• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diffraction separation and imaging based on double sparse transforms

    2022-06-02 04:59:52XueChenJingJieCoHeLongYngShoJinShiYongShuiGuo
    Petroleum Science 2022年2期

    Xue Chen ,Jing-Jie Co ,*,He-Long Yng ,Sho-Jin Shi ,Yong-Shui Guo

    a Hebei Key Laboratory of Strategic Critical Mineral Resources,Hebei GEO University,Shijiazhuang,Hebei 050031,China

    b Hebei Nautral Resources Archives,Shijiazhuang,Hebei 050037,China

    c The Third Hydrogeological Engineering Geological Brigade,Hengshui,Hebei 053000,China

    Keywords:Diffraction separation Common-offset domain Diffraction imaging High-resolution linear Radon transform Curvelet transform Sparse inversion

    ABSTRACT Reflection imaging results generally reveal large-scale continuous geological information,and it is difficult to identify small-scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fractures,etc.Diffraction imaging is an important method to identify small-scale geological bodies and it has higher resolution than reflection imaging.In the common-offset domain,reflections are mostly expressed as smooth linear events,whereas diffractions are characterized by hyperbolic events.This paper proposes a diffraction extraction method based on double sparse transforms.The linear events can be sparsely expressed by the high-resolution linear Radon transform,and the curved events can be sparsely expressed by the Curvelet transform.A sparse inversion model is built and the alternating direction method is used to solve the inversion model.Simulation data and field data experimental results proved that the diffractions extraction method based on double sparse transforms can effectively improve the imaging quality of faults and other small-scale geological bodies.

    1.Introduction

    Petroleum exploration has been changed from structural exploration to lithology exploration.The imaging of small scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fractures,is becoming a hot topic presently since these small-scale discontinuous geological bodies are often associated with oil/gas reservoirs.Conventional seismic exploration is mainly based on reflection waves assuming that the reflecting interfaces are smooth and infinite planes.Therefore,small-scale geological bodies cannot be effectively identified.Diffractions are responses of small-scale discontinuous geological bodies (Krey,1952;Kunz,1960),thus diffractions imaging method is an important method to detect small-scale geological bodies.The separation and imaging of diffractions from seismic records are of great significance to determine underground faults,pinch-outs and smallscale diffractors.

    Diffractions and reflections have different kinematics and dynamics characteristics,furthermore,the energy of diffractions is usually one to two orders of magnitude weaker than the energy of reflections (Kamill et al.,1994).Even if the diffractions and reflections are accurately imaged,the diffraction wave will still be covered by reflection wave.Therefore,extraction of diffraction information and diffraction imaging are crucial for high-resolution imaging of small-scale geologic structures.

    The diffraction imaging methods are mainly divided into two categories at present.The first kind method is to realize separation of diffractions and reflections at first,and then perform migration imaging for separated diffractions.The diffractions extraction methods are mainly based on the kinematic and dynamic differences between diffractions and reflections.Landa et al.(1987)used the common-offset profile to construct a common-diffraction point profile and realized diffraction imaging,which can detect local discontinuous and heterogeneous geological bodies.Fomel (2002)and Fomel et al.(2007) applied a prediction-error filter which is constructed with the local slopes of reflections to suppress reflections and enhance diffractions.The plane-wave destruction(PWD)method is a practical diffractions separating method.Taner et al.(2006)and Kong et al.(2012,2017)used the PWD filters in the plane-wave domain to separate reflections with linear characteristics and diffractions with hyperbolic characteristics.Zhao et al.(2016a,b) used the sparse inversion method to extract diffractions to identify discontinuous and heterogeneous geological information after PWD filtering.Nowak and Imhof (2004) used the hyperbolic Radon transform to separate diffractions in the prestack seismic records.Khaidukov et al.(2004) exploited the focusingdefocusing method to remove the focused reflection wavefield and finally obtain the diffraction wavefield.Based on their method,the reflection energy can be focused to the reflection point while the diffraction wave energies are scattered.In contrast,Berkovitch et al.(2009)focused diffractions to the positions of diffracted points by multi-focusing method.This is done by using a correlation procedure that coherently focuses diffraction energy on a seismic section by flattening diffraction events using a new local-timecorrection formula to parameterize diffraction travel time curves.Liu et al.(2014) and Lin et al.(2020) applied the singular value spectrum analysis method in the frequency-space domain to suppress reflection wavefield with strong energy and linear characteristics in the common-offset gathers where the kinematic and dynamic differences between the reflections and the diffractions were simultaneously used.Klokov and Fomel(2012)used the linear Radon transform to realize separation of diffractions and reflections in the common-imaging point gathers.Gong et al.(2016)developed an improved sparse apex-shifted hyperbolic Radon transform(ASHRT) to separate diffractions before stacking.Serfaty et al.(2017) used deep learning methods to separate reflections and diffractions.Xu et al.(2019) and Shen et al.(2020) used dynamic correction to flatten reflections and then applied singular value spectrum analysis method to separate diffraction wavefield in the common-shot gathers.Schwarz (2019) proposed the coherent wavefield subtraction method to extract diffractions using a variety of wavefront filters based on common-reflection-surface (CRS)method.Zhao et al.(2020) developed a 3D low-rank diffraction imaging method that used the Mahalanobis-based low-rank and sparse matrix decomposition method for separating and imaging 3D diffractions in the azimuth-dip angle image matrix.

    Another type of diffraction imaging method is to realize separation and imaging of diffractions by modification of the migration operator in the imaging process.Zhu and Wu(2010)identified and imaged diffraction energy based on the energy-angle distribution differences in the local image matrix that reflection energy exhibits linear distribution along a certain dip direction,whereas diffraction energy shows a scattered distribution in the entire matrix.Zhu et al.(2013) used local dip filtering and prediction inversion jointly to separate diffractions,overcoming loss of low-dip information when diffractions are separated by a single dip difference.Yu et al.(2017)improved imaging condition based on dynamic properties of diffractions,reflections can be suppressed and diffractions imaging can be realized.Zhao et al.(2015) proposed a least-squares fitting method based on double exponential functions to study the amplitude function of diffractions,they modified the traditional Kirchhoff imaging conditions to form a new imaging formula,and used the polarity reversal of diffractions to eliminate strong reflections.Taking into account dynamic differences between reflections and diffractions in the common-shot gathers,Zhao et al.(2016a,b) developed a Mahalanobis-based diffraction imaging method by modifying the classic Kirchhoff formula with an exponential function,reflections can be attenuated and diffractions can be enhanced automatically.Liu et al.(2017) constructed an antistationary phase filter into the Gaussian beam migration with the help of dip-scanning and kinematic/dynamic ray tracing,and the anti-stationary phase filter operator was used to modify migration operator to obtain diffraction imaging profile.Zhang and Zhang(2014) proposed a method to accurately estimate the Fresnel zone in the dip-angle offset gathers,and the Fresnel zones related to reflections were muted and phases of diffractions were corrected,therefore diffractions in the migrated gathers can be enhanced(Li et al.,2018).Wang et al.(2020)and Kong et al.(2020)analyzed the differences of diffractions and reflections in the dipangle gathers,and realized wavefield separation in the dip-angle domain.

    In this paper,we follow the idea of separating diffractions and reflections in the common-offset domain.According to the features that reflections are mostly smooth linear events in the commonoffset domain,while diffractions are still hyperbolic events,we propose a diffraction wave extraction method based on double sparse transforms.Two types of sparse transforms are exploited to represent diffractions and reflections.The high-resolution Radon transform is used to represent reflections,and the Curvelet transform is used to represent diffractions.A sparse inversion model is established,and the alternating direction method is used to solve the inversion model to realize separation of diffractions and reflections.The effectiveness of this method is verified by the separation and imaging results of two simulation data and a field data.The numerical results show that this diffractions extraction method based on double sparse transforms can get acceptable imaging quality of faults and other small-scale geological bodies,and the resolution of seismic exploration can be improved obviously.

    2.Methodology

    2.1.High-resolution linear Radon transform

    The integration path of linear Radon transform is linear,so it can focus the linear events in seismic records.The forward and inverse transforms of the conventional linear Radon transform are defined as

    where m is the data in the Radon domain,τ is the intercept,p is the slope,d is the data in the time-space domain,t is the travel time,and x is the offset.

    The forward and inverse Radon transforms can be expressed in the form of operators as follows

    where L represents the Radon transform operator,LHis the conjugate transpose operator of L,and the objective function of the inversion model of the conventional Radon transform is defined as

    For the high-resolution linear Radon transform,the L1 norm constraint condition is introduced to improve the resolution of conventional linear Radon transform.The objective function of the inversion model of the high-resolution linear Radon transform is

    where α is a weighting factor,and m is the result of the Radon transform,which can be obtained by seeking the minimum value of the above objective function.High-resolution linear Radon transform has a better focusing effect on linear events than conventional Radon transform.

    2.2.Curvelet transform

    The strong sparseness of coefficients of seismic data in the Curvelet domain enables the Curvelet transform accurately express seismic signals with the least coefficients.In addition,multi-scale and directional characteristics of the Curvelet transform renders it a better focusing effect on curve events.

    For the 2D data,the allowable condition of the window function in the Curvelet transform is

    where r is the radius of polar coordinate,t is the variable in time domain,W(r)and V(t)are the radius and angle window functions in the polar coordinates (where W ≥0,V∈R),θ is a polar coordinate,and ω is the variable in frequency domain.The support intervals are r∈(1/2,2)and t∈[-1,1],respectively.And the window function in the frequency domain is defined as

    where Rθ is the rotation matrix.Curvelet transform can be written in the form of inner product of signal f and the Curvelet function:

    According to the Plancherel theory,the formula of Curvelet transform in the frequency domain can be written as

    2.3.Diffraction wave separation method

    Assuming that dobsis the seismic data in the common-offset domain,which is composed of reflections and diffractions,the reflections events are linear or nearly linear with strong energy,and the diffractions exhibit hyperbolic events with weak energy in the common-offset domain.Suppose dlinerepresents the linear signal,corresponding to the reflection information,dcurverepresents the hyperbolic signal,corresponding to the diffraction information,and ε represents the random noise.Their relationship can be expressed as

    Since the linear events can be sparsely represented in the Radon domain,it can be assumed that xline=Φdlineis sparse,where Φ represents the high-resolution linear Radon transform,and Φ-1represents the inverse high-resolution linear Radon transform.Similarly,events with curved shapes are sparse in the Curvelet domain.Assuming xcurve=Ψdcurveis sparse,Ψ represents the Curvelet transform,and Ψ-1is the inverse Curvelet transform.Therefore,Eq.(13) can be expressed as

    Based on the sparsity of xlineand xcurve,the following sparsity inversion problem can be established

    In this solving process,THλ(·)denotes the soft thresholding operation,can be reduced exponently,take small values.

    Fig.1.Schematic diagram of collapse model.

    3.Numerical tests

    3.1.Simple collapse model example

    In this section,a collapse model data is used to verify the performance of the proposed method for diffraction separation.Fig.1 is a schematic diagram of collapsed model which contains 14 horizontal and inclined reflective interfaces of different lengths,and four independent diffraction points are set between the interfaces.The background velocity of model is 2000 m/s.Fig.2a shows the zero-offset synthetic seismic record of the collapse model.In this record,the reflections behave as linear events,while the diffractions appear as hyperbolic events,and the energy of diffractions is weaker than that of reflections.There is a certain degree of events superposition between the reflections and diffractions,and between different diffractions.Fig.2b and c show the separated reflections and diffractions according to the proposed method.There still left some diffractions in the reflection image due to the energy of reflections and diffractions are overlaped at the apexs of the diffraction hyperbolic events,but the method performs well in the whole result,and the diffractions are obviously strengthened in Fig.2c.

    Fig.3a is the full wavefield imaging result obtained by one-way wave depth migration.Since the reflections energy is much stronger than that of the diffractions,the imaging profile mainly reflects large-scale geological information,and it is difficult to identify small-scale structures such as diffraction points.Fig.3b and c are the imaging results of the separated reflections and diffractions,respectively.The separated reflections imaging results reflect the situation of reflective interfaces,while the separated diffractions imaging can better reflect the situation of fault breakpoints,the boundary points of interface and the independent diffraction points.The imaging accuracy of diffractions are higher in the positions of diffraction points.Although there are some artifacts and noise at fault breakpoints and boundary positions,the results still reveal good performance of the proposed method in separating reflections and enhancing diffractions,which is beneficial to the identification and positioning of small-scale geological anomalies.

    To test the anti-noise capability of the proposed method,we add Gaussian noise to the synthetic data with S/N of 5 as shown in Fig.4a.The amplitude of the noise is equivalent to that of the diffractions.The corresponding separated reflections and diffractions are shown in Fig.4b and c,respectively.Compared with reflections,diffractions have lower energy and are more affected by noise.The corresponding imaging results are shown in Fig.5.The imaging result of separated diffractions can still reflect the situation of fault breakpoints,the boundary points of interface and even the independent diffraction points very well.

    Fig.2.Synthetic seismic data and separation results of the collapse model

    Fig.3.Full-wavefield imaging result and separated data imaging results of the collapse model

    Fig.4.Noisy data with S/N of 5

    Fig.5.Full-wavefield imaging result and separated data imaging results of the noisy data

    (a) Full-wavefield imaging result;(b) separated reflection imaging result;(c) separated diffraction imaging result.

    3.2.Sigsbee 2A model example

    Fig.6.A part of the Sigsbee 2A velocity model.

    A part of the Sigsbee 2A data is used to verify the effectiveness of the proposed method for complex geological structures.The model is shown in Fig.6,in which some faults and point diffractors are marked by solid black lines and red circles,respectively.The zerooffset data is shown in Fig.7a,which contains complex reflections and diffractions.The separated results of reflections and diffractions by the proposed method are shown in Fig.7b and c.The method still has a good performance for complex data,the reflections and diffractions can be well separated.

    To highlights the separation effect of diffractions,the time windows shown in Fig.7 are extracted from the full-wavefield data,the separated reflections data and the diffractions data,respectively,as shown in Fig.8 and Fig.9.The method shows good separation effect,and most of reflections in the wavefield can be separated and diffractions are enhanced in the two time-windows.A small defect is the apexes of the hyperbolic events of diffractions are mixed with reflection events,and diffraction energy will be misjudged as reflection energy,causing a certain amount of energy loss of diffractions.

    Fig.10a,F(xiàn)igs.10b and 10c are the imaging results of the fullwavefield,the separated reflections and the diffractions,respectively.In the full-wavefield imaging result,the fault surfaces and point diffractors are covered up by reflection energy from continuous strata.The reflections imaging result mainly reflects largescale geological structures,though some diffraction energy still left in it.In the diffractions imaging result,the fault surfaces(marked by black circle)and point diffractors(marked by red circle)can still be clearly displayed compared with the full-wavefield imaging result although parts of reflection energy with steep dips remains,and the boundary shape of salt dome is also well preserved.The combination of the diffraction imaging and the fullwavefield imaging results can improve the positioning accuracy of diffractor targets,and provide more detailed structure information for seismic interpretation.

    Fig.7.Full-wavefield seismic data and separation results of Sigsbee 2A data

    Fig.8.Shallow time window results of the Sigsbee 2A model data and separated data

    Fig.9.Deep time window results of the Sigsbee 2A model data and separated data

    Fig.10.Full-wavefield imaging result and separated data imaging results of Sigsbee 2A

    Fig.11.Field data DMO stacked section.

    3.3.Field data example

    Fig.12.Full-wavefield imaging result of field data.

    A field data (open source data from Madagascar software) is used to further verify the effectiveness of the proposed method.The data is a deep water 2D line acquired to image the Nankai Trough subduction zone (Moore et al.,1990;Moore and Shipley,1993;Decker et al.,2017).We used a fragment of the line whose dip-moveout correction (DMO) stacked section is shown in Fig.11(Decker et al.,2017) to test our method.The corresponding oneway wave time imaging result is shown in Fig.12.The timemigration velocity model is from Decker et al.(2017).The shallow part of the data between 6 s and 7 s contain reflections and diffractions,and a few of diffractions are strong.This part of the data is complicated because of the complex geologic structures.The central part of the data approximately 7.1 s contain weak reflections and diffractions.The deeper part of the data approximately 7.5 s contain strong reflections and some weak diffractions generated from the discontinuities.

    Fig.14.Separated diffraction imaging result

    The corresponding separated results are shown in Fig.13.Fig.13a is the separated reflections and Fig.13b is the separated diffractions.There is a little remaining linear noise in Fig.13b because of the leakage of the diffraction energy.The method has a good performance for the whole data,the reflections and diffractions can be well separated especially for the central and deeper part of the data.Fig.14 shows the migration result of the separated reflections and diffractions.Compared with original data imaging result (Fig.12),both images highlight fault surfaces,and the separated diffractions imaging result (Fig.14b) is better in displaying finer discontinuities,such as those associated with the rough surface of the subducting plate crust,located near 7.5 s (Moore and Shipley,1993).

    4.Conclusion

    We have proposed an inversion method based on double sparse transforms to separate diffractions and reflections.In the common-offset domain,reflections appear as linear events and diffractions behave as hyperbolic events.Two transforms are used to represent these two types of signals:the high-resolution linear Radon transform is used to represent reflections,and the Curvelet transform is used to represent diffractions.A sparse inversion model was built and can be solved by an alternating direction method.Numerical results indicated that the proposed method can separate diffractions and reflections in the common-offset domain,and the imaging results can clearly display small-scale geological structures.By comparing the imaging results of diffractions and reflections,the diffractions imaging results have higher resolution for small-scale fractures,cracks,and heterogeneity.The extracted diffraction can be used as a kind of comparative data to help geologists study small-scale geological anomalies.

    Acknowledgements

    This work is supported by National Natural Science Foundation of China(41974166),Natural Science Foundation of Hebei Province(D2019403082,D2021403010) and Hebei Province “three-threethree talent project” (A202005009) and Funding for the Science and Technology Innovation Team Project of Hebei GEO University(KJCXTD202106).

    欧美精品人与动牲交sv欧美| 国产熟女欧美一区二区| 噜噜噜噜噜久久久久久91| 久久av网站| 亚洲美女搞黄在线观看| 亚洲成人手机| 中国国产av一级| 国产黄频视频在线观看| 国产在线男女| 水蜜桃什么品种好| 自拍欧美九色日韩亚洲蝌蚪91 | 丝袜在线中文字幕| 国产日韩一区二区三区精品不卡 | √禁漫天堂资源中文www| 最近中文字幕2019免费版| 午夜免费观看性视频| 久久精品国产a三级三级三级| 久久免费观看电影| 在线观看www视频免费| 久久久久视频综合| 人人妻人人澡人人爽人人夜夜| 免费看av在线观看网站| 国产精品欧美亚洲77777| 欧美日韩视频精品一区| 看十八女毛片水多多多| 国产日韩欧美在线精品| 亚洲精品456在线播放app| 午夜91福利影院| 亚洲情色 制服丝袜| 成年美女黄网站色视频大全免费 | av免费观看日本| 欧美三级亚洲精品| 亚洲国产精品999| 纯流量卡能插随身wifi吗| 狂野欧美白嫩少妇大欣赏| 亚洲国产色片| 亚洲欧美清纯卡通| 大片免费播放器 马上看| 免费大片18禁| 久久影院123| 午夜久久久在线观看| 一边亲一边摸免费视频| 丰满人妻一区二区三区视频av| 国产一区二区三区av在线| 亚洲欧美一区二区三区黑人 | 国产日韩欧美在线精品| 女的被弄到高潮叫床怎么办| 三级国产精品片| 免费黄色在线免费观看| 成人无遮挡网站| 青春草亚洲视频在线观看| 色哟哟·www| 女人精品久久久久毛片| 少妇丰满av| 日韩伦理黄色片| 人人妻人人澡人人看| 日韩不卡一区二区三区视频在线| 69精品国产乱码久久久| 亚洲精品日韩av片在线观看| 国产精品偷伦视频观看了| 欧美亚洲 丝袜 人妻 在线| 国产极品天堂在线| 国产永久视频网站| freevideosex欧美| 免费观看a级毛片全部| 精品熟女少妇av免费看| 九草在线视频观看| 精品国产一区二区三区久久久樱花| 亚洲第一av免费看| 国产无遮挡羞羞视频在线观看| 美女cb高潮喷水在线观看| 国产日韩一区二区三区精品不卡 | 免费av不卡在线播放| 欧美最新免费一区二区三区| 一个人看视频在线观看www免费| 蜜桃在线观看..| 三上悠亚av全集在线观看 | 高清黄色对白视频在线免费看 | 成人特级av手机在线观看| 少妇的逼好多水| 各种免费的搞黄视频| 中文欧美无线码| 免费观看在线日韩| 亚洲成色77777| 人人妻人人看人人澡| 久久久精品免费免费高清| 成人综合一区亚洲| 国产乱人偷精品视频| 成年av动漫网址| 狠狠精品人妻久久久久久综合| 少妇 在线观看| av国产精品久久久久影院| 久久精品久久精品一区二区三区| 2018国产大陆天天弄谢| 久久人人爽人人爽人人片va| 极品人妻少妇av视频| 观看av在线不卡| 亚洲伊人久久精品综合| 亚洲天堂av无毛| 国产精品福利在线免费观看| 免费观看a级毛片全部| 亚洲熟女精品中文字幕| 国产亚洲5aaaaa淫片| 亚洲欧美精品专区久久| 精品少妇黑人巨大在线播放| av专区在线播放| 国产日韩欧美在线精品| 80岁老熟妇乱子伦牲交| 国产欧美日韩一区二区三区在线 | 亚洲高清免费不卡视频| 伦理电影免费视频| 色哟哟·www| 男女啪啪激烈高潮av片| 看免费成人av毛片| 亚洲在久久综合| 中文字幕免费在线视频6| 中文字幕制服av| 乱系列少妇在线播放| 婷婷色av中文字幕| 中文字幕av电影在线播放| 精品久久久久久久久av| 久久久国产一区二区| 国产成人精品婷婷| 成人黄色视频免费在线看| 色婷婷av一区二区三区视频| 亚洲内射少妇av| 人人澡人人妻人| 一级毛片电影观看| 99久久综合免费| 亚洲欧美一区二区三区国产| 香蕉精品网在线| 亚洲精品成人av观看孕妇| 国产免费一区二区三区四区乱码| 国产高清国产精品国产三级| 黄色毛片三级朝国网站 | 国产在线视频一区二区| av福利片在线观看| 国产精品国产三级专区第一集| 高清午夜精品一区二区三区| 国产黄片美女视频| 国产有黄有色有爽视频| 青春草视频在线免费观看| 欧美人与善性xxx| 三级经典国产精品| 交换朋友夫妻互换小说| 免费看光身美女| 日韩欧美 国产精品| 精品国产一区二区三区久久久樱花| 80岁老熟妇乱子伦牲交| 少妇高潮的动态图| 亚洲性久久影院| 国产成人freesex在线| 久久午夜福利片| 天堂8中文在线网| 91精品伊人久久大香线蕉| 99久久精品国产国产毛片| 亚洲成人手机| 97精品久久久久久久久久精品| 在线免费观看不下载黄p国产| 免费观看性生交大片5| 嫩草影院新地址| 久久国产精品大桥未久av | 精品一区在线观看国产| 夫妻午夜视频| 一级a做视频免费观看| 少妇裸体淫交视频免费看高清| 亚洲伊人久久精品综合| 又粗又硬又长又爽又黄的视频| 日本猛色少妇xxxxx猛交久久| 久久人人爽av亚洲精品天堂| videossex国产| 一区二区三区乱码不卡18| 特大巨黑吊av在线直播| 99国产精品免费福利视频| 国产熟女欧美一区二区| 在线观看av片永久免费下载| 日韩不卡一区二区三区视频在线| 色哟哟·www| 久久人人爽人人爽人人片va| 久久人人爽av亚洲精品天堂| 热99国产精品久久久久久7| 国语对白做爰xxxⅹ性视频网站| 妹子高潮喷水视频| 亚洲丝袜综合中文字幕| 免费大片黄手机在线观看| 成人毛片60女人毛片免费| 亚洲av成人精品一二三区| 久久精品久久久久久噜噜老黄| √禁漫天堂资源中文www| 久久青草综合色| 国产精品熟女久久久久浪| 在线亚洲精品国产二区图片欧美 | 国产乱人偷精品视频| 欧美老熟妇乱子伦牲交| 99精国产麻豆久久婷婷| 亚洲精品,欧美精品| 99久久中文字幕三级久久日本| 久久精品久久精品一区二区三区| 亚洲欧美中文字幕日韩二区| 在线亚洲精品国产二区图片欧美 | 美女中出高潮动态图| 亚洲欧美成人精品一区二区| 成人影院久久| 啦啦啦视频在线资源免费观看| 精品一区二区三区视频在线| 亚洲国产毛片av蜜桃av| 久久久欧美国产精品| 免费观看在线日韩| 国产伦精品一区二区三区视频9| 多毛熟女@视频| 亚洲成人手机| 国产亚洲一区二区精品| av在线app专区| 久久鲁丝午夜福利片| 久久久午夜欧美精品| 欧美另类一区| 亚洲国产最新在线播放| 成人二区视频| 日日摸夜夜添夜夜添av毛片| 九九在线视频观看精品| 男女边摸边吃奶| 99热国产这里只有精品6| 少妇的逼好多水| 久久国内精品自在自线图片| 特大巨黑吊av在线直播| 99久久精品一区二区三区| 久久国产精品大桥未久av | 免费看av在线观看网站| 国产成人精品一,二区| 高清视频免费观看一区二区| 我的老师免费观看完整版| 亚洲av成人精品一二三区| 亚洲国产精品一区三区| 老司机影院成人| 精品亚洲乱码少妇综合久久| 成年人免费黄色播放视频 | 噜噜噜噜噜久久久久久91| 麻豆成人午夜福利视频| 精品亚洲成a人片在线观看| 欧美日本中文国产一区发布| 亚洲av国产av综合av卡| 精品午夜福利在线看| 男男h啪啪无遮挡| 性色av一级| 尾随美女入室| 日本av免费视频播放| 在线观看美女被高潮喷水网站| 韩国av在线不卡| 精品一品国产午夜福利视频| 夜夜看夜夜爽夜夜摸| 少妇人妻久久综合中文| 少妇裸体淫交视频免费看高清| 麻豆乱淫一区二区| 国产欧美日韩精品一区二区| 九九在线视频观看精品| 亚洲av成人精品一二三区| 91在线精品国自产拍蜜月| 妹子高潮喷水视频| 国产精品不卡视频一区二区| av福利片在线观看| 国产欧美日韩综合在线一区二区 | 嘟嘟电影网在线观看| 日日啪夜夜爽| 欧美+日韩+精品| 深夜a级毛片| 国产视频首页在线观看| 亚洲欧美一区二区三区国产| 精品久久久噜噜| 美女脱内裤让男人舔精品视频| 国产一区二区在线观看av| 国产av国产精品国产| 久久久久久久国产电影| 国产在线视频一区二区| 亚洲美女黄色视频免费看| a级毛片免费高清观看在线播放| 热99国产精品久久久久久7| 又爽又黄a免费视频| 亚洲成人av在线免费| 日日撸夜夜添| 最后的刺客免费高清国语| 久久精品国产鲁丝片午夜精品| 18+在线观看网站| 久久精品国产亚洲av高清一级| 亚洲精品乱久久久久久| 午夜91福利影院| 精品亚洲乱码少妇综合久久| 精品国产乱码久久久久久男人| 桃花免费在线播放| xxxhd国产人妻xxx| 999久久久国产精品视频| 成年人免费黄色播放视频| 久久这里只有精品19| 亚洲精品国产av成人精品| 国产精品麻豆人妻色哟哟久久| 亚洲精品中文字幕一二三四区 | 日韩中文字幕视频在线看片| 两性午夜刺激爽爽歪歪视频在线观看 | 精品高清国产在线一区| 欧美 日韩 精品 国产| 亚洲中文av在线| 亚洲熟女精品中文字幕| 一区二区三区四区激情视频| 飞空精品影院首页| 人妻一区二区av| 欧美成狂野欧美在线观看| 成人影院久久| 妹子高潮喷水视频| 十八禁网站免费在线| 视频区图区小说| 久久 成人 亚洲| 欧美+亚洲+日韩+国产| 91精品三级在线观看| 亚洲熟女精品中文字幕| 脱女人内裤的视频| 国产成人欧美| 精品少妇黑人巨大在线播放| 亚洲天堂av无毛| 精品高清国产在线一区| 亚洲少妇的诱惑av| 在线观看舔阴道视频| 国产深夜福利视频在线观看| 男女免费视频国产| svipshipincom国产片| 国产欧美日韩一区二区三区在线| 亚洲人成77777在线视频| 欧美日韩亚洲国产一区二区在线观看 | 飞空精品影院首页| videosex国产| 777米奇影视久久| 丰满饥渴人妻一区二区三| 日本精品一区二区三区蜜桃| 日本av免费视频播放| 国产男女内射视频| 国产视频一区二区在线看| 99国产精品免费福利视频| 极品人妻少妇av视频| 黑人巨大精品欧美一区二区mp4| 欧美黄色片欧美黄色片| 成人国语在线视频| 999久久久精品免费观看国产| 欧美日韩亚洲综合一区二区三区_| 亚洲欧洲精品一区二区精品久久久| 欧美 日韩 精品 国产| 男女下面插进去视频免费观看| 黄色a级毛片大全视频| 国产一卡二卡三卡精品| 婷婷丁香在线五月| 国产真人三级小视频在线观看| 亚洲精品乱久久久久久| 啦啦啦免费观看视频1| 日韩中文字幕视频在线看片| av在线老鸭窝| 人妻久久中文字幕网| 国产真人三级小视频在线观看| 国产成人欧美在线观看 | 天天躁夜夜躁狠狠躁躁| 日本wwww免费看| 中文字幕制服av| av福利片在线| 乱人伦中国视频| 亚洲伊人久久精品综合| tube8黄色片| 可以免费在线观看a视频的电影网站| 国产亚洲av片在线观看秒播厂| 日本vs欧美在线观看视频| 亚洲 国产 在线| 国产国语露脸激情在线看| 亚洲全国av大片| 国产国语露脸激情在线看| 伊人久久大香线蕉亚洲五| av福利片在线| 日本五十路高清| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇粗大呻吟视频| 亚洲国产av影院在线观看| 999久久久国产精品视频| 欧美日韩福利视频一区二区| 韩国精品一区二区三区| 首页视频小说图片口味搜索| 巨乳人妻的诱惑在线观看| 成人三级做爰电影| 日韩欧美一区二区三区在线观看 | 久久性视频一级片| 少妇粗大呻吟视频| 菩萨蛮人人尽说江南好唐韦庄| 国产在线一区二区三区精| 日韩一卡2卡3卡4卡2021年| 极品少妇高潮喷水抽搐| 婷婷丁香在线五月| 精品一品国产午夜福利视频| 久久影院123| 欧美黑人欧美精品刺激| 精品国内亚洲2022精品成人 | 欧美+亚洲+日韩+国产| 久久这里只有精品19| 精品人妻1区二区| 亚洲免费av在线视频| 国产一区有黄有色的免费视频| 一本—道久久a久久精品蜜桃钙片| 午夜福利视频在线观看免费| 亚洲avbb在线观看| 欧美激情 高清一区二区三区| 精品一区二区三区av网在线观看 | 日本a在线网址| 色老头精品视频在线观看| 亚洲七黄色美女视频| 下体分泌物呈黄色| 欧美亚洲 丝袜 人妻 在线| 性色av一级| 美女主播在线视频| 国产亚洲精品第一综合不卡| 2018国产大陆天天弄谢| 亚洲第一青青草原| 啦啦啦在线免费观看视频4| 色94色欧美一区二区| av电影中文网址| 高清黄色对白视频在线免费看| 国产精品99久久99久久久不卡| 男女边摸边吃奶| a 毛片基地| 永久免费av网站大全| 丝袜脚勾引网站| 最新的欧美精品一区二区| 精品国产超薄肉色丝袜足j| 午夜精品久久久久久毛片777| 丝瓜视频免费看黄片| 日本vs欧美在线观看视频| 国产在线观看jvid| 免费av中文字幕在线| 宅男免费午夜| 美女福利国产在线| 狠狠婷婷综合久久久久久88av| 亚洲国产精品成人久久小说| 国产精品成人在线| 999久久久国产精品视频| 国产麻豆69| 亚洲成人免费av在线播放| av又黄又爽大尺度在线免费看| 人妻 亚洲 视频| 国产精品一区二区免费欧美 | 五月天丁香电影| 老鸭窝网址在线观看| 秋霞在线观看毛片| 日本一区二区免费在线视频| 国产亚洲精品第一综合不卡| 欧美另类一区| 岛国毛片在线播放| 搡老熟女国产l中国老女人| 国产成人精品久久二区二区91| 97精品久久久久久久久久精品| 香蕉国产在线看| 亚洲专区中文字幕在线| 成人国语在线视频| 久久久欧美国产精品| 国产精品一区二区免费欧美 | 欧美日韩精品网址| 纵有疾风起免费观看全集完整版| 亚洲精品在线美女| 精品久久久久久电影网| 久久综合国产亚洲精品| 日本黄色日本黄色录像| 国产免费一区二区三区四区乱码| 精品福利永久在线观看| 麻豆乱淫一区二区| 99精品久久久久人妻精品| 精品亚洲成a人片在线观看| 午夜激情久久久久久久| 欧美老熟妇乱子伦牲交| 国产成人精品久久二区二区免费| 日本a在线网址| 日韩一区二区三区影片| 国产国语露脸激情在线看| 国产日韩欧美在线精品| 久久久久久久久免费视频了| 国产在线视频一区二区| 国产精品久久久久成人av| 一级,二级,三级黄色视频| 黄色 视频免费看| 夜夜夜夜夜久久久久| 女人高潮潮喷娇喘18禁视频| 黑人猛操日本美女一级片| 日韩,欧美,国产一区二区三区| 美国免费a级毛片| 麻豆av在线久日| 黄网站色视频无遮挡免费观看| 热99re8久久精品国产| 青春草视频在线免费观看| 久久综合国产亚洲精品| 丝袜美腿诱惑在线| 午夜两性在线视频| 99久久精品国产亚洲精品| 午夜免费观看性视频| 脱女人内裤的视频| 国产免费福利视频在线观看| 亚洲精品在线美女| 首页视频小说图片口味搜索| 亚洲人成电影免费在线| 黄片播放在线免费| 久久人妻福利社区极品人妻图片| 亚洲欧美日韩另类电影网站| 久久这里只有精品19| h视频一区二区三区| 久久青草综合色| 天堂中文最新版在线下载| 午夜两性在线视频| 久久香蕉激情| 日韩视频在线欧美| 国产成人av激情在线播放| 99精国产麻豆久久婷婷| 久久人人爽人人片av| 久久这里只有精品19| 午夜免费观看性视频| 国产av国产精品国产| 亚洲国产精品一区二区三区在线| 天堂俺去俺来也www色官网| 操美女的视频在线观看| 蜜桃在线观看..| 亚洲av成人一区二区三| 免费看十八禁软件| 纯流量卡能插随身wifi吗| 亚洲综合色网址| 精品人妻熟女毛片av久久网站| 欧美人与性动交α欧美软件| 国产精品成人在线| 天天躁狠狠躁夜夜躁狠狠躁| 久久人人爽av亚洲精品天堂| 国产亚洲精品久久久久5区| 天堂俺去俺来也www色官网| 夜夜夜夜夜久久久久| 18禁国产床啪视频网站| 一本久久精品| 两性夫妻黄色片| 少妇精品久久久久久久| 黑人欧美特级aaaaaa片| 男女之事视频高清在线观看| 超碰97精品在线观看| 日韩中文字幕视频在线看片| 一二三四社区在线视频社区8| 欧美 亚洲 国产 日韩一| 欧美成狂野欧美在线观看| 欧美av亚洲av综合av国产av| 久久久久久久精品精品| 大型av网站在线播放| 亚洲国产成人一精品久久久| www.精华液| 国产免费现黄频在线看| 秋霞在线观看毛片| 久久久久久亚洲精品国产蜜桃av| 高清视频免费观看一区二区| 在线十欧美十亚洲十日本专区| 麻豆国产av国片精品| 巨乳人妻的诱惑在线观看| av国产精品久久久久影院| 人成视频在线观看免费观看| 91字幕亚洲| av一本久久久久| 国产av精品麻豆| 亚洲欧美日韩另类电影网站| 国产区一区二久久| 久久中文看片网| 王馨瑶露胸无遮挡在线观看| 嫁个100分男人电影在线观看| 涩涩av久久男人的天堂| 我的亚洲天堂| 欧美在线一区亚洲| 亚洲精品国产av蜜桃| 黑人猛操日本美女一级片| 国产精品自产拍在线观看55亚洲 | 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲专区字幕在线| 亚洲天堂av无毛| av欧美777| 99久久99久久久精品蜜桃| 在线观看免费日韩欧美大片| 日本欧美视频一区| 亚洲 欧美一区二区三区| 永久免费av网站大全| 亚洲av成人不卡在线观看播放网 | 视频区欧美日本亚洲| 久久久久国产精品人妻一区二区| 久久这里只有精品19| 精品乱码久久久久久99久播| 老司机亚洲免费影院| 女警被强在线播放| 国产91精品成人一区二区三区 | 男女无遮挡免费网站观看| 亚洲中文日韩欧美视频| 中国美女看黄片| 少妇精品久久久久久久| 日日爽夜夜爽网站| 日韩大码丰满熟妇| 国产成人系列免费观看| 我的亚洲天堂| 日韩人妻精品一区2区三区| 国产野战对白在线观看| 脱女人内裤的视频| 中国美女看黄片| 亚洲国产毛片av蜜桃av| 久久 成人 亚洲| 超色免费av| 美女午夜性视频免费| 美女福利国产在线| 国产精品偷伦视频观看了| 国产日韩欧美在线精品| 精品高清国产在线一区| 在线观看免费日韩欧美大片| 美女中出高潮动态图| 9191精品国产免费久久| 成人黄色视频免费在线看| 两个人免费观看高清视频| 无限看片的www在线观看| 麻豆国产av国片精品| 国产精品国产av在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 国产精品久久久久久精品古装|