution layers followed by 2 fully-connected layers(convolution layers have 64,32,and 16 channels with the filter size of 3×3 and stride 2,2,1;the fully-connected layers have 128,100 neurons,respectively).The generator G consists of a full connection layer with 128 neurons and is followed by three convolutional layers (convolution layers have 16,32,and 64 channels with the filter size of 3 × 3 and stride 1,2,2).The discriminator D includes three convolution layers and two fully-connected layers (convolution layers have 64,32,and 16 channels with the filter size of 3×3 and stride 2,2,1;the fully-connected layers have 128,1 neuron and finally outputs a probability value).

    In this section,the MSIGAN is compared with the CVAE model.Canchumuni et al.(2019) used two channels to represent the permeability field and then performed post-processing on the reconstructed permeability.This post-processing method is to compare the CVAE reconstructed permeability field data on the two channels and return the channel number corresponding to the larger element,i.e.0 or 1.What this post-processing method gets is not the real reconstruction result of CVAE,but the beautified result by converting the result of CVAE from continuous to binary and artificially removing fuzzy boundaries.We trained the network model in a cluster consisting of 816 core CPU computing nodes and 24 core GPU computing nodes.CVAE took 25 min of training time.Since the GAN network uses the training method of the generator and the discriminator against each other to squeeze the performance of the network,the training time is longer while generating a clear model.An important direction of GAN research at this stage is how to improve the training stability of GAN and shorten the training time (Yaz?c? et al.,2018).The MSIGAN spent 116 min to train.After training,we randomly select a permeability field in the initial reservoir test data set to analyze the reconstruction results,as shown in Fig.9(a).Fig.9(b) shows the reconstruction result of permeability field output by CVAE.Fig.9(c)shows the result of the CVAE with post-processing reconstructed permeability field.Fig.9(d) shows the reconstruction result of MSIGAN.The results in the figure show that the reconstructed phase boundary of the MSIGAN we designed is closest to the reference model.

    Fig.10.Comparison of permeability inversion results of the first five prior models.Test case 1.

    Fig.11.Observed data history-matched results of ES-MDA combined MSIGAN method.Red dots represent the observed data points,gray lines represent the numerical simulation prediction results of the initial reservoir model set,green lines represent the numerical simulation prediction results of the history matching updated model set.Test case 1.

    Fig.12.Real permeability and randomly selected reservoir model data set (mD).Circles represent oil production wells and triangles represent water injection wells.Test case 2.

    Fig.13.Comparison of reconstructed permeability by different parameterization methods with reference permeability.Test case 2.

    Fig.14.Frequency distribution histograms of reconstructed permeability for different models.Test case 2.

    Fig.15.Comparison of permeability inversion results of the first five prior models.Test case 2.

    Fig.16.Observed data history-matched results of ES-MDA combined MSIGAN method.Red dots represent the observed data points,gray lines represent the numerical simulation prediction results of the initial reservoir model set,green lines represent the numerical simulation prediction results of the history matching updated model set.Test case 2.

    Fig.17.Real permeability (mD).Circles represent oil production wells and triangles represent water injection wells.Test case 3.

    Table 1 evaluates the accuracy of reconstruction of different methods.The evaluation parameters include signal-to-noise ratio(SNR) (Sim and Kamel,2010),peak signal-to-noise ratio (PSNR)(Horé and Ziou,2010),structural similarity index (SSIM) (Brunet et al.,2011),hash similarity (Masci et al.,2014) and root mean square error(RMSE).The larger the value of each parameter except RMSE,the more accurate the reconstruction of the permeability field.

    Table 1Evaluation of reconstruction results of different parameterization methods.Test case 1.

    Compared with the CVAE model,SNR,PSNR,SSIN increased and Hash decreased after adding post-processing.This result shows that although this post-processing method can make the boundary of the permeability field clear,it reduces the accuracy of the permeability.MSIGAN achieved the best results in the four evaluation indicators,indicating that the method can reconstruct the phase boundary more clearly and accurately.

    5.1.2.History matching results

    This section tests the automatic history matching of the proposed ES-MDA combined with the MSIGAN method to assimilate production observation data and compares it with the CVAE method.Fig.10(a) shows the prediction model of CVAE combined with the ES-MDA method for history matching.The results show that although the CVAE method can roughly capture the distribution of fluvial facies,it cannot accurately restore the permeability distribution at the boundary.As shown in Fig.10(b),the ES-MDA combined with MSIGAN can better predict the distribution and shape of the high permeability facies,and the boundary is clear.

    Fig.11 shows the history matching results of daily oil production of 2 production wells.The red dots represent the observed data points,the gray lines represent the numerical simulation results of the initial reservoir models,and the green lines represent the numerical simulation results of the history matched models.Compared with the initial reservoir models,the reservoir models updated by the ES-MDA combined with the MSIGAN method can well reflect the changes of observation data.

    5.2.Test case 2

    Fig.18.Comparison of permeability inversion results of each layer of the reference model.Test case 3.

    The model used in the second test case is the same as the article(Emerick,2017).This model has 100×100 gridblocks.As shown in Fig.12(a),there are 5 production wells and 2 water injection wells.The model consists of a low-permeability phase with 500 mD and a high-permeability phase with 5,000 mD.For this case,the neural network architecture we used is basically the same as the case 1,with only some hyperparameter modifications to adapt to different sizes of permeability field models.In this case,18,000 models are used for training,the remaining 2,000 models are used for testing.The permeability field and extracted edge of the first 16 samples are shown in Fig.12(b) and (c).

    We set Ne=100 and Na=10 in the ES-MDA to conduct the history matching.As it was proved in test case 1 that the reconstruction result of CVAE+Postprocessing was the result of beautification rather than the real output result of CVAE,we only used CVAE to compare our MSIGAN in test case 2.The network training was carried out in the same cluster as test case 1.CVAE spent 43 min and MSIGAN spent 128 min.Fig.13 shows the reconstruction result of a randomly selected model from the test data set.The RMSE values of CVAE and MSIGAN were 39.1918 and 36.5097,respectively.Fig.14 compares the frequency distribution histograms of the reconstructed permeability.As shown in Fig.14(a),the permeability of each grid of the initial model is significantly concentrated in the high-permeability phase and the lowpermeability facies,while the reconstructed model has intermediate transitions.In Fig.14(b),the reconstruction model of CVAE has more grid permeability distributed between the high-permeability and low-permeability values.In Fig.14(c),the grid permeability of the reconstructed model of MSIGAN is more concentrated on the high-permeability and low-permeability ends.Fig.15 shows the histroy matching result of the permeability filed.The test results show that,compared with CVAE,MSIGAN reconstructs the facies boundary clearly.Fig.16 shows the history matching results of oil production for 2 production wells.It can be seen that the MSIGAN combined with ES-MDA can well fit the observation data.

    5.3.Test case 3

    In this test case,we used SNESIM algorithm (single normal equation simulation)to generate a 3D fluvial facies model data set describing the permeability distribution through sequential Gaussian simulation(Strebelle,2002).The reservoir model has four production wells and two injection wells,and the permeability distribution is shown in Fig.17.The model has 60 × 60 × 5 gridblocks,which are composed of 500 mD low permeability phase and 5,000 mD high permeability phase.In this test case,we also trained the network with 18,000 models and tested it with 2,000 models.In the same cluster as the previous test cases,the CVAE training took 186 min and the MSIGAN took 206 min.

    Fig.19.Observed data history-matched results of ES-MDA combined MSIGAN method.Red dots represent the observed data points,gray lines represent the numerical simulation prediction results of the initial reservoir model set,green lines represent the numerical simulation prediction results of the history matching updated model set.Test case 3.

    We also set Ne=100 and Na=10 in the ES-MDA to conduct the history matching.Fig.18 shows the inversion results of each layer of the reference permeability field.The results show that for 3D reservoirs,our MSIGAN model can still reverse clear phases in the history matching process.Fig.19 shows the history matching results of oil production for 2 production wells.It can be seen that the combination of MSIGAN and ES-MDA can also fit the observed data well for 3D reservoirs.

    For ensemble-based data assimilation methods,localization can effectively decrease the sampling error and minimize the negative impact of limited degrees of freedom.However,as with CVAE,our MSIGAN model faces the same question during parameterization that distance-based localization cannot be applied to update the latent vector z (Houtekamer and Mitchell,2001).None of the known localization methods for the parameterization of deep generation models is as effective as the distance-based approach(Canchumuni et al.,2019,2021).For this reason,we have not used any type of localization in test cases.Localization is an issue worthy of further study,and we will continue to pay attention to and explore the latest solutions to this question.

    6.Conclusion

    In this paper,we propose a multi-source information fused generative adversarial network model (MSIGAN) to parameterize the complex geological features in history matching,and combined with ES-MDA for dynamic inversion modeling.In MSIGAN,various information such as facies distribution,microseismic,and interwell connectivity,can be integrated to learn the geological features and parameterization.We tested the proposed parameterization method on two history matching problems and compared it with the other deep learning methods.The numerical results show that the MSIGAN model can integrate the advantages of the two generative models of VAE and GAN,and through integrating facies distribution information and permeability distribution,to better maintain the geological characteristics during the parameterization and history matching process.

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China under Grant 51722406,52074340,and 51874335,the Shandong Provincial Natural Science Foundation under Grant JQ201808,The Fundamental Research Funds for the Central Universities under Grant 18CX02097A,the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008,the Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002,the National Research Council of Science and Technology Major Project of China under Grant 2016ZX05025001-006,111 Project under Grant B08028,Sinopec Science and Technology Project under Grant P20050-1.

    国产亚洲欧美精品永久| 少妇 在线观看| 无遮挡黄片免费观看| 亚洲精品国产精品久久久不卡| 高清毛片免费观看视频网站| 最近最新中文字幕大全电影3 | 国产精品亚洲美女久久久| 久久久久久人人人人人| 亚洲精品国产精品久久久不卡| 禁无遮挡网站| 在线播放国产精品三级| 女同久久另类99精品国产91| 两个人免费观看高清视频| 搡老妇女老女人老熟妇| 欧美一级毛片孕妇| 美国免费a级毛片| 侵犯人妻中文字幕一二三四区| 国产亚洲av高清不卡| 日韩有码中文字幕| 国产97色在线日韩免费| 色综合欧美亚洲国产小说| 大码成人一级视频| 亚洲av电影不卡..在线观看| 亚洲情色 制服丝袜| 久久精品国产综合久久久| 欧美成人午夜精品| 久久精品91蜜桃| 国产三级在线视频| 1024香蕉在线观看| or卡值多少钱| 国产一区二区三区在线臀色熟女| 欧美日韩乱码在线| av超薄肉色丝袜交足视频| 亚洲黑人精品在线| 1024视频免费在线观看| 亚洲黑人精品在线| 午夜福利在线观看吧| 免费看十八禁软件| 精品欧美国产一区二区三| 欧美久久黑人一区二区| 黄网站色视频无遮挡免费观看| 久久精品国产亚洲av香蕉五月| 高清黄色对白视频在线免费看| 久久久国产成人精品二区| 黑人操中国人逼视频| 欧美+亚洲+日韩+国产| 美女高潮到喷水免费观看| 久久久国产成人免费| 久久久久久久久免费视频了| 一边摸一边做爽爽视频免费| 亚洲熟妇中文字幕五十中出| 日本一区二区免费在线视频| 精品高清国产在线一区| 涩涩av久久男人的天堂| 亚洲电影在线观看av| 午夜福利一区二区在线看| 日本 欧美在线| 亚洲国产精品久久男人天堂| 精品一区二区三区视频在线观看免费| 亚洲男人天堂网一区| 国产精华一区二区三区| 黄色毛片三级朝国网站| 国产亚洲精品第一综合不卡| 欧美在线一区亚洲| 久久午夜综合久久蜜桃| 丝袜在线中文字幕| 露出奶头的视频| aaaaa片日本免费| 在线观看舔阴道视频| 人人妻人人澡欧美一区二区 | 99精品在免费线老司机午夜| av中文乱码字幕在线| 俄罗斯特黄特色一大片| 色综合欧美亚洲国产小说| 久久久久国产精品人妻aⅴ院| 免费少妇av软件| 国产高清有码在线观看视频 | 狠狠狠狠99中文字幕| 亚洲电影在线观看av| 国产精品久久久久久亚洲av鲁大| 日韩欧美三级三区| 日本a在线网址| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看免费午夜福利视频| 久久影院123| 国产亚洲av高清不卡| 亚洲第一青青草原| bbb黄色大片| 99久久99久久久精品蜜桃| 人人妻人人澡欧美一区二区 | 99精品在免费线老司机午夜| 午夜视频精品福利| 男女之事视频高清在线观看| 在线播放国产精品三级| 久久久久久人人人人人| or卡值多少钱| 熟女少妇亚洲综合色aaa.| 国语自产精品视频在线第100页| 日韩欧美一区二区三区在线观看| 又大又爽又粗| 一级毛片高清免费大全| 99re在线观看精品视频| 国产精品久久久久久人妻精品电影| 日本在线视频免费播放| 成人av一区二区三区在线看| 成在线人永久免费视频| 国产精品永久免费网站| 免费在线观看影片大全网站| or卡值多少钱| 亚洲男人的天堂狠狠| 精品不卡国产一区二区三区| 88av欧美| 日本vs欧美在线观看视频| 黄色毛片三级朝国网站| 成人特级黄色片久久久久久久| 精品久久久久久,| 老汉色av国产亚洲站长工具| 男女下面插进去视频免费观看| 最近最新免费中文字幕在线| 久久性视频一级片| 一区在线观看完整版| 精品欧美一区二区三区在线| 制服人妻中文乱码| 窝窝影院91人妻| 侵犯人妻中文字幕一二三四区| 97人妻精品一区二区三区麻豆 | 后天国语完整版免费观看| 男男h啪啪无遮挡| 亚洲少妇的诱惑av| 最近最新中文字幕大全免费视频| 黄色a级毛片大全视频| 99久久久亚洲精品蜜臀av| 久久久国产精品麻豆| 女人被狂操c到高潮| 激情在线观看视频在线高清| 啦啦啦 在线观看视频| 99香蕉大伊视频| 九色国产91popny在线| 成人精品一区二区免费| 国产xxxxx性猛交| 一级,二级,三级黄色视频| 国产成人av激情在线播放| 成人国产一区最新在线观看| 国产精品 国内视频| 久久人人爽av亚洲精品天堂| 久久久国产欧美日韩av| 国产亚洲av嫩草精品影院| 真人做人爱边吃奶动态| 精品久久久久久,| 最近最新免费中文字幕在线| 精品高清国产在线一区| 美女午夜性视频免费| 中国美女看黄片| 亚洲色图综合在线观看| 在线观看免费视频网站a站| 麻豆av在线久日| 国产精品电影一区二区三区| 免费少妇av软件| 午夜福利在线观看吧| 看免费av毛片| 亚洲成人精品中文字幕电影| 如日韩欧美国产精品一区二区三区| 精品久久久久久久人妻蜜臀av | 久久精品91无色码中文字幕| 少妇的丰满在线观看| 亚洲精品av麻豆狂野| 亚洲美女黄片视频| tocl精华| 日韩国内少妇激情av| 欧美老熟妇乱子伦牲交| 精品久久蜜臀av无| 日韩中文字幕欧美一区二区| 极品教师在线免费播放| 久久午夜综合久久蜜桃| 精品乱码久久久久久99久播| 一个人免费在线观看的高清视频| 国产激情久久老熟女| 久久久国产成人精品二区| 亚洲五月色婷婷综合| 国产一区二区激情短视频| 精品久久蜜臀av无| 国产高清视频在线播放一区| 亚洲五月天丁香| 亚洲 欧美一区二区三区| 波多野结衣av一区二区av| 国产精品久久视频播放| 99久久99久久久精品蜜桃| 欧美黑人精品巨大| 后天国语完整版免费观看| 99久久精品国产亚洲精品| 丝袜美足系列| 一区二区日韩欧美中文字幕| 日本vs欧美在线观看视频| 欧美日韩精品网址| 国产精品日韩av在线免费观看 | 亚洲片人在线观看| 亚洲人成电影免费在线| 国产精品乱码一区二三区的特点 | 91老司机精品| 欧美av亚洲av综合av国产av| 午夜免费激情av| 国产亚洲精品av在线| 日韩欧美一区二区三区在线观看| 18禁黄网站禁片午夜丰满| 激情在线观看视频在线高清| 啦啦啦 在线观看视频| 国产av又大| 两个人看的免费小视频| 美女大奶头视频| 日韩视频一区二区在线观看| 欧洲精品卡2卡3卡4卡5卡区| 日韩成人在线观看一区二区三区| bbb黄色大片| 精品福利观看| 欧美激情高清一区二区三区| 啦啦啦观看免费观看视频高清 | 亚洲欧美日韩高清在线视频| 男女做爰动态图高潮gif福利片 | 国产高清视频在线播放一区| 亚洲人成电影观看| 香蕉久久夜色| 午夜福利,免费看| 欧美中文日本在线观看视频| 欧美一区二区精品小视频在线| 亚洲七黄色美女视频| 中文字幕久久专区| 日韩欧美一区二区三区在线观看| 欧美黄色淫秽网站| 久久婷婷成人综合色麻豆| 一夜夜www| 黄色丝袜av网址大全| 人人妻,人人澡人人爽秒播| 又大又爽又粗| av电影中文网址| 欧美黄色片欧美黄色片| 欧美一级毛片孕妇| 国产精品影院久久| 国产欧美日韩一区二区精品| 亚洲欧美日韩另类电影网站| 极品教师在线免费播放| 99久久综合精品五月天人人| 午夜日韩欧美国产| 大码成人一级视频| 成人欧美大片| www.自偷自拍.com| 俄罗斯特黄特色一大片| 人妻久久中文字幕网| 女同久久另类99精品国产91| av欧美777| 日日干狠狠操夜夜爽| 波多野结衣一区麻豆| 午夜免费鲁丝| 一边摸一边做爽爽视频免费| 国产精品二区激情视频| 两人在一起打扑克的视频| 黑人巨大精品欧美一区二区mp4| 国产私拍福利视频在线观看| 日本一区二区免费在线视频| 香蕉久久夜色| 亚洲国产精品sss在线观看| 性色av乱码一区二区三区2| 大码成人一级视频| 亚洲人成网站在线播放欧美日韩| videosex国产| 在线av久久热| 久久精品国产综合久久久| 午夜精品国产一区二区电影| 成人亚洲精品一区在线观看| 国产av又大| 国产亚洲精品综合一区在线观看 | 久久久国产精品麻豆| 狂野欧美激情性xxxx| 老熟妇乱子伦视频在线观看| 亚洲自拍偷在线| 99国产综合亚洲精品| 国产激情久久老熟女| 夜夜看夜夜爽夜夜摸| 欧美激情极品国产一区二区三区| 国产97色在线日韩免费| 91精品国产国语对白视频| 欧美成人午夜精品| 久久香蕉国产精品| 日本免费a在线| 天堂影院成人在线观看| 午夜精品国产一区二区电影| 欧美激情高清一区二区三区| 亚洲国产中文字幕在线视频| 欧美日韩精品网址| 国产在线观看jvid| 长腿黑丝高跟| 母亲3免费完整高清在线观看| 黑人欧美特级aaaaaa片| 亚洲av成人不卡在线观看播放网| 久久久精品欧美日韩精品| 国产av一区在线观看免费| 亚洲欧美精品综合一区二区三区| 国产精品香港三级国产av潘金莲| 国产亚洲av嫩草精品影院| 看免费av毛片| 老司机在亚洲福利影院| 精品乱码久久久久久99久播| 亚洲黑人精品在线| 91大片在线观看| 97碰自拍视频| av网站免费在线观看视频| 啦啦啦韩国在线观看视频| 色在线成人网| 亚洲色图 男人天堂 中文字幕| 欧美一级a爱片免费观看看 | 国产精品久久久久久亚洲av鲁大| 亚洲av熟女| 国产1区2区3区精品| 国产免费av片在线观看野外av| 一级作爱视频免费观看| 亚洲精品av麻豆狂野| 日本免费一区二区三区高清不卡 | 亚洲情色 制服丝袜| 亚洲熟女毛片儿| 日韩欧美三级三区| 男人操女人黄网站| 淫妇啪啪啪对白视频| 国产精品久久久久久亚洲av鲁大| 91av网站免费观看| 亚洲国产欧美网| 天堂√8在线中文| 91大片在线观看| 久久婷婷人人爽人人干人人爱 | 亚洲,欧美精品.| 午夜成年电影在线免费观看| 久久国产精品男人的天堂亚洲| 桃色一区二区三区在线观看| 此物有八面人人有两片| x7x7x7水蜜桃| 亚洲少妇的诱惑av| 欧美色欧美亚洲另类二区 | 国产97色在线日韩免费| 国产三级在线视频| 国产精品亚洲av一区麻豆| 日韩欧美国产一区二区入口| 亚洲人成伊人成综合网2020| 久久欧美精品欧美久久欧美| bbb黄色大片| 国产高清视频在线播放一区| 波多野结衣一区麻豆| 久久精品91蜜桃| 国产成人影院久久av| 又黄又爽又免费观看的视频| 亚洲国产精品成人综合色| 欧美乱色亚洲激情| 亚洲欧美一区二区三区黑人| 国产免费男女视频| 最近最新中文字幕大全免费视频| 757午夜福利合集在线观看| 久久人妻熟女aⅴ| 女人爽到高潮嗷嗷叫在线视频| 12—13女人毛片做爰片一| 成人免费观看视频高清| netflix在线观看网站| 精品久久久久久久毛片微露脸| 黄色毛片三级朝国网站| 一个人免费在线观看的高清视频| 好看av亚洲va欧美ⅴa在| 国产精品精品国产色婷婷| netflix在线观看网站| 亚洲狠狠婷婷综合久久图片| 欧美乱色亚洲激情| av视频在线观看入口| 又黄又爽又免费观看的视频| 一级片免费观看大全| 国产精品99久久99久久久不卡| 色播亚洲综合网| 又黄又爽又免费观看的视频| 久久天躁狠狠躁夜夜2o2o| 国产精品免费视频内射| 午夜福利视频1000在线观看 | 人人妻人人澡人人看| 纯流量卡能插随身wifi吗| 可以在线观看的亚洲视频| 男人舔女人的私密视频| e午夜精品久久久久久久| 大型黄色视频在线免费观看| bbb黄色大片| 国产精品久久久久久亚洲av鲁大| 国产精品亚洲av一区麻豆| 最好的美女福利视频网| 久久草成人影院| 国产xxxxx性猛交| 老司机午夜福利在线观看视频| 色在线成人网| 亚洲精品国产一区二区精华液| 亚洲精品久久成人aⅴ小说| 日本三级黄在线观看| 欧美黑人精品巨大| 久久国产精品人妻蜜桃| 国产亚洲精品久久久久久毛片| 最近最新中文字幕大全免费视频| 欧美日韩精品网址| 久久精品成人免费网站| 亚洲 欧美 日韩 在线 免费| 国产色视频综合| 亚洲国产欧美日韩在线播放| 国产成人av教育| 国产av在哪里看| 在线av久久热| avwww免费| 黄色丝袜av网址大全| 亚洲激情在线av| 亚洲在线自拍视频| 久久久国产精品麻豆| 精品卡一卡二卡四卡免费| 丝袜美腿诱惑在线| 免费无遮挡裸体视频| 这个男人来自地球电影免费观看| 久久久久久免费高清国产稀缺| 99在线视频只有这里精品首页| 亚洲专区中文字幕在线| 亚洲一区高清亚洲精品| 亚洲精品久久成人aⅴ小说| 亚洲欧洲精品一区二区精品久久久| 欧美午夜高清在线| 精品国内亚洲2022精品成人| 天天添夜夜摸| 亚洲午夜精品一区,二区,三区| 1024视频免费在线观看| 黄色 视频免费看| 精品国产一区二区久久| 日本欧美视频一区| 国内久久婷婷六月综合欲色啪| 亚洲,欧美精品.| 久久青草综合色| 国产一区二区激情短视频| 久久 成人 亚洲| 久久中文字幕人妻熟女| 精品福利观看| 后天国语完整版免费观看| 伊人久久大香线蕉亚洲五| 最新在线观看一区二区三区| 婷婷六月久久综合丁香| 91老司机精品| 嫩草影院精品99| 欧美精品啪啪一区二区三区| 一本久久中文字幕| 成人国产一区最新在线观看| 亚洲成国产人片在线观看| 国产不卡一卡二| 色尼玛亚洲综合影院| 欧美午夜高清在线| 免费一级毛片在线播放高清视频 | 国产精品国产高清国产av| www.www免费av| 国产午夜福利久久久久久| 99久久国产精品久久久| 欧美在线黄色| 国产精品一区二区免费欧美| 露出奶头的视频| 女性被躁到高潮视频| 免费看十八禁软件| 999久久久国产精品视频| 中文字幕色久视频| 一a级毛片在线观看| 正在播放国产对白刺激| 亚洲中文av在线| 侵犯人妻中文字幕一二三四区| 色播亚洲综合网| 亚洲精品在线美女| 97超级碰碰碰精品色视频在线观看| 最好的美女福利视频网| 日本三级黄在线观看| 国产精品二区激情视频| 亚洲国产日韩欧美精品在线观看 | 成年女人毛片免费观看观看9| 黄网站色视频无遮挡免费观看| 别揉我奶头~嗯~啊~动态视频| 国产野战对白在线观看| 多毛熟女@视频| 老汉色av国产亚洲站长工具| 一本大道久久a久久精品| 一级,二级,三级黄色视频| 亚洲成人久久性| 十分钟在线观看高清视频www| 男女做爰动态图高潮gif福利片 | 美女免费视频网站| av天堂久久9| 亚洲av日韩精品久久久久久密| 日韩国内少妇激情av| 十八禁人妻一区二区| 久久人人97超碰香蕉20202| 精品欧美一区二区三区在线| 18禁国产床啪视频网站| 中文字幕高清在线视频| 男女下面插进去视频免费观看| 动漫黄色视频在线观看| 老司机午夜十八禁免费视频| 久久亚洲精品不卡| 精品国内亚洲2022精品成人| 免费观看人在逋| 亚洲人成网站在线播放欧美日韩| 国产极品粉嫩免费观看在线| 啦啦啦免费观看视频1| xxx96com| 大陆偷拍与自拍| 一级a爱视频在线免费观看| 亚洲人成电影免费在线| 巨乳人妻的诱惑在线观看| 国产精品一区二区免费欧美| 黑丝袜美女国产一区| 一级a爱视频在线免费观看| 国产精品美女特级片免费视频播放器 | 88av欧美| av电影中文网址| 又大又爽又粗| 黑人巨大精品欧美一区二区蜜桃| 午夜久久久在线观看| 19禁男女啪啪无遮挡网站| www日本在线高清视频| 国产av又大| 成人三级黄色视频| 9色porny在线观看| 丝袜美腿诱惑在线| 日韩精品青青久久久久久| 亚洲男人的天堂狠狠| 国产欧美日韩精品亚洲av| 日韩国内少妇激情av| 给我免费播放毛片高清在线观看| 亚洲美女黄片视频| 久久影院123| 亚洲性夜色夜夜综合| 国产亚洲av高清不卡| 性少妇av在线| av欧美777| 中文字幕av电影在线播放| cao死你这个sao货| 纯流量卡能插随身wifi吗| 亚洲av电影不卡..在线观看| 久久久水蜜桃国产精品网| 岛国在线观看网站| 别揉我奶头~嗯~啊~动态视频| 国产一区在线观看成人免费| 精品国内亚洲2022精品成人| 精品免费久久久久久久清纯| 一区二区三区激情视频| 欧美黄色淫秽网站| 美女高潮喷水抽搐中文字幕| 一本大道久久a久久精品| 成人手机av| 一级a爱片免费观看的视频| 一级毛片女人18水好多| 男女下面插进去视频免费观看| 国产高清视频在线播放一区| 精品久久久久久成人av| 色综合站精品国产| 一边摸一边抽搐一进一出视频| 日韩有码中文字幕| 两个人免费观看高清视频| 色综合婷婷激情| 99riav亚洲国产免费| 久久人人精品亚洲av| 精品久久久久久久久久免费视频| 51午夜福利影视在线观看| 亚洲成人久久性| 美女扒开内裤让男人捅视频| 国产亚洲欧美在线一区二区| 久热爱精品视频在线9| 欧美色欧美亚洲另类二区 | 久久久久久久久中文| 丝袜人妻中文字幕| 午夜影院日韩av| 亚洲欧美日韩高清在线视频| 国产成人精品久久二区二区91| 精品电影一区二区在线| 高清在线国产一区| 久久中文字幕一级| 欧美亚洲日本最大视频资源| 免费久久久久久久精品成人欧美视频| 视频区欧美日本亚洲| 一边摸一边做爽爽视频免费| 国产成人欧美在线观看| 国产一区二区三区综合在线观看| 成年版毛片免费区| 久久这里只有精品19| 在线免费观看的www视频| 日韩国内少妇激情av| 久99久视频精品免费| 免费av毛片视频| 一本大道久久a久久精品| 69精品国产乱码久久久| 久久婷婷人人爽人人干人人爱 | 久久久久国内视频| 亚洲欧美日韩无卡精品| 可以在线观看毛片的网站| 18美女黄网站色大片免费观看| 村上凉子中文字幕在线| 精品国内亚洲2022精品成人| 久久精品91无色码中文字幕| 色在线成人网| 成人欧美大片| 日韩大码丰满熟妇| 一级a爱片免费观看的视频| 久久国产亚洲av麻豆专区| 18禁裸乳无遮挡免费网站照片 | 亚洲成av片中文字幕在线观看| 亚洲午夜精品一区,二区,三区| 很黄的视频免费| 中文字幕人妻丝袜一区二区| 欧美日韩精品网址| 国产区一区二久久| 19禁男女啪啪无遮挡网站| 国产精品亚洲一级av第二区| 成人国语在线视频| 亚洲精品国产精品久久久不卡| 欧美成人午夜精品| 老司机福利观看| 免费高清在线观看日韩| 老汉色∧v一级毛片| www.熟女人妻精品国产|