• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inversion-based attenuation compensation with dip constraint

    2022-06-02 04:59:54XiongLiLiHuoGuoLiHoLiQingLongMeng
    Petroleum Science 2022年2期

    Xiong M ,Li-Li Huo ,Guo-F Li ,*,Ho Li ,Qing-Long Meng

    a School of Geophysics,China University of Petroleum-Beijing,State Key Lab of Petroleum Resources and Prospecting,Key Lab of Geophysical Exploration of CNPC,Changping,102249,Beijing,China

    b Exploration and Development Research Institute,Jidong Oilfield,China National Petroleum Corporation,Tangshan,Hebei 063000,China

    c Exploration and Development Research Institute,Dagang Oilfield,China National Petroleum Corporation,Tianjin,300280,China

    Keywords:Attenuation compensation Instability Inverse scheme Seismic dip Seismic resolution Spatial continuity

    ABSTRACT Instability is an inherent problem with the attenuation compensation methods and has been partially relieved by using the inverse scheme.However,the conventional inversion-based attenuation compensation approaches ignore the important prior information of the seismic dip.Thus,the compensated result appears to be distorted spatial continuity and has a low signal-to-noise ratio (S/N).To alleviate this issue,we have incorporated the seismic dip information into the inversion framework and have developed a dip-constrained attenuation compensation (DCAC) algorithm.The seismic dip information,calculated from the poststack seismic data,is the key to construct a dip constraint term.Benefiting from the introduction of the seismic dip constraint,the DCAC approach maintains the numerical stability and preserves the spatial continuity of the compensated result.Synthetic and field data examples demonstrate that the proposed method can not only improve seismic resolution,but also protect the continuity of seismic data.

    1.Introduction

    The attenuation phenomenon of seismic wave propagation in attenuating media has been acknowledged in theory for many years.Many attenuation models,including the Kolsky-Futterman model (Kolsky,1956;Futterman,1962),the power-law model(Strick,1967),Kjartansson's constant-Q model(Kjartansson,1979),Muller's model(Muller,1983),and the standard linear solid model(Zener,1948),have been established to describe these attenuationdispersion effects.The existence of these effects results in the distortion of a propagating wavelet and the decrease of the seismic resolution(Bickel and Natarajan 1985;Li and Wang,2007;Xie and Yang,2018).To compensate the seismic attenuation and enhance the seismogram resolution,a variety of inverse-Q filtering algorithms have been developed by many researchers(Hargreaves and Calvert,1991;Wang,2006;Oliveira and Lupinacci,2013;Chai et al.,2014;Wang and Chen,2014;Li et al.,2015;Yuan et al.,2016;Morozov et al.,2018).

    Amplitude compensation performed in inverse Q filtering is inherently unstable and can cause undesirable noise amplification as well as bandwidth enhancement in the seismic data.Therefore,the current various inverse Q filtering methods are aimed to enhance the bandwidth while suppressing the noise.For example,Robinson (1979) proposes a phase-only inverse Q filtering algorithm which only corrects the phase distortion but neglects the amplitude compensation.Since the amplitude compensation is not considered,this method is unconditionally stable.Wang (2002)deals with the instability of inverse Q filtering by adding a regularization factor to the amplitude compensation operator.Furthermore,Zhang and Ulrych (2007) use the least-squares inversion with Cauchy-Gauss type regularization to stabilize the attenuation compensation solution.Braga and Moraes (2013) accomplish the inverse Q filtering in the wavelet domain and use the L2norm constraint to stabilize the compensation result.Wang et al.(2018)exploit a nonconvex L1-2norm constraint for the stabilized absorption compensation.Nevertheless,the above inversion-based compensation methods ignore an important prior information of the structural orientation or the seismic dip,thus,the invited results may appear an incorrect or distorted spatial continuity(Li and Oldenburg,2000;Lelievre and Oldenburg,2009;Zhang et al.,2013;Gholami,2015;Yuan et al.,2015;Karimi,2015;Wang and Wang,2017;Ma et al.,2020a).

    The seismic dip,which reflects the orientations of the seismic events,is an essential attribute in a 2D seismic profile (Marfurt,2006).This information has been widely used in geophysical inversions to produce a result with improved S/N and better continuity (Yao et al.,2020).For example,Li and Oldenburg (2000)incorporate the geological dip information into resistivity inversion and induced-polarization inversion.Clapp et al.(2004)exploit the structural orientation information for the reflection tomography.Hamid and Pidlisecky (2016) use the structural angle information for the seismic impedance inversion.In addition,Zu et al.(2019) introduce the dip field information to the denoising algorithm and further propose a dip-oriented dictionary-learning approach for the random noise attenuation.

    In this paper,we incorporate the seismic dip information into the attenuation compensation algorithm,and further propose a dip-constrained attenuation compensation (DCAC) algorithm.Benefiting from the introduction of the dip constraint,the proposed DCAC method will maintain the numerical stability and improve the spatial continuity of the compensation results.The compensation performance of this approach is verified by applying both synthetic and field data examples.

    In the following of this paper,firstly,we briefly review the principle of seismic wave propagation in the attenuation medium and introduce the dip-unconstrained attenuation compensation(DUAC) algorithm.Then,we construct a dip constraint term by applying the seismic dip information.Next,we incorporate the dip constraint term into the inversion system and develop a DCAC algorithm.And then we use synthetic experiments and field data to testify the stability and superiority of the proposed DCAC method.Finally,we discuss the influence of the seismic dip estimation,the determination of the regularization parameters and Q analysis before drawing some conclusions.

    2.Methodology

    2.1.Seismic wave propagation in the attenuation medium

    In the elastic medium,the seismogram can be synthesized by the well-known convolution model which can be expressed as,

    where t and τ represent the record time,d(t)is the stationary seismic trace,w(t)is the source wavelet,and r(τ)is the reflectivity series.The schematic diagram of the convolution model is shown in Fig.1.As shown in Fig.1,the wavelet w(t)is constant when propagating in the non-attenuated medium.

    Fig.1.The schematic diagram of the convolution model:(a) the stationary seismic trace,(b) the source wavelet matrix,(c) the reflectivity series.

    When propagating in the attenuation medium,the propagation wavelet is time-varying and then the stationary convolution model(Equation (1)) can be modified as (Wang,2011):

    where s(t)is the attenuated seismic trace,and(t,τ)is the timevarying wavelet which can be expressed as (Wang,2002):

    According to the convolution theorems of Fourier transform,the frequency-domain expressions of Equation(1)and Equation(2)are,

    where D(ω)and S(ω)are the frequency-domain non-attenuated trace and the frequency-domain attenuated trace respectively,W(ω)and W(ω,τ)are the frequency-domain source wavelet and the frequency-domain time-varying wavelet respectively,and R(ω)is the frequency-domain reflectivity sequences.

    Substituting Equations (4) and (5) into Equation (6),we have,

    Transforming Equation(7)into the time domain,we obtain the following formula,

    Fig.2.The schematic diagram of the non-stationary convolution model:(a) the attenuated seismic trace,(b) the time-varying wavelet matrix,(c) the reflectivity series.

    where N is the sampling points,s and d represent the discrete attenuated record and the discrete non-attenuated record respectively,and the matrix A stands for the time-domain attenuation matrix due to the earth's Q filtering effects.An illustration of this matrix-vector product is shown in Fig.3.

    When considering a 2D seismic data with M traces,Equation(9)can be generalized to a multichannel system(Ma et al.,2020b):

    where y and m are the concatenated attenuated data vector and the concatenated non-attenuated data vector respectively,and G is the block diagonal matrix standing for the multichannel attenuation effects.

    Fig.3.An illustration of the matrix-vector product (Equation (6)):(a) the attenuated seismic trace,(b) the time-domain absorption matrix,(c) the non-attenuated seismic record.

    The main objective of the attenuation compensation is to eliminate the seismic attenuation effects from the recorded seismic data,that is,we desire to obtain the non-attenuated data m by solving Equation (10) with the known (or estimated) Q value and the recorded attenuation data y.However,the attenuation function contains an exponential decay term,which means the block attenuation matrix G is ill-conditioned and the numerical solution of Equation (10) is often unstable.

    2.2.Dip-unconstrained absorption compensation

    To obtain a numerical stable result,the Tikhonov regularization is often used to establish the following objective function(Ma et al.,2020c):

    where λ is a trade-off parameter which controls the relative strength of the constraint term (second term) to the data misfit(first term).Setting the derivative of Equation (11) with respect to m equals to zero,we obtain its solution which can be expressed as:

    where the superscript T denotes the transpose.Since this attenuation compensation algorithm lacks of the dip constraint,we refer it to as DUAC method.

    2.3.Constructing a dip constraint term

    To improve the spatial continuity of the attenuation compensation algorithm,we incorporate the additional dip information into the inversion system.The dip orientation,estimated from the post-stack seismic data,plays an important role in constructing the dip constraint term.Therefore,in this section,we focus on estimating the dip orientation and constructing a dip constraint term.

    According to Hamid and Pidlisecky (2016),the seismic dip is defined as the angle between the x-axis and the vector describing the minimum gradient direction (Fig.4).Based on the above definition,we calculate the seismic dip by the following expression:

    where θ(t,x)is the seismic dip,dxand dtare the horizontal and vertical derivatives of the seismic data respectively,and Dx(·)and Dt(·)are the horizontal and vertical derivative operators respectively.

    After estimating the seismic dip,we need to rotate the horizontal and vertical derivatives in the original coordinate system.And then we obtain two rotation operators,that is,the one parallel to the local dip and the other perpendicular to the local dip.According to Fig.4,the rotated and original derivative operators satisfy the following coordinate transformation formula:

    where Dparlis the derivative operator parallel to the local dip direction and Dperpis the derivative operator perpendicular to the local dip direction.The matrix-vector form of Equation(15)can be expressed as,

    The derivative parallel to the local dip can be used to enforce the smoothness and continuity of the seismic data in the dip direction,thus,we can construct the following dip constraint term:

    Fig.4.An illustration for the seismic dip estimation.The blue curve represents a seismic event.dx and dt are the horizontal and vertical derivatives of the seismic event respectively.θ is the seismic dip.dparl is the derivative which is oriented parallel to the local dip direction and dperp is the derivative perpendicular to the local dip direction.

    To better understand this constraint,we first consider a special case of the horizontally layered medium.In this case,the seismic dip is 0 and the operator Dparlwill degenerate to the horizontal derivative matrix Dx.As discussed by Hamid and Pidlisecky(2015),the effect of the horizontal derivative matrix Dxis to minimize the differences between the seismic data in the horizontal direction.This means the lateral constraintcan enforce the lateral continuity of the inverted result m (because the inverted result with the horizontal events can minimize the lateral constraint).Compared with the horizontal derivative matrix Dx,the dip-related derivative matrix Dparlcontains the extra dip information at each sampling point.Therefore,we can find that the effect of the diprelated derivative matrix Dparlis to minimize the differences between the seismic data in the local dip direction.Similarly,the dip constraintcan enforce the spatial continuity of the inverted result m along the dip direction (because the inverted result m with the similar seismic dip field to the dip-related derivative matrix Dparlcan minimize the dip constraint).It can be seen that the core issue of this dip constraint is the reliability of the seismic dip information.Theoretically,the most reliable seismic dip should be calculated from the true inverted result (or the nonattenuated data).In the field data,we do not have the true inverted result (or the non-attenuated data),but only have the attenuated data.Generally,the difference of the dip information between the attenuated and the compensated profiles will not be great.Thus,we can estimate the seismic dip information from the attenuated data.In summary,the role of the dip constraint is to ensure that the inverted results are structurally similar to the attenuated seismic data.

    2.4.Dip-constrained attenuation compensation

    The DUAC algorithm ignores the seismic dip information,thus,the inverted results may appear an incorrect or distorted spatial continuity when seismic data are contaminated by the random noise.To eliminate this issue,we incorporate the dip constraint terms (Equation (17)) into the inversion system and establish the following objective function:

    where μ is the regularization parameter controlling the relative strength of the dip constraint (third term) to the data misfit term(first term).The least-squares solution of this problem is:

    Since the proposed attenuation compensation algorithm includes a dip constraint term,we refer it to as DCAC method.It needs to be explained that although we use the matrix inversion to express the numerical results of the DCAC method,we do not directly use the inversion operation in programming(because the inversion operation is computationally expensive).Instead,we use the conjugate gradient method to solve the equivalent equation=GTy.Therefore,the algorithm has high computational efficiency.

    The objective function of the DCAC method contains three terms,that is,the data misfit termthe vertical smoothness constraintand the dip constraintThe data misfit term contorls the inversion accuracy.The second term requires the inversion results to be smoothness (for suppressing the amplification of the high frequencies) and the parameter λ contorls the smoothing strength of the compensation results.The parameter λ has a similar action to the stabilization factor in Wang's method(Wang,2002).If the parameter λ is small,more high frequencies (both the effective signal and noise) can be recovered or amplified.In contrast,if the parameter λ is large,the high-frequency recovery or amplification(both the effective signals and noises) will be suppressed.For any frequency component,the magnification of the effective signals and noises is the same.In the proposed method,we have an additional dip constraint.The role of the dip constraint is to ensure that the compensation results are structurally similar to the seismic section before compensation.In other word,the dip constraint term is mainly to enhance the signals consistent with the seismic dip (or suppress the signals inconsistent with the seismic dip).This means the dip constraint can selectively enhance the effective signals while suppress the seismic noises(at the same bandwidth).In summary,the data misfit term is to ensure the accuracy of the inversion results.The second term is mainly to improve the seismic resolution and partially suppress the amplification of the high frequencies (similar to a low-pass filtering).The third term is to further selectively suppress the signals inconsistent with the seismic dip (similar to a dip-filtering).

    3.Example

    3.1.Synthetic data experiments

    To testify the validity and superiority of the DCAC algorithm,we use Marmousi model shown in Fig.5a to conduct the attenuation compensation tests.Assuming that the model has a constant density,we obtain the reflectivity model displayed in Fig.5b.Convolving a 30 Hz Ricker wavelet with the above reflectivity model provides the non-attenuated seismic data(Fig.5c).The nonattenuated data can be served as the reference data to evaluate the compensation performance of Wang's method (Wang,2002),the DUAC method and the DCAC approach.Fig.5d shows the noisy attenuated seismogram with the quality factor Q=40 and contaminated by 20%random noise.This noisy data is exploited to conduct the compensation experiments and used to analyze the performance of Wang's,the DUAC and the DCAC approaches.We find from Fig.5d that the resolution of the attenuated seismic data is decreased due to the seismic attenuation,and the reflection events in the deep are almost drowned in the random noise.To compensate the seismic attenuation effects and enhance seismic resolution,we apply Wang's method,the DUAC approach and the DCAC algorithm to process the attenuated seismic data.

    In order to implement the proposed DCAC algorithm,we first calculate the seismic dip by the following steps:1)Computing the vertical and horizontal derivatives of the attenuated seismic data.Note that the derivative calculation will amplify the seismic noise,thus,we estimate the derivatives from the smoothed seismic data.The obtained vertical and horizontal derivatives are shown in Fig.6a and b respectively.2) Estimating the seismic dip at every location using Equation(13)and depicting the result in Fig.6c.3)As we can see,the estimated dips are also effected by the seismic noise,thus,we use spatial Gaussian filter to smooth them and show the smoothed seismic dip section in Fig.6d.Based on the seismic dip information,we then construct the dip constraint and further implement the DCAC algorithm to compensate the seismic attenuation.For quantitatively assessing the compensation results,we use the average correlation coefficient (ACC) as an indicator:

    where djandare the reference (non-attenuated) and the compensated traces respectively.

    In Wang's method,we choose σ2=0.01 and the inverse-Q filtering result is showed in Fig.7a.We can find that the seismic amplitude is enhanced especially in the mid-and deep-layers,and the spatial continuity of the compensated profile is slightly low.The ACC between it and the non-attenuated seismic data (Fig.5c) is 0.5975.In the DUAC method,we select the regularization parameter λ=0.007 and display the corresponding compensation result in Fig.7b.We see that the compensated result improves the seismic energy and seismic resolution,but the amplification of the high frequencies (both the effective signals and noises) is also evident.The ACC between it and the non-attenuated seismic data(Fig.5c)is 0.6124.To prove the superiority of the DCAC algorithm,we apply the proposed DCAC algorithm to process the attenuated data.In the DCAC algorithm,we fix the parameter λ=0.007 and determine the dip constraint parameter μ=0.1 by trial and error.The DCAC compensation result is shown in Fig.7c.Compared with Wang's and the DUAC compensation results,the DCAC compensation result shows better spatial continuity (see red arrows) and maintains a relatively higher S/N.Its ACC with the ideal data reaches 0.8602.

    To clearly view the differences between the reference and the compensated data,we display the seismic traces extracted from the non-attenuated data(Fig.5c)and the compensated data(Fig.7) at CDP=101 and their spectra in Fig.8.Comparing the compensated results with the reference trace,we find that Wang's and the DUAC algorithms overcompensate the attenuated seismic trace due to the amplification of the high frequencies(both the effective signals and noises).The comparison of their spectra further confirms that the proposed method enhances the seismic bandwidth and maintains a relatively higher S/N.

    We also use the attenuated data shown in Fig.5d to investigate the influence of the dip constraint parameter on the compensation results.In this experiment,we fix the parameters λ=0.005 and respectively choose μ as 1,0.1,0.01,and 0.001.The corresponding compensated data are displayed in Fig.9a-d.As shown in Fig.9a,when the dip constraint parameter μ is too large,the compensated profile appears to be over-smoothed and the resolution is slightly low.The ACC between it and the non-attenuated seismic data(Fig.5c)is 0.7874.However,when the parameter μ is too small,the amplification of the high frequencies is evident and the spatial continuity of the compensated result is poor (Fig.9d).In this case,the ACC between it and the non-attenuated seismic data (Fig.5c)becomes 0.8103.When the parameter μ is moderate(Fig.9b and c),the compensated results achieve a good balance between the noise suppression and the resolution enhancement.And the ACC between them and the non-attenuated seismic data (Fig.5c) are 0.8477 and 0.8298 respectively.This means the selection of the good regularization parameters is important to the compensation results and we will discuss the parameter selection strategy in the DISCUSSION.

    Fig.5.Forward modeling for generating the synthetic data.(a)The velocity model,(b)the reflectivity model,(c)the synthetic noise-free non-attenuated seismic data serving as the reference,(d) the attenuated data with 20% Gaussian noise.

    Fig.6.Estimation of the seismic dip.(a)The second derivative of the attenuated seismic data in the vertical direction,(b)the second derivative of the attenuated seismic data in the horizontal direction,(c) the estimated dip,(d) the smoothed seismic dip.

    Fig.7.Attenuation compensation for the noisy attenuated seismic data.(a)Wang's method with σ2=0.01,(b)the DUAC algorithm with the regularization parameter λ=0.007,(c)the DCAC algorithm with the regularization parameters λ=0.007 and μ=0.1.

    The accuracy and stability of the attenuation compensation results are affected by the noise level.Therefore,we compare the compensation results of Wang's method,the DUAC algorithm and the DCAC approach at different noise levels (5%,10%,15%,20% and 25% random noises).Different methods are used to process the noisy records and the parameters in these methods are fixed at different cases for an objective comparison.In Wang's method,we choose the stabilization factor σ2=0.01.In the DUAC method,the regularization parameter is λ=0.007.In the DCAC method,we fix the parameter λ=0.007 and select the dip constraint parameter μ=0.1.The ACCs of the compensation results are reported in Table 1.We can see that when the noise level is low(5%and 10%),all three methods provide a good result with high ACCs.With the noise level increases,the ACCs of the attenuation compensation results are decrease.Furthermore,for the relatively strong nosie cases(20%and 25%),the ACCs are decrease faster than that in the low noise levels.The main reason is that the high frequencies are partially over-compensated with above parameters for strong nosie cases.And in strong nosie cases,the accuracy of the dip estimation is decreased,which will further influence the accuracy of the proposed method.For the influence of the seismic dip estimation,we will discuss in the DISCUSSION.In addition,we find that the proposed method outperformes other methods in all cases,which further proves the superiority of the proposed method.

    Table 1The ACC of the attenuation compensation results using different methods at different noise levels.

    3.2.Field data tests

    The field data shown in Fig.10a are used to further demonstrate the practicability of the DCAC algorithm.To compensate the energy attenuation and enhance seismic resolution,we exploit Wang's,the DUAC and the DCAC methods to process the original seismic profile.In Wang's method,we select σ2=0.02 and the inverse-Q filtering result is showed in Fig.10b.For the DUAC algorithm,we choose the regularization parameter λ=0.008.While in the DCAC algorithm,we fix the parameter λ=0.008,and then determine μ=0.2 by trial and error.The compensation results using the DUAC and DCAC methods are shown in Figs.10c and d respectively.The averaged amplitude spectra of the three compensation results are displayed in Fig.10e.From the five Figs.,we can draw the following conclusions:Firstly,we find that all three methods compensate the seismic attenuation and enhance the resolution of the raw data.Secondly,compared with Wang's and the DUAC compensation results,the DCAC result tend to have a higher S/R and smoother spatial continuity without losing evident vertical resolution,which indicates that the proposed DCAC algorithm enjoys better compensation performance.Thirdly,we see from the spectra that the frequency components of Wang's and the DUAC results are slightly higher than that of the DCAC result,which may cause by the suppression of the signals inconsistent with the seismic dip in the DCAC algorithm.

    We also extract three reference traces from the original and the compensated data at CDP=50,CDP=150,and CDP=250 to further evaluate the compensation details of three compensation results.Note that we only show the seismic records from 2 s to 5 s and the original traces (green) are gained by a factor of 2 for a clearer comparison.As shown in Fig.11,all three methods improve the seismic energy in the deep reflections and they show similar performance in enhancing the vertical resolution.However,the DCAC result shows a relatively small amplitude compensation(see arrows) which may result from the suppression of the additional seismic noises inconsistent with the seismic dip.It indicates that the proposed DCAC method can not only recover the seismic events and improve the seismic resolution,but also keep the seismic noise at an acceptable level.

    4.Discussions

    Fig.8.The reference and the compensated traces and their spectra.(a)The reference and the compensated traces extracted from the reference data(Fig.5c)and the compensated data (Fig.7) at CDP=101,and (b) their spectra.

    Fig.9.The investigation of the influence of the dip constraint parameter μ on the compensation results.We fix the parameters λ=0.005 and respectively choose μ as(a)1,(b)0.1,(c) 0.01,and (d) 0.001.

    In the proposed DCAC method,there are two major factors affecting the compensation results,that is,the accuracy of the seismic dip estimation and the determination of the regularization parameters.Firstly,we discuss the influence of the seismic dip estimation.The structural dip information can be derived from many sources (e.g.geologic data,borehole data).In this paper,we derive the dip information directly from the seismic data.In the past few decades,many researchers have proposed or developed a large number of methods to estimate the seismic dip from the seismic data.For example,Bahorich and Farmer(1995)estimate the seismic dip based on the crosscorrelation of a set of windowed seismic data generated by using time lagging between nearby seismic traces.This algorithm is simple and efficient,but the stability of the seismic dip estimation is relatively poor.To improve the stability and accuracy of the dip estimation,many novel methods,including the semblance-based multiple window scanning methods(Marfurt et al.,1998),the structure-tensor-based methods(Fehmers and H¨ocker,2003;Wu,2017),and the plane-wave destruction (Fomel,2002),have been developed in recent years.Considering that the focus of this paper is not on developing a new method for the seismic dip estimation,therefore we select a relatively simple but efficient dip estimation algorithm proposed by Hamid and Pidlisecky (2016).For mid-and large-scale geologic structures,this method can provide a relatively reliable and stable result even if the seismic data are contaminated by some seismic noises.If the S/N of the seismic record is low,we have to increase the seismic noise attenuation before the seismic dip estimation to ensure the stability.In this case,the accuracy of the dip estimation will decrease.Actually,the seismic dip estimation is still an open and undergoing subject in geophysics and we will further research this problem in the future.In addition,we can incorporate any other dip estimation method into the proposed compensation algorithm by replacing the dip estimation method in this paper with the other selected method.This also shows that the proposed DCAC method has good flexibility.

    Fig.10.Seismic attenuation compensation for the field data.(a) The field data,(b) the compensation result from Wang's method,(c) the compensation result from the DUAC method,(d) the compensation result from the DCAC approach,(e) the amplitude spectra of the original data,Wang's result,the DUAC result and the DCAC result.

    Fig.11.Comparison of the compensation performance using three reference traces extracted from Figs.10a-d at(a)CDP=50,(b)CDP=150 and(c)CDP=250.The original traces(green) are displayed with a gain factor of 2.

    Then we discuss the strategy of selecting the good regularization parameters.In the DUAC algorithm,there is a regularization parameter λ to be determined.As discussed by Wang(2011),when the S/N of the seismic data is high,we can choose a small parameter λ to maximally enhance the bandwidth of the seismic data.While the S/N of the seismic data is lower,we should select a relatively larger value for suppressing the amplitude amplification of the high frequencies.This is the general principle for selecting a good regularization parameter λ.To quantitatively determine a suitable regularization parameter λ,Hansen and O'Leary(1993)propose a Lcurve technique,which applies a cross-plot of the data error versus the solution length as a function of λ.A good value for the parameter λ is the one located at the corner of the L-curve.For the proposed DCAC method,there are two regularization parameters,λ and μ,to be determined.The role of the parameter λ is the same as that in the DUAC algorithm,while the role of the parameter μ is to enhance the signals consistent with the seismic dip (or suppress the signals inconsistent with the seismic dip).Until now,the optimization for the hyperparameters functional remains a complicated problem(Du et al.,2018).In this paper,we select them by trial and error,but we apply a relatively elegant strategy.Firstly,we set the dip regularization parameter μ=0 (that means ignoring the dip constraint term)and use L-curve technique to choose a proper parameter λ.Secondly,we fix the parameter λ calculated in the first step and then search a rough value of the parameter μ from a wide range using a large search-step.Finally,we minorly adjust the value of λ and μ by trial and error to determine the most suitable parameters.

    In addition,the Q estimation (or Q analysis) is a basic work for the attenuation compensation.Wang (2004) has proposed two methods(the attenuation-based Q analysis and the compensationbased Q analysis)for Q estimation from the reflection seismic data.These methods are the single-trace Q eatimation methods.In the proposed DCAC algorithm,we require a 2D Q model as the input.But the Q analysis processing is not necessarily based on the multichannel model.We can use the attenuation-based Q analysis or the compensation-based Q analysis to estimate Q value trace-bytrace,and then form the single-trace results to a 2D Q model.As showed in Equation(10),the multichannel model can be expressed asActually,this expression can be rewritten asFor the first trace,the Q estimation result will be included in the matrix A1.Similarly,for the second trace,the Q estimation result will be included in the matrix A2.And for the M-th trace,the Q estimation result will be included in the matrix AM.Therefore,the Q analysis is not necessarily on the multichannel base and the compensation results would not be affected while using the single-trace Q eatimation method.

    5.Conclusions

    In this paper,we propose a novel DCAC method by incorporating the dip constraint into the inversion-based compensation algorithm.The dip regularization term,calculated from the rotated horizontal and vertical derivatives,plays an important role in improving the spatial continuity of the compensated result.Compared with Wang's and DUAC approaches,the proposed DCAC method has advantages in protecting the spatial continuity and maintaining a relatively higher S/R of the compensation data.The superior performance of the proposed approach is demonstrated by using both synthetic tests and field data.The synthetic tests indicate that the proposed method can not only enhance the vertical resolution but also improve the spatial continuity.The field data experiment further confirms the practicability and stability of the DCAC algorithm.

    Acknowledgments

    We thank the financial support provided by National Natural Science Foundation of China(42074141),the Strategic Cooperation Technology Projects of CNPC and CUPB (ZLZX2020-03),and National Key R &D Program of China (2018YFA0702504).We also gratefully acknowledge the helpful comments from the editors and anonymous reviewers,which greatly improved this manuscript.

    国产一区二区三区av在线 | 久久综合国产亚洲精品| 最近的中文字幕免费完整| 真实男女啪啪啪动态图| 免费观看在线日韩| 99久久中文字幕三级久久日本| 欧美在线一区亚洲| 别揉我奶头 嗯啊视频| 国产成人一区二区在线| 免费看a级黄色片| 麻豆国产97在线/欧美| 丝袜美腿在线中文| 久久精品国产亚洲av天美| 伊人久久精品亚洲午夜| 亚洲成人精品中文字幕电影| 精品免费久久久久久久清纯| 中文字幕免费在线视频6| 国产探花极品一区二区| 成人三级黄色视频| 午夜亚洲福利在线播放| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久久成人| 26uuu在线亚洲综合色| 舔av片在线| 国产成人aa在线观看| 亚洲欧美日韩高清在线视频| 日韩av不卡免费在线播放| 欧美精品国产亚洲| 最近的中文字幕免费完整| av专区在线播放| 国产免费一级a男人的天堂| 国产成年人精品一区二区| 99riav亚洲国产免费| 日本三级黄在线观看| 黄色配什么色好看| 久久精品久久久久久噜噜老黄 | 干丝袜人妻中文字幕| 免费av观看视频| 男女啪啪激烈高潮av片| 久久精品综合一区二区三区| 国产精品一二三区在线看| 18+在线观看网站| 男女啪啪激烈高潮av片| 97在线视频观看| 最近2019中文字幕mv第一页| 国产伦一二天堂av在线观看| 五月伊人婷婷丁香| 一区二区三区免费毛片| av在线老鸭窝| 亚洲精品乱码久久久久久按摩| 色综合站精品国产| 桃色一区二区三区在线观看| 尾随美女入室| eeuss影院久久| 天美传媒精品一区二区| 国产v大片淫在线免费观看| 欧美+日韩+精品| 亚洲自拍偷在线| 一级二级三级毛片免费看| 精品无人区乱码1区二区| 亚洲人成网站在线观看播放| 亚洲精品亚洲一区二区| 亚洲无线在线观看| 成人二区视频| 国产精品一区二区在线观看99 | 小说图片视频综合网站| 亚洲18禁久久av| 欧美色视频一区免费| 亚洲欧美日韩高清在线视频| 亚洲真实伦在线观看| 成人漫画全彩无遮挡| 99热这里只有是精品在线观看| 日韩成人伦理影院| 黄片无遮挡物在线观看| 天美传媒精品一区二区| 直男gayav资源| 亚洲成人av在线免费| 久久中文看片网| 国产精华一区二区三区| 亚洲在线观看片| 身体一侧抽搐| 最近视频中文字幕2019在线8| 欧美色欧美亚洲另类二区| 国产伦理片在线播放av一区 | 简卡轻食公司| 特级一级黄色大片| 久久99热这里只有精品18| 精品久久久久久久末码| 中文在线观看免费www的网站| 中文亚洲av片在线观看爽| 亚洲一级一片aⅴ在线观看| 99久久精品国产国产毛片| 精品久久久久久久久久免费视频| 神马国产精品三级电影在线观看| 我要搜黄色片| 99久久成人亚洲精品观看| 99视频精品全部免费 在线| 在线免费观看的www视频| 午夜福利视频1000在线观看| av专区在线播放| 日本五十路高清| 一级二级三级毛片免费看| 91精品国产九色| 亚洲av二区三区四区| 亚洲av男天堂| 亚洲人与动物交配视频| 色5月婷婷丁香| av天堂中文字幕网| 久久亚洲精品不卡| 久99久视频精品免费| 亚洲人成网站在线观看播放| 日韩精品有码人妻一区| 成人av在线播放网站| 亚洲人成网站在线观看播放| 精华霜和精华液先用哪个| 日韩av在线大香蕉| 免费观看精品视频网站| 2021天堂中文幕一二区在线观| 国产黄色小视频在线观看| 欧美极品一区二区三区四区| 国产免费一级a男人的天堂| 国产视频首页在线观看| 欧美成人精品欧美一级黄| 看十八女毛片水多多多| 亚洲内射少妇av| 日韩一区二区三区影片| 夫妻性生交免费视频一级片| 亚洲自偷自拍三级| 可以在线观看的亚洲视频| 国产亚洲精品av在线| 五月伊人婷婷丁香| 99在线视频只有这里精品首页| 黄色欧美视频在线观看| 五月伊人婷婷丁香| 国产亚洲精品久久久com| 亚洲丝袜综合中文字幕| 亚洲欧洲国产日韩| 老司机影院成人| 国产亚洲精品av在线| 久久精品久久久久久噜噜老黄 | 国产在线精品亚洲第一网站| 亚洲欧美精品专区久久| 男插女下体视频免费在线播放| 欧美潮喷喷水| 久久这里只有精品中国| 日韩亚洲欧美综合| kizo精华| 黑人高潮一二区| 国产黄色视频一区二区在线观看 | 黄片wwwwww| 18禁裸乳无遮挡免费网站照片| 99热精品在线国产| av国产免费在线观看| 在线观看午夜福利视频| 国产欧美日韩精品一区二区| 哪个播放器可以免费观看大片| 18禁在线无遮挡免费观看视频| 免费人成在线观看视频色| 亚洲自拍偷在线| 能在线免费看毛片的网站| 国产精品电影一区二区三区| 男女下面进入的视频免费午夜| 免费观看的影片在线观看| 午夜视频国产福利| 色综合亚洲欧美另类图片| 人妻少妇偷人精品九色| 国产精品乱码一区二三区的特点| 久久人人爽人人爽人人片va| 成人亚洲精品av一区二区| 熟女电影av网| 嫩草影院新地址| 中文字幕人妻熟人妻熟丝袜美| 欧美精品一区二区大全| 国产黄片视频在线免费观看| 观看免费一级毛片| 亚洲精品久久久久久婷婷小说 | 熟女人妻精品中文字幕| 亚洲经典国产精华液单| 国产国拍精品亚洲av在线观看| 久久久国产成人精品二区| 夫妻性生交免费视频一级片| 在线观看美女被高潮喷水网站| 乱码一卡2卡4卡精品| 国产精品久久久久久亚洲av鲁大| 男人的好看免费观看在线视频| 国产成人午夜福利电影在线观看| 婷婷六月久久综合丁香| 国产69精品久久久久777片| 一级黄色大片毛片| 噜噜噜噜噜久久久久久91| 校园春色视频在线观看| 亚洲精品久久久久久婷婷小说 | 日韩 亚洲 欧美在线| 日韩,欧美,国产一区二区三区 | 亚洲国产色片| 夫妻性生交免费视频一级片| 日韩成人av中文字幕在线观看| 日本一本二区三区精品| 91av网一区二区| 亚洲最大成人手机在线| 国产伦在线观看视频一区| 亚洲综合色惰| 久久草成人影院| 色哟哟哟哟哟哟| 免费观看人在逋| 精品久久久久久久久久免费视频| 久久这里只有精品中国| 免费看日本二区| av在线蜜桃| 国产高清有码在线观看视频| 欧美日本视频| 亚洲内射少妇av| 精品久久久久久成人av| 亚洲自拍偷在线| 禁无遮挡网站| 亚洲色图av天堂| 亚洲国产欧美人成| 国产色爽女视频免费观看| 国产精品无大码| 午夜免费激情av| 熟妇人妻久久中文字幕3abv| 欧美精品国产亚洲| 老师上课跳d突然被开到最大视频| 国产亚洲5aaaaa淫片| 男插女下体视频免费在线播放| 伦精品一区二区三区| 亚洲精品色激情综合| 欧美3d第一页| 精品人妻偷拍中文字幕| 18禁在线无遮挡免费观看视频| 97超碰精品成人国产| 免费av毛片视频| 色视频www国产| 亚洲国产高清在线一区二区三| 午夜亚洲福利在线播放| 亚洲三级黄色毛片| 日本色播在线视频| 免费在线观看成人毛片| 一区二区三区高清视频在线| 亚洲精品国产av成人精品| 特级一级黄色大片| 最近视频中文字幕2019在线8| 真实男女啪啪啪动态图| 久久婷婷人人爽人人干人人爱| 久久精品夜色国产| 一区二区三区高清视频在线| 国产精品久久视频播放| 少妇高潮的动态图| 一个人免费在线观看电影| 久久久精品大字幕| 国产成人91sexporn| 免费看av在线观看网站| 日韩精品青青久久久久久| 99riav亚洲国产免费| 国产精品99久久久久久久久| a级毛片免费高清观看在线播放| 国产综合懂色| 99久久精品热视频| 校园春色视频在线观看| 97人妻精品一区二区三区麻豆| 1024手机看黄色片| 亚洲人成网站在线播放欧美日韩| 日本爱情动作片www.在线观看| 欧美高清成人免费视频www| 久久99蜜桃精品久久| 亚洲欧美日韩卡通动漫| 国产亚洲av片在线观看秒播厂 | 男女视频在线观看网站免费| 久久精品国产鲁丝片午夜精品| 国产极品精品免费视频能看的| 变态另类丝袜制服| 中出人妻视频一区二区| 小说图片视频综合网站| 免费不卡的大黄色大毛片视频在线观看 | 国产人妻一区二区三区在| 亚洲人成网站在线观看播放| 国产一区二区三区av在线 | 成人亚洲欧美一区二区av| 精品久久久久久久久av| 国产日本99.免费观看| 少妇熟女aⅴ在线视频| 久久久久久久午夜电影| 啦啦啦观看免费观看视频高清| 久久久成人免费电影| 男人狂女人下面高潮的视频| 91aial.com中文字幕在线观看| 日韩 亚洲 欧美在线| av.在线天堂| 免费搜索国产男女视频| 日韩,欧美,国产一区二区三区 | 久久久国产成人精品二区| 男的添女的下面高潮视频| 日韩欧美精品免费久久| 亚洲成人av在线免费| 亚洲av熟女| 中国美白少妇内射xxxbb| 亚洲内射少妇av| 久久人妻av系列| 欧美日韩精品成人综合77777| 久久久久性生活片| 午夜福利在线在线| 午夜激情欧美在线| 午夜福利高清视频| 国产黄色视频一区二区在线观看 | 国产黄a三级三级三级人| 高清在线视频一区二区三区 | 国产av不卡久久| 国产大屁股一区二区在线视频| 26uuu在线亚洲综合色| 干丝袜人妻中文字幕| 亚洲av中文av极速乱| 午夜爱爱视频在线播放| 不卡一级毛片| 亚洲av免费高清在线观看| 精品不卡国产一区二区三区| 18禁在线无遮挡免费观看视频| 欧美激情久久久久久爽电影| 午夜亚洲福利在线播放| 一个人看视频在线观看www免费| 最近视频中文字幕2019在线8| 国产激情偷乱视频一区二区| 久久久久久久午夜电影| 中文字幕av在线有码专区| 99在线人妻在线中文字幕| 亚洲人成网站高清观看| 国产精品一区二区三区四区久久| 国产又黄又爽又无遮挡在线| 美女黄网站色视频| 久久久精品大字幕| 九色成人免费人妻av| 日本一本二区三区精品| 中文精品一卡2卡3卡4更新| 丝袜喷水一区| 国产精品人妻久久久影院| 中文字幕人妻熟人妻熟丝袜美| 亚洲美女视频黄频| 久久精品国产鲁丝片午夜精品| 成人国产麻豆网| 女的被弄到高潮叫床怎么办| 一区福利在线观看| 久久久久久久久久久丰满| 亚洲美女视频黄频| 中文字幕人妻熟人妻熟丝袜美| 国产蜜桃级精品一区二区三区| 精品久久久久久成人av| 久久这里只有精品中国| 成年av动漫网址| 18禁黄网站禁片免费观看直播| 麻豆av噜噜一区二区三区| 亚洲真实伦在线观看| 久久精品国产亚洲网站| 国产精品福利在线免费观看| 极品教师在线视频| 国产一区二区在线观看日韩| 别揉我奶头 嗯啊视频| 国产伦精品一区二区三区视频9| 亚洲av不卡在线观看| 国产精品福利在线免费观看| 极品教师在线视频| 国产精品av视频在线免费观看| 亚洲久久久久久中文字幕| 国内揄拍国产精品人妻在线| 级片在线观看| 亚洲自偷自拍三级| 国产av麻豆久久久久久久| 长腿黑丝高跟| 日韩一区二区视频免费看| 亚洲国产欧美人成| 国产亚洲精品av在线| av在线天堂中文字幕| 欧美日韩国产亚洲二区| 校园人妻丝袜中文字幕| 少妇高潮的动态图| 日韩高清综合在线| 1000部很黄的大片| 在线免费观看不下载黄p国产| 波多野结衣高清无吗| 韩国av在线不卡| 日日啪夜夜撸| 性欧美人与动物交配| 村上凉子中文字幕在线| 欧美成人免费av一区二区三区| 色噜噜av男人的天堂激情| 女的被弄到高潮叫床怎么办| 日韩制服骚丝袜av| 丝袜喷水一区| 国产一区二区激情短视频| 亚洲人成网站在线观看播放| 免费观看人在逋| 成人高潮视频无遮挡免费网站| 69av精品久久久久久| 岛国毛片在线播放| 国产成人影院久久av| 国产老妇女一区| 一级毛片我不卡| 亚洲第一区二区三区不卡| 1024手机看黄色片| 日日啪夜夜撸| 人妻久久中文字幕网| 看非洲黑人一级黄片| 日本三级黄在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 中国美白少妇内射xxxbb| 综合色丁香网| 婷婷精品国产亚洲av| 中国美女看黄片| 国产亚洲精品久久久久久毛片| 亚洲四区av| 人妻夜夜爽99麻豆av| 欧美xxxx性猛交bbbb| av在线观看视频网站免费| 久久草成人影院| 亚洲欧美成人综合另类久久久 | 亚洲一区二区三区色噜噜| 1024手机看黄色片| 久久久午夜欧美精品| 乱系列少妇在线播放| 永久网站在线| 天天躁日日操中文字幕| 国内久久婷婷六月综合欲色啪| eeuss影院久久| 三级毛片av免费| av天堂中文字幕网| 亚洲av熟女| 国产精品不卡视频一区二区| 免费不卡的大黄色大毛片视频在线观看 | 日韩,欧美,国产一区二区三区 | 两个人视频免费观看高清| 看片在线看免费视频| 免费电影在线观看免费观看| 如何舔出高潮| 99国产极品粉嫩在线观看| 亚洲精品国产成人久久av| 久久久精品大字幕| 国产蜜桃级精品一区二区三区| 嘟嘟电影网在线观看| 神马国产精品三级电影在线观看| 老司机影院成人| 高清午夜精品一区二区三区 | 婷婷精品国产亚洲av| 岛国在线免费视频观看| 亚洲无线观看免费| 欧美激情在线99| 亚洲人成网站在线播放欧美日韩| 精品人妻熟女av久视频| 成人三级黄色视频| 亚洲天堂国产精品一区在线| 国产一区二区激情短视频| 麻豆成人av视频| av卡一久久| 午夜福利在线观看免费完整高清在 | 国产精品一区二区三区四区免费观看| 日韩成人av中文字幕在线观看| 嘟嘟电影网在线观看| 亚洲va在线va天堂va国产| 国产黄片美女视频| 美女xxoo啪啪120秒动态图| 国产成人午夜福利电影在线观看| 一级毛片电影观看 | 麻豆国产av国片精品| 亚洲中文字幕一区二区三区有码在线看| 性插视频无遮挡在线免费观看| 国产精品一区二区在线观看99 | 色哟哟哟哟哟哟| 在现免费观看毛片| 男的添女的下面高潮视频| 国产美女午夜福利| 边亲边吃奶的免费视频| 毛片女人毛片| 国产成人精品久久久久久| 精品欧美国产一区二区三| 国产免费一级a男人的天堂| 毛片女人毛片| 日本-黄色视频高清免费观看| 六月丁香七月| 色综合色国产| 国产黄色小视频在线观看| 日韩一区二区视频免费看| 97超视频在线观看视频| 久久久久久久久久久丰满| 26uuu在线亚洲综合色| 嘟嘟电影网在线观看| 亚洲乱码一区二区免费版| 99热6这里只有精品| 国内少妇人妻偷人精品xxx网站| 欧美xxxx性猛交bbbb| 国产乱人视频| 精品人妻熟女av久视频| 成人毛片a级毛片在线播放| 一本一本综合久久| 国产熟女欧美一区二区| 国模一区二区三区四区视频| 国产精品一区二区在线观看99 | 看黄色毛片网站| 丰满乱子伦码专区| 欧美高清成人免费视频www| 淫秽高清视频在线观看| 久久这里有精品视频免费| 亚洲国产欧洲综合997久久,| 一级毛片aaaaaa免费看小| 超碰av人人做人人爽久久| 小说图片视频综合网站| 久久人人爽人人片av| 国产高清激情床上av| 免费观看精品视频网站| av在线播放精品| 日本黄大片高清| 婷婷色av中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产高清激情床上av| 99精品在免费线老司机午夜| av视频在线观看入口| 麻豆久久精品国产亚洲av| 嘟嘟电影网在线观看| 亚洲18禁久久av| 国产精品99久久久久久久久| 国产亚洲av嫩草精品影院| 久久99蜜桃精品久久| 最近最新中文字幕大全电影3| 中国国产av一级| 欧美日韩综合久久久久久| 在线免费观看不下载黄p国产| 久久这里只有精品中国| 午夜免费男女啪啪视频观看| 欧美xxxx黑人xx丫x性爽| 男人舔奶头视频| 久久精品国产鲁丝片午夜精品| 欧美性猛交黑人性爽| 国产精品一区二区在线观看99 | 国产亚洲5aaaaa淫片| 亚洲成人久久爱视频| 日本免费一区二区三区高清不卡| 午夜精品在线福利| 国产免费一级a男人的天堂| av女优亚洲男人天堂| 亚洲精品日韩在线中文字幕 | 床上黄色一级片| 九草在线视频观看| 久久久国产成人免费| 深夜a级毛片| 欧洲精品卡2卡3卡4卡5卡区| 丰满的人妻完整版| 99热这里只有是精品50| 国产精品一区二区三区四区久久| 欧美最黄视频在线播放免费| 少妇的逼好多水| 一个人看视频在线观看www免费| 久久九九热精品免费| 日本色播在线视频| 99精品在免费线老司机午夜| 一个人观看的视频www高清免费观看| 国产女主播在线喷水免费视频网站 | 在线观看美女被高潮喷水网站| 免费观看在线日韩| 晚上一个人看的免费电影| 精品久久久久久久久av| 亚洲经典国产精华液单| 韩国av在线不卡| 少妇丰满av| 国产综合懂色| 一级毛片电影观看 | 日韩欧美国产在线观看| 久久精品综合一区二区三区| 精品不卡国产一区二区三区| 女人被狂操c到高潮| 天堂√8在线中文| 国产黄片美女视频| 青春草国产在线视频 | 日本在线视频免费播放| or卡值多少钱| 成人特级黄色片久久久久久久| 蜜桃亚洲精品一区二区三区| 有码 亚洲区| 变态另类成人亚洲欧美熟女| 日本黄色片子视频| 国产精品一及| 亚洲丝袜综合中文字幕| 我要搜黄色片| 精品不卡国产一区二区三区| 麻豆国产av国片精品| 蜜臀久久99精品久久宅男| 麻豆av噜噜一区二区三区| 国产精品久久久久久精品电影| 欧美日韩国产亚洲二区| 麻豆成人午夜福利视频| 菩萨蛮人人尽说江南好唐韦庄 | 高清午夜精品一区二区三区 | 亚洲国产欧美在线一区| 大香蕉久久网| 日本撒尿小便嘘嘘汇集6| 亚洲国产欧洲综合997久久,| 亚洲色图av天堂| 国产视频内射| 亚洲18禁久久av| 网址你懂的国产日韩在线| 亚洲成a人片在线一区二区| 中文精品一卡2卡3卡4更新| 看十八女毛片水多多多| 夜夜夜夜夜久久久久| 一边亲一边摸免费视频| 一级黄色大片毛片| 国产单亲对白刺激| 97在线视频观看| 日本黄色视频三级网站网址| 成年免费大片在线观看| 婷婷六月久久综合丁香| av专区在线播放| 亚洲av中文av极速乱| 少妇人妻精品综合一区二区 | 六月丁香七月| 不卡一级毛片| 成人二区视频| 99热只有精品国产| 久久久欧美国产精品| 男女视频在线观看网站免费|