• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High Accuracy Split-Step Finite Difference Method for Schr¨odinger-KdV Equations?

    2018-11-24 07:39:52FengLiao廖鋒andLuMingZhang張魯明
    Communications in Theoretical Physics 2018年10期

    Feng Liao(廖鋒) and Lu-Ming Zhang(張魯明)

    1School of Mathematics and Statistics,Changshu Institute of Technology,Changshu 215500,China

    2College of Science,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China

    AbstractIn this article,two split-step finite difference methods for Schr¨odinger-KdV equations are formulated and investigated.The main features of our methods are based on:(i)The applications of split-step technique for Schr¨odingerlike equation in time.(ii)The utilizations of high-order finite difference method for KdV-like equation in spatial discretization.(iii)Our methods are of spectral-like accuracy in space and can be realized by fast Fourier transform efficiently.Numerical experiments are conducted to illustrate the efficiency and accuracy of our numerical methods.

    Key words:split-step method,Schr¨odinger-KdV equations,finite difference method,fast Fourier transform

    1 Introduction

    The nonlinear Schr¨odinger-KdV equations[1?2]

    can be used to model the nonlinear dynamics behavior of one-dimensional Langmuir and ion-asoustic waves in a system of coordinates moving at the ion-acoustic speed.Here ? is a positive constant,u is complex function describing electric field of Langmuir oscillations while v is real function describing low-frequency density perturbation.

    Many works have been concentrated on the numerical studies of this problem.Bai and Zhang[3]formulated a finite element method(FEM)to study Schr¨odinger-KdV equations. Later,Bai[4]developed a split-step quadratic B-spline finite element method(SSQBS-FEM)for Schr¨odinger-KdV equations.Appert and Vaclavik[5]solved the Schr¨odinger-KdV equations using a finite difference method(FDM).Golbabai a Safdari-Vaighani[6]employed a meshless technique based on radial basis function(RBF)collocation method.Zhang et al.did some works concerning Schr¨odinger-KdV equations using average vector field(AVF)method and multi-symplectic Fourier pseudospectral(MSFP)method.[7?8]Some other numerical methods for Schr¨odinger-KdV equations,such as variational iteration method,decomposition method and homotopy perturbation method,readers are reffered to Refs.[9–11]and reference therein.

    The main purpose of this paper is to construct high accuracy split-step finite difference(SSFD)method for Schr¨odinger-KdV equations.Split-step(or time-splitting)method has evolved as a valuable technique for the numerical approximation of partial differential equations(PDE).Wang[12]presented a time-splitting finite difference(TSFD)method for various versions of nonlinear Schr¨odinger equation.To improve the accuracy of TSFD,Dehghan and Taleei[13]constructed a compact time-splitting finite difference scheme,which was proved to be unconditionally stable and preserve some invariant properties.Wang and Zhang[14]proposed an efficient split-step compact finite difference method for the cubicquintic complex Ginzburg-Landau equations both in one dimension and in multi-dimensions.However,all of these methods require to solve tridiagonal linear algebraic equations in implementation,and the computational cost will be increased along with the increment of the spatial accuracy.

    Recently,Wang et al. constructed a time-splitting compact finite difference method for Gross-Pitaevskii equation,which is realized by discrete fast discrete Sine transform,and there is no need to solve linear algebraic equations.[15]Subsequently,Wang[16]considered sixthorder compact time-splitting finite difference method for nonlocal Gross-Pitaevskii equation,the method is of spectral-like accuracy in space,and conserves the total mass and energy of the system in the discretized level.It should be noted that the methods in Refs.[15–16]are notfit for solving the PDE with odd-order partial derivatives.In this paper,we formulate a high accuracy and fast solver for Schr¨odinger-KdV equations based on discrete Fourier transform,which is of sixth or eighth-order accuracy in space and can be realized by FFT efficiently.

    The layout of the paper is as follows:In Sec.2,we formulate a sixth-order split-step finite difference(SSFD-6)method.Then we establish an eighth-order split-stepfinite difference(SSFD-8)method in Sec.3.Numerical investigations of our numerical methods are conducted in Sec.4,and some conclusions are drawn in Sec.5.

    2 Sixth-Order Split-Step Finite Difference Method

    In this paper,we consider the general forms of Schr¨odinger-KdV equations

    with the initial value and periodic-boundary conditions of

    where ? =[xL,xR],γ,ξ,α,ω are known constants,u(0)(x)and v(0)(x)are periodic functions with the period xR?xL.It is easy to verify that problem(2)–(5)preserves the total mass

    and the total energy

    2.1 Sixth-Order Difference Approximation Formula

    Choose a mesh size h:=(xR?xL)/J with J an even positive integer,time step τ,and denote grid points with coordinates(xj,tn):=(xL+jh,nτ)for j=0,1,...,J?1 and n≥0.Define

    For any general periodic function u(x)on ? and a vector u ∈ YJ,let PJ:L2(?)→ XJbe the standard L2-projection operator onto XJ,IJ:C(?) → XJand IJ:YJ→XJbe the trigonometric operator,i.e.

    with

    Obviously,PJand IJare identical operators over XJ.

    For any u,v∈YJ,the inner product and norm are defined as follows:

    Suppose that g(x)is an xR?xLperiodic function,then for the approximation of the first-order derivative gx(x),we have the following formula,i.e.

    where gj=g(xj),=gx(xj)and a,α,β are undetermined parameters,which depend on the accuracy-order constraints.Base on Taylor’s expansion,we have

    The linear equations(9)is unique solvable,i.e.a=1/3,α=7/9,β=1/36.Then we obtain the sixth-order difference approximation for the first-order partial derivative

    Next,we approximate the third-order derivative fxxx(x)via the following formula,i.e.

    It follows from Taylor’s expansion,we obtain

    which is unique solvable,i.e. a=4/9,b=1/126,α= ?40/21,β=20/21.Thus,the sixth-order difference approximation for the third-order partial derivative is given as follows

    Finally,we approximate the second-order derivative fxx(x)as follows

    From Taylor’s expansion,we have

    which is unique solvable and a=2/11,α=12/11,β=3/44.Then the sixth-order difference approximation for the second-order partial derivative is given as follows

    2.2 Split-Step Finite Difference Method

    The discrete Fourier transform for{gj}and its inverse are provided as follows,i.e.

    Similarly,wa can define discrete Fourier transform for,,andand their inverse.

    From Eqs.(10)and(17),we have

    which gives

    Similarly,from Eqs.(13),(16),and(17),we obtain

    In the rest of this section,we formulate a splitstep finite difference(SSFD)method for problem(2)–(5).Firstly,we discrete KdV-like equation(3)in temporal direction as follows

    for j=0,1,...,J?1.Acting the discrete Fourier transform on Eq.(22)and considering the orthogonality of the Fourier basis functions,we obtain

    for l=?J/2,?J/2+1,...,J/2?1,where,,andrepresent the discrete Fourier transform of,,and,respectively.From Eqs.(19),(20)and(23),we obtain

    for n≥ 1 and l= ?J/2,?J/2+1,...,J/2?1,whereandexpress the discrete Fourier transform ofand,respectively.

    Secondly,we utilize split-step method to discrete Schr¨odinger-like equation(2)in time,we obtain

    Directly from the nonlinear subproblem in Eq.(25),we have

    Integrating Eq.(26)from tnto tn+1,and then approximating the integral on[tn,tn+1]via trapezoidal rule,we obtain

    For the linear subproblem in Eq.(25),we discretize it in time as follows

    Followed by discrete Fourier transform and Eq.(21),we have

    From Eqs.(27)and(29),the sequential subproblems(25)can be solved as follows:

    From above discussion,Eqs.(24)and(30)–(32)comprise the details of sixth-order split-step finite difference(SSFD-6)method. However,SSFD-6 is a three-level scheme,which requires a two-level scheme to calculate u1and v1.In this article,we compute u1and v1via the following two-level nonlinear implicit scheme,i.e.

    Above all,the details of SSFD-6 are provided as follows:

    DO

    END WHILE

    WHILE n

    DO

    END WHILE

    Theorem 1 The discretizations Eqs.(30)–(32)for Sch¨odinger-like equation posses the following property:

    where Qn= ∥un∥2.

    Proof Noticing the Parserval’s identity

    thus from Eq.(31),we have

    Directly from Eqs.(30)and(32),we have

    From Eqs.(37)and(38),we can see that the conclusion of this theorem holds. ?

    Remark 1 Theorem 1 implies that SSFD-6 method preserves the total mass in discrete level.We do not expect that SSFD-6 conserves the total energy,but the energy can be discretized as

    Theorem 1 also demonstrates that the complex component unis convergent in the sense of L2-norm.Similar to the methods which have been done in Ref.[17],we can obtain the L2-error estimates of un,i.e.

    where C0is a constant independent of h,τ.For simplicity of this paper,we omit the proof details.Next,we will prove the convergence of vnvia mathematical induction argument method.

    Theorem 2 Let un,vn∈XJbe the numerical approximations of SSFD-6.If u(x,t),v(x,t),and f(·)are sufficiently smooth,there exist two constants h0>0 and C independent of τ(or n)and h,such for any h ≤ h0and τ=o(h),

    Proof See Appendix B. ?

    3 Eighth-Order Split-Step Finite Difference Method

    To construct eighth-order split-step finite difference(SSFD-8)method for Schr¨odinger-KdV equations,we provide the eighth-order finite difference formulas for the first,second and third-order derivatives as follows:

    This together with Eq.(17),we obtain the relationship betweenx?gl,xx?gl,xxx?gl,and?glas follows

    Similar to the analysis in Sec.2,the details of SSFD-8 are provided as follows

    for n ≥ 1,and u1,v1can be calculated iteratively as we have done in Eqs.(33)–(36).

    Comparing with SSFD-6,we can see that the computational complexity of SSFD-8 is identical to SSFD-6,but SSFD-8 is more accurate than SSFD-6 in spatial direction.Thus the computational complexity of our methods will not increase along with the increment of spacial accuracy.Based on this,we can design more higher accurate SSFD method,which can achieve spectral-like accuracy in space when more higher-order finite difference method is investigated.

    4 Numerical Results

    In this section,we will provide some numerical examples to test the performance of SSFD method for Schr¨odinger-KdV equations.Based on the works of Refs.[2,18],we provide two kinds of solitary-wave solutions for problem(2)–(3)with f(v)=θv2.

    Example 1 Let γ=3/2,ξ=1/2,α =1/2,θ=1/2,ω =?1/2,and M=?9/20,δ=27/800.

    Example 2 Let γ=1,ξ=?1,α =1/3,θ=1,ω =?1/2,and M=1,δ=1/4.

    We calculate the L2and L∞norm errors using the formulas

    Table 1 The errors and convergence ratio of SSFD-6 for Example 1 at t=1 with ?=[?128,128].

    Table 2 The errors and convergence ratio of SSFD-6 for Example 2 at t=1 with ?=[?128,128].

    Fig.1 Numerical solutions of Example 1 for t ∈ [0,20]with ? =[?128,128].

    The errors and convergence ratio of SSFD-6 are examined in Tables 1–2,which demonstrate that SSFD-6 has sixthorder accuracy in space.Figures 1 and 2 simulate the numerical solutions of SSFD-6 for Example 1 and Example 2,respectively,with h=1/2 and τ=1/80.

    Fig.2 Numerical solutions of Example 2 for t∈ [0,20]with ? =[?128,128].

    Fig.3 The discretization errors of the conservative quantities for Example 1 with h=1/2,τ=1/80 and ? =[?128,128].

    Fig.4 The discretization errors of the conservative quantities for Example 2 with h=1/2,τ=1/80 and ? =[?128,128].

    From Table 3,we can see that SSFD-8 is of eighth-order accuracy in space.We have compared the accuracy of SSFD-6 and SSFD-8 in Table 4,which indicates that SSFD-8 is more accurate than SSFD-6.

    Table 3 The errors and convergence ratio of SSFD-8 for Example 2 at t=1 with? =[?128,128].

    Fig.5 Numerical solutions of general nonlinearity for t∈ [0,20]with h=1/2,τ=1/80 and ? =[?128,128].

    Fig.6 The discretization errors of the conservative quantities for general nonlinearity with h=1/2,τ=1/80 and? =[?128,128].

    Table 4 Comparison of L2and L∞error norms for numerical solutions of Example 1 at t=1 with ? =[?128,128].

    To validate the conservation properties,we have computed the total mass and energy of Example 1 and Example 2,the discretization errors of the conservative quantities are plotted in Fig.3 and Fig.4,which demonstrate that SSFD-6 preserves the total mass and energy very well.A comparative study has been conducted with some existing methods and the results are reported in Table 5.We choose quadratic spline functions as basis functions of FEM[3]and SSQBSFEM[4]for spacial discretization.From Table 5,we can see that SSFD-6 and SSFD-8 are more efficient and accurate than other three methods.As can be seen from Table 5 that SSFD-8 is more accurate than SSFD-6,but the complexity of SSFD-8 is identical to SSFD-6.It should be pointed that the standard fourth order Runge-Kutta method is used to solve the continuous time system of FEM,[3]hence FEM[3]is expected to spent more CPU time than SSQBS-FEM.[4]Since the coefficient matrix of FDM[5]is time-varying when we evaluate the complex component un,hence FDM[5]requires more computational time than SSFD-6 and SSFD-8.

    Table 5 Comparison of L∞error norms for numerical solutions of Example 1 at t=0.1 with h=1,τ=0.001 and ? =[?64,64].

    To examine SSFD-6 still works for the general nonlinearity,we take in the Schr¨odinger-KdV Eqs.(2)–(3)with f(v)=sin(v).Choosing the parameters γ,ξ,α,ω and the initial data same as Example 1,the corresponding numerical results are shown in Fig.5 and the discretization errors of the conservative quantities are plotted in Fig.6.

    5 Conclusion

    In this paper,two split-step finite difference methods are presented for solving Schr¨odinger-KdV numerically.The merit of our methods are of spectral-like accuracy in space and can be realized by fast Fourier transform.The computational complexity of our methods will not increase along with the increment of spacial accuracy.Numerical results demonstrate the precision and conservation properties of our methods.

    Appendix A

    ProofMaking the complex conjugate inner product of Eq.(2)with u,then taking the imaginary part,we get

    which implies that Eq.(6)holds.

    Computing the the complex conjugate inner product of Eq.(2)with ut,then taking the real part,we have

    Followed by

    then we obtain

    Making the inner product of Eq.(3)with|u|2,f(v)and vxx,respectively,we obtain

    It follows from(A5)–(A7)that(7)is satisfied. ?

    Appendix B

    Denote the trigonometric interpolations of the numerical solutions as

    where un,vn∈ YJ.Define the“error”functions

    Denote the L2-projected solutions as

    Acting L2-projected operator on Eq.(3),using Taylor’s expansion and considering the orthogonality of the basis functions,we have

    Noticing

    With the help of mathematical induction argument,we assume that

    This together with the inverse inequality,triangle inequality and Sobolev inequality,we have

    Considering the conditions of Theorem 2 and(A13),we obtain

    It follows from Parserval’s identity and(A10)–(A13),we have

    Directly from(A15)and induction argument(A12),we have

    where C is a constant independent of τ and h.This completes the proof. ?

    人人妻人人爽人人添夜夜欢视频| 黄色丝袜av网址大全| 亚洲狠狠婷婷综合久久图片| 久久久久亚洲av毛片大全| 亚洲精品一卡2卡三卡4卡5卡| 99精品在免费线老司机午夜| 国产伦人伦偷精品视频| 99国产极品粉嫩在线观看| 精品福利观看| 咕卡用的链子| 精品国产乱子伦一区二区三区| 日本三级黄在线观看| 亚洲人成伊人成综合网2020| 久久午夜亚洲精品久久| 久久天躁狠狠躁夜夜2o2o| 亚洲精品美女久久av网站| 一区福利在线观看| 男女午夜视频在线观看| 三上悠亚av全集在线观看| 亚洲成人免费电影在线观看| 在线观看舔阴道视频| 日日夜夜操网爽| 人人澡人人妻人| 成人18禁在线播放| 色综合欧美亚洲国产小说| 国产麻豆69| 久9热在线精品视频| 这个男人来自地球电影免费观看| 18禁美女被吸乳视频| 久久久精品欧美日韩精品| 精品乱码久久久久久99久播| 一a级毛片在线观看| 亚洲成人免费av在线播放| 国产99白浆流出| 中文亚洲av片在线观看爽| 热99国产精品久久久久久7| 亚洲精品久久午夜乱码| 看免费av毛片| 欧美大码av| 五月开心婷婷网| 久久精品aⅴ一区二区三区四区| 涩涩av久久男人的天堂| 涩涩av久久男人的天堂| 嫩草影视91久久| 久久欧美精品欧美久久欧美| 久久婷婷成人综合色麻豆| 日本免费一区二区三区高清不卡 | 如日韩欧美国产精品一区二区三区| 嫁个100分男人电影在线观看| 中文欧美无线码| 丝袜人妻中文字幕| 这个男人来自地球电影免费观看| 精品福利永久在线观看| 中文字幕人妻丝袜制服| 亚洲精品美女久久久久99蜜臀| 日韩欧美一区二区三区在线观看| 午夜a级毛片| 亚洲成av片中文字幕在线观看| 啦啦啦免费观看视频1| 国产男靠女视频免费网站| 日韩免费av在线播放| 动漫黄色视频在线观看| 老熟妇仑乱视频hdxx| 久久精品91蜜桃| 999精品在线视频| 天天躁夜夜躁狠狠躁躁| 国产高清视频在线播放一区| 欧美日韩亚洲高清精品| 黄色 视频免费看| 99久久久亚洲精品蜜臀av| 99久久久亚洲精品蜜臀av| 999久久久国产精品视频| www.自偷自拍.com| 天堂俺去俺来也www色官网| 老司机深夜福利视频在线观看| 国产免费男女视频| 女性被躁到高潮视频| 一本综合久久免费| 国产亚洲精品综合一区在线观看 | av天堂久久9| 丰满人妻熟妇乱又伦精品不卡| 美女扒开内裤让男人捅视频| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩亚洲国产一区二区在线观看| 校园春色视频在线观看| 人妻久久中文字幕网| av网站在线播放免费| 91麻豆av在线| 亚洲欧美精品综合久久99| 女人被狂操c到高潮| 国产精品秋霞免费鲁丝片| 成人黄色视频免费在线看| 日韩大码丰满熟妇| 1024视频免费在线观看| 黄频高清免费视频| 男女之事视频高清在线观看| 国产av精品麻豆| 99精国产麻豆久久婷婷| 久久久国产精品麻豆| 淫秽高清视频在线观看| 黑丝袜美女国产一区| 丝袜美腿诱惑在线| 欧美日韩乱码在线| 丝袜美腿诱惑在线| 99国产综合亚洲精品| 久久中文字幕人妻熟女| 日韩欧美免费精品| 国产精品久久视频播放| 中国美女看黄片| 国产黄色免费在线视频| 国产欧美日韩一区二区精品| bbb黄色大片| 日韩欧美在线二视频| 久久国产精品人妻蜜桃| 91九色精品人成在线观看| 国产精品乱码一区二三区的特点 | 99国产精品99久久久久| 在线十欧美十亚洲十日本专区| 夜夜看夜夜爽夜夜摸 | 欧美黑人欧美精品刺激| 亚洲人成77777在线视频| 一夜夜www| 又大又爽又粗| 国产成人av教育| 国产片内射在线| 午夜日韩欧美国产| 欧美一区二区精品小视频在线| 国产xxxxx性猛交| 国产精品影院久久| 成人三级黄色视频| 亚洲片人在线观看| 一a级毛片在线观看| 国产免费av片在线观看野外av| 国产免费av片在线观看野外av| 亚洲男人的天堂狠狠| 视频区图区小说| 免费搜索国产男女视频| 黄频高清免费视频| 国产精品av久久久久免费| 色综合站精品国产| 亚洲精品美女久久av网站| 琪琪午夜伦伦电影理论片6080| 天天添夜夜摸| 一级,二级,三级黄色视频| 99热国产这里只有精品6| 久久精品国产99精品国产亚洲性色 | 在线观看舔阴道视频| 亚洲色图av天堂| 超碰97精品在线观看| 男女下面进入的视频免费午夜 | 在线观看午夜福利视频| 欧美日韩福利视频一区二区| 精品日产1卡2卡| 香蕉久久夜色| 国产高清视频在线播放一区| 久久精品aⅴ一区二区三区四区| 欧美日本中文国产一区发布| 天堂中文最新版在线下载| 成人手机av| 午夜福利在线观看吧| 国产黄色免费在线视频| 99riav亚洲国产免费| 一区二区三区精品91| 波多野结衣一区麻豆| 99热国产这里只有精品6| 日本三级黄在线观看| 人妻久久中文字幕网| 老司机亚洲免费影院| 大型黄色视频在线免费观看| 日韩欧美一区二区三区在线观看| 国产精品九九99| 一夜夜www| 欧美色视频一区免费| 国产精品久久电影中文字幕| 99国产精品99久久久久| 人人妻人人添人人爽欧美一区卜| 怎么达到女性高潮| 91精品国产国语对白视频| 亚洲av成人一区二区三| 精品久久久精品久久久| 一二三四在线观看免费中文在| 亚洲精品一卡2卡三卡4卡5卡| 国产精品亚洲一级av第二区| 身体一侧抽搐| ponron亚洲| 久久人人精品亚洲av| 亚洲第一av免费看| 免费少妇av软件| 黄色女人牲交| 亚洲成av片中文字幕在线观看| 欧美日本中文国产一区发布| 欧美日韩亚洲综合一区二区三区_| 国产伦人伦偷精品视频| 男女下面插进去视频免费观看| 日韩人妻精品一区2区三区| 黄片大片在线免费观看| 久久久国产成人免费| 高清av免费在线| 亚洲情色 制服丝袜| 免费一级毛片在线播放高清视频 | 久久久国产成人精品二区 | 国产在线观看jvid| 久久天堂一区二区三区四区| 亚洲精品美女久久久久99蜜臀| 久久久国产精品麻豆| 亚洲国产精品一区二区三区在线| 18禁裸乳无遮挡免费网站照片 | 日日摸夜夜添夜夜添小说| 色综合婷婷激情| 亚洲国产精品合色在线| 一区二区三区激情视频| 99久久久亚洲精品蜜臀av| 女人高潮潮喷娇喘18禁视频| 日韩 欧美 亚洲 中文字幕| 亚洲成av片中文字幕在线观看| 国产午夜精品久久久久久| 中文字幕人妻丝袜制服| a在线观看视频网站| 99精品久久久久人妻精品| 免费在线观看亚洲国产| 欧洲精品卡2卡3卡4卡5卡区| 人人妻人人添人人爽欧美一区卜| 亚洲av成人一区二区三| 成年版毛片免费区| 一进一出抽搐gif免费好疼 | 99精品久久久久人妻精品| 欧美中文日本在线观看视频| 色尼玛亚洲综合影院| 一级毛片女人18水好多| 九色亚洲精品在线播放| 一进一出抽搐gif免费好疼 | 夜夜夜夜夜久久久久| 亚洲精品在线观看二区| 美女午夜性视频免费| 99精品欧美一区二区三区四区| 日韩视频一区二区在线观看| av网站免费在线观看视频| 国产精华一区二区三区| 久久久精品国产亚洲av高清涩受| 一级片'在线观看视频| 国产精品电影一区二区三区| 一二三四在线观看免费中文在| 80岁老熟妇乱子伦牲交| 超色免费av| 国产区一区二久久| 成人18禁高潮啪啪吃奶动态图| 黑人操中国人逼视频| 久久国产精品影院| 三上悠亚av全集在线观看| 91麻豆精品激情在线观看国产 | 久久热在线av| 久久精品亚洲精品国产色婷小说| 黄网站色视频无遮挡免费观看| 乱人伦中国视频| 久久中文看片网| 18禁美女被吸乳视频| 69精品国产乱码久久久| 国产亚洲欧美精品永久| 日日夜夜操网爽| 亚洲三区欧美一区| 丁香欧美五月| 欧美日本中文国产一区发布| 大香蕉久久成人网| 女人被狂操c到高潮| 精品国产乱子伦一区二区三区| 不卡av一区二区三区| 久久婷婷成人综合色麻豆| 国产蜜桃级精品一区二区三区| 亚洲av电影在线进入| 国产欧美日韩综合在线一区二区| 国产高清国产精品国产三级| 又黄又粗又硬又大视频| 亚洲精品国产区一区二| 男女下面进入的视频免费午夜 | 欧美日韩福利视频一区二区| 午夜久久久在线观看| 色综合婷婷激情| 久久婷婷成人综合色麻豆| 日韩欧美一区视频在线观看| 国产免费现黄频在线看| 十八禁人妻一区二区| 精品久久久久久成人av| 午夜日韩欧美国产| 久久精品91蜜桃| 日韩欧美一区视频在线观看| 日韩视频一区二区在线观看| 久久精品亚洲av国产电影网| 99久久综合精品五月天人人| 女人爽到高潮嗷嗷叫在线视频| 国产99白浆流出| 国产欧美日韩一区二区三| 免费女性裸体啪啪无遮挡网站| 69精品国产乱码久久久| www.熟女人妻精品国产| 高清欧美精品videossex| 村上凉子中文字幕在线| 长腿黑丝高跟| 中亚洲国语对白在线视频| 很黄的视频免费| 亚洲精品av麻豆狂野| 丝袜在线中文字幕| 欧美激情 高清一区二区三区| 一级片免费观看大全| 精品国产一区二区久久| 伦理电影免费视频| 一本大道久久a久久精品| 女性被躁到高潮视频| 女同久久另类99精品国产91| 中文亚洲av片在线观看爽| 久久久久久免费高清国产稀缺| 搡老岳熟女国产| 黄色视频不卡| 免费看十八禁软件| 国产单亲对白刺激| 99国产精品99久久久久| 999久久久精品免费观看国产| 国产高清激情床上av| 国产三级黄色录像| 国产精品久久视频播放| 日本vs欧美在线观看视频| 国产精品一区二区在线不卡| 在线十欧美十亚洲十日本专区| 亚洲成人久久性| 午夜福利一区二区在线看| 午夜福利在线观看吧| 一级毛片高清免费大全| 天天躁狠狠躁夜夜躁狠狠躁| 日本免费a在线| 亚洲成a人片在线一区二区| 9191精品国产免费久久| 亚洲美女黄片视频| 欧美日韩亚洲综合一区二区三区_| 日本一区二区免费在线视频| 欧美最黄视频在线播放免费 | 一a级毛片在线观看| 久久久久久久久久久久大奶| 50天的宝宝边吃奶边哭怎么回事| 亚洲全国av大片| 精品免费久久久久久久清纯| 欧美中文综合在线视频| 亚洲精品在线美女| 亚洲中文av在线| 亚洲成a人片在线一区二区| 老熟妇乱子伦视频在线观看| 宅男免费午夜| 女警被强在线播放| 日韩国内少妇激情av| 亚洲精品久久成人aⅴ小说| 高清毛片免费观看视频网站 | 麻豆久久精品国产亚洲av | 777久久人妻少妇嫩草av网站| 国产精品免费一区二区三区在线| 精品熟女少妇八av免费久了| 国产免费男女视频| 国产欧美日韩一区二区三| 亚洲人成电影免费在线| 搡老熟女国产l中国老女人| 99re在线观看精品视频| 午夜免费激情av| 美女福利国产在线| 一级a爱片免费观看的视频| 一级片免费观看大全| 精品久久久久久成人av| www.自偷自拍.com| 交换朋友夫妻互换小说| 可以在线观看毛片的网站| 国产又爽黄色视频| 久久九九热精品免费| 欧美乱码精品一区二区三区| 他把我摸到了高潮在线观看| 中文字幕人妻熟女乱码| www日本在线高清视频| 精品乱码久久久久久99久播| aaaaa片日本免费| 黄色成人免费大全| 五月开心婷婷网| 欧美中文综合在线视频| 女人被躁到高潮嗷嗷叫费观| 国产有黄有色有爽视频| 黑人猛操日本美女一级片| 悠悠久久av| 欧美日韩乱码在线| 亚洲情色 制服丝袜| 村上凉子中文字幕在线| 在线观看午夜福利视频| 在线国产一区二区在线| 日韩精品免费视频一区二区三区| a在线观看视频网站| netflix在线观看网站| 婷婷六月久久综合丁香| 视频区图区小说| 美国免费a级毛片| 国产一卡二卡三卡精品| 最新在线观看一区二区三区| 亚洲人成网站在线播放欧美日韩| 精品久久久久久久毛片微露脸| 日韩欧美在线二视频| ponron亚洲| 久久亚洲真实| 一区二区三区国产精品乱码| 国产真人三级小视频在线观看| 后天国语完整版免费观看| 又黄又粗又硬又大视频| 久热这里只有精品99| 国产成人一区二区三区免费视频网站| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区在线av高清观看| 老司机午夜福利在线观看视频| 不卡一级毛片| 51午夜福利影视在线观看| 黄片播放在线免费| 在线观看一区二区三区| 黄色片一级片一级黄色片| 777久久人妻少妇嫩草av网站| 天堂√8在线中文| 亚洲avbb在线观看| 午夜视频精品福利| 最近最新免费中文字幕在线| 麻豆一二三区av精品| 日韩欧美一区视频在线观看| 精品熟女少妇八av免费久了| 不卡av一区二区三区| 欧美黑人欧美精品刺激| av片东京热男人的天堂| 一边摸一边做爽爽视频免费| 亚洲av电影在线进入| 免费av中文字幕在线| 乱人伦中国视频| 视频在线观看一区二区三区| 麻豆一二三区av精品| 一级a爱片免费观看的视频| 69精品国产乱码久久久| 一级a爱视频在线免费观看| 高清黄色对白视频在线免费看| 热re99久久国产66热| 黄色女人牲交| 国产单亲对白刺激| 麻豆久久精品国产亚洲av | 高清在线国产一区| 午夜影院日韩av| 一区二区三区精品91| 黑人操中国人逼视频| av视频免费观看在线观看| 国产av又大| 精品免费久久久久久久清纯| 国产片内射在线| 999久久久国产精品视频| 香蕉丝袜av| 制服人妻中文乱码| 亚洲自拍偷在线| 国产精品偷伦视频观看了| 看片在线看免费视频| 日韩 欧美 亚洲 中文字幕| 真人一进一出gif抽搐免费| 久久精品亚洲熟妇少妇任你| 欧美黑人欧美精品刺激| 色婷婷av一区二区三区视频| 水蜜桃什么品种好| 在线天堂中文资源库| 亚洲avbb在线观看| 男人舔女人的私密视频| 亚洲人成电影免费在线| 国产亚洲av高清不卡| 亚洲狠狠婷婷综合久久图片| 精品久久久久久成人av| 嫩草影视91久久| 电影成人av| 一本综合久久免费| 日本 av在线| x7x7x7水蜜桃| 天堂俺去俺来也www色官网| 露出奶头的视频| 50天的宝宝边吃奶边哭怎么回事| 啦啦啦免费观看视频1| 久99久视频精品免费| 亚洲av五月六月丁香网| 亚洲狠狠婷婷综合久久图片| 国产在线精品亚洲第一网站| 亚洲片人在线观看| 欧美中文日本在线观看视频| 欧美日韩亚洲高清精品| 日韩大码丰满熟妇| 99国产精品一区二区三区| videosex国产| 久久久久久久久免费视频了| 国产欧美日韩精品亚洲av| 丰满人妻熟妇乱又伦精品不卡| 亚洲第一av免费看| 99久久精品国产亚洲精品| 日本免费一区二区三区高清不卡 | 日本免费a在线| 怎么达到女性高潮| 国产真人三级小视频在线观看| 国产熟女午夜一区二区三区| 精品国产超薄肉色丝袜足j| 最近最新免费中文字幕在线| 国产免费男女视频| videosex国产| 久久 成人 亚洲| 深夜精品福利| 在线播放国产精品三级| 久久久国产欧美日韩av| 无人区码免费观看不卡| 欧美日韩黄片免| 视频在线观看一区二区三区| 欧美精品啪啪一区二区三区| 嫩草影院精品99| 免费一级毛片在线播放高清视频 | 国产91精品成人一区二区三区| 久久久久久亚洲精品国产蜜桃av| 女人被躁到高潮嗷嗷叫费观| 久久久久国内视频| 亚洲色图av天堂| 免费搜索国产男女视频| 又黄又爽又免费观看的视频| 国产成人精品无人区| 欧美日韩国产mv在线观看视频| 99在线人妻在线中文字幕| 黄色怎么调成土黄色| 国产精品免费一区二区三区在线| 夫妻午夜视频| 国产不卡一卡二| 成人三级做爰电影| 亚洲欧美日韩无卡精品| 极品人妻少妇av视频| 男人舔女人的私密视频| 两性夫妻黄色片| 亚洲 欧美 日韩 在线 免费| 亚洲一区二区三区欧美精品| 欧美不卡视频在线免费观看 | 午夜精品在线福利| 一区二区三区激情视频| 中国美女看黄片| 又黄又爽又免费观看的视频| 极品教师在线免费播放| 久久国产亚洲av麻豆专区| 欧美激情极品国产一区二区三区| 亚洲欧美日韩高清在线视频| 亚洲精品一二三| 级片在线观看| 在线永久观看黄色视频| 日韩欧美在线二视频| 在线观看一区二区三区| 多毛熟女@视频| 久久精品aⅴ一区二区三区四区| 国产亚洲欧美精品永久| 欧美在线黄色| 亚洲精品国产一区二区精华液| 色在线成人网| 在线av久久热| 日本五十路高清| 日本撒尿小便嘘嘘汇集6| 自线自在国产av| 视频区图区小说| 婷婷精品国产亚洲av在线| 十分钟在线观看高清视频www| 精品久久久久久,| 美女扒开内裤让男人捅视频| 亚洲片人在线观看| 精品久久蜜臀av无| 亚洲第一av免费看| av片东京热男人的天堂| 久久久国产欧美日韩av| 亚洲免费av在线视频| 亚洲少妇的诱惑av| 免费在线观看亚洲国产| 波多野结衣高清无吗| 三级毛片av免费| www.自偷自拍.com| 视频区图区小说| 99久久人妻综合| 日韩一卡2卡3卡4卡2021年| 国产深夜福利视频在线观看| 黄色片一级片一级黄色片| 欧美+亚洲+日韩+国产| 国产成人av教育| 精品人妻1区二区| 99久久精品国产亚洲精品| 日本五十路高清| 女人精品久久久久毛片| 村上凉子中文字幕在线| 中文字幕色久视频| 免费少妇av软件| 校园春色视频在线观看| 精品一品国产午夜福利视频| 法律面前人人平等表现在哪些方面| 两个人免费观看高清视频| 亚洲精品国产色婷婷电影| 午夜免费观看网址| 久久热在线av| 国产欧美日韩精品亚洲av| 久久 成人 亚洲| 亚洲av电影在线进入| 美国免费a级毛片| 一夜夜www| 亚洲色图av天堂| 麻豆av在线久日| 亚洲欧美激情在线| 男人操女人黄网站| 男人舔女人的私密视频| 日韩一卡2卡3卡4卡2021年| 国产三级在线视频| 色综合欧美亚洲国产小说| 久久亚洲精品不卡| 中文字幕最新亚洲高清| 国产精品二区激情视频| 窝窝影院91人妻| 久久久精品欧美日韩精品| 国产成+人综合+亚洲专区| 亚洲av第一区精品v没综合| 曰老女人黄片| 在线观看午夜福利视频| 精品国产超薄肉色丝袜足j| 18禁黄网站禁片午夜丰满| 涩涩av久久男人的天堂|