• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Matrix‐based method for solving decision domains of neighbourhood multigranulation decision‐theoretic rough sets

    2022-05-29 01:55:56JiajunChenShuhaoYuWenjieWeiYanMa

    Jiajun Chen|Shuhao Yu|Wenjie Wei|Yan Ma

    1College of Electronics and Information Engineering,West Anhui University,Lu'an,China

    2College of Electronics and Information Engineering,Tongji University,Shanghai,China

    AbstractIt is more and more important to analyse and process complex data for gaining more valuable knowledge and making more accurate decisions.The multigranulation decision theory based on conditional probability and cost loss has the advantage of processing decision-making problems from multi-levels and multi-angles,and the neighbourhood rough set model (NRS) can facilitate the analysis and processing of numerical or mixed type data,and can address the limitation of multigranulation decision-theoretic rough sets(MG-DTRS),which is not easy to cope with complex data.Based on the in-depth study of hybrid-valued decision systems and MG-DTRS models,this study analysed neighbourhood MG-DTRS (NMG-DTRS) deeply by fusing MG-DTRS and NRS;a matrixbased approach for approximation sets of NMG-DTRS model was proposed on the basis of the matrix representations of concepts;the positive,boundary and negative domains were constructed from the matrix perspective,and the concept of positive decision recognition rate was introduced.Furthermore,the authors explored the related properties of NMG-DTRS model,and designed and described the corresponding solving algorithms in detail.Finally,some experimental results that were employed not only verified the effectiveness and feasibility of the proposed algorithm,but also showed the relationship between the decision recognition rate and the granularity and threshold.

    KEYWORDS decision domains,decision making,NMG-DTRS,rough set theory

    1|INTRODUCTION

    Rough set theory [1,2] is an important theory in the field of artificial intelligence.It is a new mathematical tool to cope with uncertain and imprecise data,which was proposed by Pawlak in 1982,and has extensive applications in various fields,such as government decision-making,financial analysis,data mining and medical system.Decision-theoretic rough sets model (DTRS)[3,4] is an important decision-making model based on probability and risk-cost sensitivity for solving practical decision problems with uncertain data,and multigranulation decision theory is devoted to analyse target decision objects from multilevels and multi-angles [5-8].DTRS and a large number of extended models have been studied to address the corresponding requirements in recent years [9-13].However,most proposed analysis methods in the light of the classical rough set theory can only be used to process single type of data,such as symbolicdata,andthere aresome limitationsin the processing of complex data such as numerical or hybrid-valued type decision systems [14].Furthermore,with the increasing application of data science and artificial intelligence technology,data from all walks of life are becoming more huge,complex,diverse and uncertain,and people need more comprehensive and diversified analysis and processing of these complex data in order to obtain more valuable knowledge and make more accurate decisions,so the research of multi-granulation decision making methods for numerical data and mixed data has been paid more and more attention.Qian et al.[15]first developed the MG-DTRS model by the combination of multigranulation rough sets and the Bayesian decision theory,however,the application scope of the models in the light of the equivalence relation was limited because it was not easy to cope with all kinds of complex data,especially hybrid-valued type information systems with numerical type and categorical type properties.In order to address the limitation,Lin et al.put forward the neighbourhood rough set models(NRS)in literature[16,17],in the following years,several types of generalised NRS models were widely used in various domains.Literature [18] discussed DTRS model in the neighbourhood system environment,literature [14] deeply analysed the neighbourhood DTRS(NDTRS)and MG-DTRS model,and proposed an incomplete neighbourhood multigranulation decision-theoretic rough set (NMG-DTRS) model;reference[19] investigated neighbourhood multigranulation rough sets(NMRS) and the attribute reduction method for incomplete information systems with symbolic type and numerical type properties.In addition to the mentioned frameworks,some important insights based on these models have been explored,such as the application of matrix technology.In rough set theory,matrix has the advantages of intuitive and simple knowledge representation and reasoning,so,matrix-based methods have been widely used in some fields of rough set[20-28],including decision making information systems [22,28],covering approximate spaces [26-28],neighbourhood information systems [20,23,25] and multigranulation spaces [23,25,28].Literature [23] discussed the matrix-based approaches for dynamic updating approximations in multigranulation rough sets,literature[20]and literature[25]studied,respectively,the problems of decisiondomains updating andapproximationsupdating in neighbourhood multigranulation space by introducing the matrix technique into the neighbourhood multigranulation rough set,and the description of maximum and minimum covering rough sets was discussed in detail based on matrix technology in literature [26].Among the above achievements,there were few research works on NMG-DTRS in the complex information system,although literature[22]illustrated the matrix approach for decision-theoretic rough sets,it is not suitable for neighbourhood information systems in multi-granularity environment.Literature [14] explored two types of NMGDTRS in detail based on the incomplete hybrid -valued decision system,however,the knowledge representation based on the models are difficult to understand and has some computational complexity.In this study,in view of the characteristics of matrix in rough set context,we introduced the matrix technique into NMG-DTRS and proposed a matrix-based method for solving decision domains of the NMG-DTRS model for hybridvalued decision information systems,the positive,boundary and negative domains were constructed from the matrix perspective.Furthermore,we explored the related properties of the NMG-DTRS model,and the corresponding solving algorithms based on the proposed method were designed and described in detail.

    The other sections of the paper were organised as follows.First,the fundamental knowledge of DTRS,MG-DTRS and NMG-DTRS was reviewed briefly in Section 2,in Section 3,a novel matrix-based method for approximation sets of the NMG-DTRS model was proposed on the basis of the matrix representations of a series of concepts,and the positive,boundary and negative domains were constructed based on the NMG-DTRS model.Furthermore,the related properties of the NMG-DTRS model and implementation algorithms were discussed in depth.Finally,some experimental results were employed to prove the algorithm is feasible and effective.

    2|PRELIMINARY KNOWLEDGE

    Here,we reviewed some related works of DTRS,MG-DTRS and neighbourhood MG-DTRS models in this section.

    2.1|DTRS

    IS=(U,A=C ∪D,V,f)is a given decision table information system,where U represents the target space object set,C and D (C ∩D=?)are the condition attributes and decision attributes,respectively,indicates a non-empty value set of c ∈A,and the mapping function f is expressed by f :U ×A →V.For any given non-empty subset P ?C,an objectxcan been represented by its equivalence relationswe can obtain the lower approximation sets and the upper approximation sets of X'on the subset P byIn the light of the aboveare called the positive domains,boundary domains and negative domains of X'about the subset P,respectively.

    Prorder POS(α,β)(X),BND(α,β)(X)and NEG(α,β)(X)indicate positive domains,boundary domains and negative domains of X based on thresholds(α,β).In view of the Bayesian decision procedure,letλPP,λBPandλNPrepresent the loss functions of classifying objectxinto domains POS(α,β)(X),BND(α,β)(X)and NEG(α,β)(X),respectively,when objectxbelongs to category X;λPN,λBNandλNNrepresent the loss functions that it be classified in domains POS(α,β)(X),BND(α,β)(X)and NEG(α,β)(X)when objectxis not in category X,respectively.Consider the reasonable assumption that the losses of taking the right action is less than or equal to the losses of taking the wrong action,namely,we can knowλPP≤λBP<λNPandλNN≤λBN<λPN,the thresholds(α,β)can be obtained from all loss functions by Equation (1).The detailed derivation process is shown in reference [4],where 1 ≥α>β≥0.

    Based on the Bayesian decision procedure,for?X'?U,P ?C,the decision rules closely related to the probability of objectxbased on thresholds(α,β)in the DTRS model can been obtained:

    (1)if probabilityPr(X′|[x]P)≥αis satisfied,then

    objectx∈POS(α,β)(X′)

    (2)if probabilityβ≤Pr(X′|[x]P)<αis satisfied,then

    objectx∈BND(α,β)(X′)

    (3)if probabilityPr(X′|[x]P)<βis satisfied,then

    objectx∈NEG(α,β)(X′)

    For the given decision information system IS=(U,A=C ∪D,V,f),supposeπD={D1,D2,…,Dm} indicates the partitions on the target space U with respect to the decision attribute D ∈A,for any attribute subsetB?Cand ?x ∈U,then we can get the probabilistic lower and upper approximations ofπDabout B in the DTRS model as follows:

    2.2|MG‐DTRS

    MG-DTRS is a rough decision theory in the context of multigranulation,which combines the DTRS theory and the multigranulation idea,can been widely used in many fields,including multi-source data analysis,distributive information systems and intelligent decision making from data with multi dimensions.In this section,the pessimistic MG-DTRS model and the optimistic one were discussed as two focusses in multigranulation rough sets.The relevant definitions were described as follows.

    Definition 1Suppose IS=(U,A=C ∪D,V,f)be a decision table information system,where the universeU={xi|,A1,A2,…Am?Aare m granular structures,[xi]Akdenotes equivalence granule ofxiabout thekth granular structureAk(k=1,2,…,m).For anyX′?U,then the approximations ofX′in the optimistic MGDTRS model are expressed by the following:

    where ∧and ∨denote the logic conjunction (AND) and the logic disjunction(OR) operations,respectively.

    Definition 2Suppose IS=(U,A=C ∪D,V,f)be a decision table information system,where the universeU={xi|,A1,A2,…Am?Aare m granular structures,[xi]Akdenotes equivalence granule ofxiabout thekth granular structureAk(k=1,2,…,m).For anyX′?U,then the approximations ofX′in the pessimistic MG-DTRS model are expressed by the following:

    where ∧and ∨denote the logic conjunction(AND) and the logic disjunction(OR) operations,respectively.

    ByDefinition 1,Definition 2and the decision rules in the decision-theoretic rough set model,the positive domains,boundary domains and negative domains of the optimistic MG-DTRS model can be,respectively,formalised as follows:

    The positive domains,boundary domains and negative domains of the pessimistic MG-DTRS model can be,respectively,formalised as follows:

    2.3|NMG‐DTRS

    MG-DTRS models are based on classical DTRS,which uses equivalence relations to partition the target object universe and generate multiple equivalence classes as basic concepts [21].However,the models based on the equivalence relation are not easy to cope with all kinds of complex data,especially hybridvalued type information system with numerical type and categorical type properties[14,20].Therefore,the neighbourhood rough set(NRS) was put forward because of the advantage of facilitating the analysis and processing of numerical or mixed type data.The NRS model uses neighbourhood relation to partition the decision object target spaces and replaces the equivalence classes with neighbourhood particles.In NMGDTRS models,the equivalence classes based on conditional probability of classical MG-DTRS are replaced by the neighbourhood granularity,the details are as follows.

    A given neighbourhood information system NIS=(U,A=C ∪D,V,f),where U represents the target space objects,C and D(C ∩D=?)are the condition attributes and decision attributes,respectively,suppose any B ?C be a condition attribute subset,for any objectxi∈U,then the neighbourhood granularityNB(xi)of the objectxibased on the attribute subset B is defined byis the neighbourhood radius.Δ is a distance function,here only the Euclidean distance is taken as a metric function and is defined as follows:

    According to Definition 1 and 2,we can obtain the approximations in the NMG-DTRS model by substituting neighbourhood granularity for conditional equivalence classes.

    Definition 3Suppose NIS=(U,A=C ∪D,V,f)be a neighbourhood decision table information system,where U represents the target space objects,U={xi|i=1,2,…,n} andA1,A2,…Am?Aare m granular structures,NAk(xi)denotes neighbourhood granularity of the objectxiabout granular structureAk,where(k=1,2,…,m).Giventhe thresholds(α,β),for?X?U,then the approximation sets ofXbased on the optimistic NMG-DTRS model are defined by the following:

    Definition 4Suppose NIS=(U,A=C ∪D,V,f)be a neighbourhood decision table information system,where U represents the target space objects,U={xi|i=1,2,…,n} andA1,A2,…Am?Aare m granular structures,NAk(xi)denotes neighbourhood granularity of the objectxiabout granular structureAk,where(k=1,2,…,m).Given the thresholds(α,β),for ?X?U,then the approximation sets ofXbased on the pessimistic NMG-DTRS model are defined by the following:

    By Definition 3,Definition 4 and the decision rules in the decision-theoretic rough set model,the positive domains,negative domains and boundarydomains based on the optimistic NMG-DTRS model can be,respectively,formalised as follows:

    The positive domains,negative domains and boundary domains based on the pessimistic NMG-DTRS model can be,respectively,formalised as follows:

    Definition 5Suppose NIS=(U,A=C ∪D,V,f)be a neighbourhood decision table information system,where U represents the target space objects,U={xi|i=1,2,…,n} andA1,A2,…Am?Aare m granular structures.OrderπD={D1,D2,…,Dm}indicates the partitions on the target space objectsUwith respect to decision space setD∈A,for?Di?πDand thresholds(α,β),orderdenote the positive decision domains ofDiin the pessimistic and optimistic NMG-DTRS model,then we have the positive decision domains with respect toπDin the pessimistic and optimistic NMG-DTRS model as follows:

    3|MATRIX‐BASED APPROACH FOR NMG‐DTRS

    Matrix is a commonly used tool in mathematics and has the characteristics of easy representation and calculation,which can improve the computational efficiency in practical application.Therefore,matrix-based techniques play an important role in knowledge representation and data analysis [20,25].In this subsection,a matrix-based approach was introduced for calculating approximation sets of the NMG-DTRS model and the positive,boundary and negative domains were constructed from the matrix perspective in numerical type or hybrid-valued type decision systems.

    3.1|Matrix‐based decision domains expresentation

    Definition 6[20,25] Suppose NIS=(U,A=C ∪D,V,f)be a neighbourhood decision table information system,where U represents the target space objects,U={xi|i=1,2,…,n},for any object subsetX?U,order F(X)is the characteristic function of the subset X,F(X)can be constructed by F(X)=[f i]n×1,where F(X)is a Boolean vector andf ican be expressed as follows:

    Definition 7Suppose NIS=(U,A=C ∪D,V,f)be a neighbourhood decision table information system,where U represents the target space objects,U={xi|i=1,2,…,n},A1,A2,…Am?A are m granular structures,orderis the neighbourhood relation matrix about granular structureAk,where(k=1,2,…,m).For given the neighbourhood radiusδ(δ≥0)and the metric function △,MAkis constructed as follows:

    whereminandmaxoperations take the minimum and maximum values.

    3.2|The related properties of NMG‐DTRS model

    Based on the Definition 3,Definition 4,Definition 9 and the calculation formulas of decision domains of the optimistic and the pessimistic NMG-DTRS model,the related properties of the neighbourhood multigranulation approximation expressed based on matrices can be obtained.

    The following lemma regarding the positive domain matrices of the optimistic and the pessimistic NMG-DTRS models can be obtained.

    Lemma 1Given neighbourhood decision table information system NIS=(U,A=C ∪D,V,f),where U represents the target space objects,U={xi|i=1,2,…,n}.Order πA={A1,A2,…Am}?Aare m granular structures,for the given thresholds0.5 ≤α1<α2≤1and two object subset?X ??Y ?U,then we can get the following properties:

    The relevant proof is omitted.

    Lemma 2Given neighbourhood decision table information system NIS=(U,A=C ∪D,V,f),where U represents the target space objects,U={xi|i=1,2,…,n}.Order πA={A1,A2,…Am}?Aare m granular structures,supposeA1′?A1,for given the thresholds(α,β),and for any the object subsetX ?U,then the following related properties can be obtained:

    3.3|Algorithm implementation for solving decision domains in NMG‐DTRS

    and the pessimistic positive domain,boundary domain and negative decision domain matrices based onπDin NMGDTRS model can be defined by the following:

    where ∪denotes the disjunction (OR) operations of matrices.

    Definition 12Positive decision recognition rate.GivenNIS=(U,A=CUD,V,f)be thee neighbourhood decision information system,whereπA={A1,A2,…Am}?Aare m granular structures,D is the decision attribute andπD={D1,D2,…,Dn} are the partitions on the target space objectsUabout decision attributeD.Orderis the matrix of the positive regions ofπDwith respect toπA,then Positive decision recognition rate in NMG-DTRS model can be defined by the following:

    According to Definition 11 and 12,Matrix-based algorithms for decision regions in NMG-DTRS can be described as algorithm 1,algorithm 2 and algorithm 3 in Figures 1-3.

    In Algorithm 1,suppose the number of attributes is|C|,for each granularity Ai∈A′,the calculation of the neighbourhood relation matrix and the basic matrix have to be executed,namely the maximum time complexity computing the neighbourhood relation matrix is O(|C|·|U|2),and the time complexity of calculating the decision domain matrices under the granularity Aiby Algorithm 2 is O(|U|2),so,the time complexity of step 6-9 in Algorithm 1 is O(m·|C|·|U|2),and the time consumption for executing the repeat loop operation in step 10-12 is O(|U|2).Therefore,for all decision partition objects U/D={D1,D2,…,Dn},the total time complexity of Algorithm 1 isO(mn·|C|·|U|2).

    In Algorithm 3,the positive decision region matrices DHNOposand DHNPposbe first executed in view of Algorithm 1,we can get the time complexity is O(mn·|C|·|U|2),and the time complexity of step 3-5 is O(|U|).Thus,the total time complexity in Algorithm 3 is also O(mn·|C|·|U|2).

    4|EXPERIMENTAL ANALYSIS

    FIGURE 1 Matrix-based algorithm for decision regions

    FIGURE 2 Computing decision domain matrices

    FIGURE 3 Solving positive decision recognition rate

    TABLE 1 Neighbourhood information system

    For given a decision table neighbourhood information system NIS,which was shown in Table 1,where U={x1,x2,…,x6}indicate the objects of decision system,A={a1,a2,…,a7}denotes attributes,D is the decision attribute,and decision partition object sets on the universe U based on decision attribute D are {x1,x2,x3,x6} and {x4,x5}.In the process of the experiment,assume the neighbourhood radiusδ=0.15,and three different granularity spaces were selected for the experiment when the threshold(α,β)is (1,0),(0.8,0.2) and(0.65,0.3),respectively.All the experimental results were gained from Table 1 in python3.6 programming environment,and the experimental results were shown in Tables A1 and A2(see Appendix A for Tables A1 and A2).For convenience of expression,in the Table A1,OPOS,OBND and ONEG denote positive,boundary and negative decision domain matrices obtained in optimistic NMG-DTRS,and ODPOS and ORecRate denote the positive decision matrices and positive decision recognition rate for neighbourhood decision information system in the optimistic NMG-DTRS model,at the same time,in the Table A2,PPOS,PBND and PNEG denote positive,boundary and negative decision domain matrices obtained in pessimistic NMG-DTRS,and PDPOS and PRecRate denote the positive decision matrices and positive decision recognition rate for the neighbourhood decision information system in the pessimistic NMG-DTRS model.

    The experimental results in Tables A1 and A2 show that the method based on matrices proposed in this study can effectively calculate the decision domains of the neighbourhood decision system,and it can also be seen that with the change of threshold and granularity,the decision domains and the decision recognition rate also change.At the same time,it can be analysed in the light of information in the Tables A1 and A2 that the positive decision recognition rate reflects the importance of granularity;on the other hand,the decrease of positive decision is mainly caused by the increase of the boundary domain.Therefore,in the actual decision-making process,we can make a decision again for the instance in boundary domain,so as to increase the reliability of decisionmaking.

    In order to further verify the effectiveness and feasibility of the approach,several standard datasets provided in UCI database were selected as the experimental objects,and the specific description of datasets was shown in Table 2.In the process of experiments on four different datasets,under the condition of a certain threshold,the positive decision recognition rates obtained from the optimistic and pessimistic NMG-DTRS models were analysed and compared from theperspective of different granularity.See Appendix B for Figures B1a-f and B2g-l.Through the experimental results of four datasets,we can see that the positive decision recognition rate under different granularity is quite different when a certain threshold is given,and the positive decision recognition rate under the optimistic NMG-DTRS is always greater than or equal to that under the pessimistic NMG-DTRS.At the same time,the relationship between decision domain and threshold was analysed,as shown in Figure A3 (Appendix B for Figure B3).According to g(1),g(3)and g(5)in Figure A3,it can be seen that under certain granularity,the change of positive decision recognition rate with threshold is not obvious in optimistic NMG-DTRS,while the positive decision recognition rate in pessimistic NMG-DTRS is relatively influenced by threshold and granularity.See g(2),g(4)and g(6)in Figure A3.According to the experimental results,we get that the importance of granularity is different,and the contribution to decision-making is also different,so the positive decision recognition rate obtained under different granularity is different.Therefore,when we make decision on a complex hybrid information system,we can make decision analysis from multiple perspectives,and at the same time,we can select appropriate threshold to limit the decision decision-making conditions,so as to avoid the phenomenon of one-time decision-making leading to misjudgement and improve the reliability of decision-making.

    TABLE 2 Datasets and granular structures description

    5|CONCLUSION

    MG-DTRS models can analyse decision-making problems from multi-level and multi-angle,the neighbourhood rough set model has the advantage of processing numerical or hybridvalued data,NMG-DTRS models effectively integrate MGDTRS and NRS models,greatly expanding the application range of MG-DTRS.The study proposed a novel matrix-based method for approximation sets of the NMG-DTRS model and solved the decision domains through a series of matrix calculation,the related properties of the NMG-DTRS model were explored and the implementation algorithms based on the proposed method were designed and discussed in detail.The research of NMG-DTRS models matrix-based in this study makes use of the characteristics of matrix which is easy to calculate and understand,and fully combines the advantages of matrix and MG-DTRS,which effectively solves the decisionmaking problems of complex decision information systems from another aspect and expands the application scope of NMG-DTRS.The use of matrix-based NMG-DTRS models for solving the decision-making problems in big data and dynamic data context will be the target of future research.

    ACKNOWLEDGMENTS

    The authors of this study sincerely acknowledge the support of the Universities Natural Science Key Project of Anhui Province (No.KJ2020A0637).

    ORCID

    Jiajun Chenhttps://orcid.org/0000-0003-0477-7442

    How to cite this article:Chen,J.,et al.:Matrix-based method for solving decision domains of neighbourhood multigranulation decision-theoretic rough sets.CAAI Trans.Intell.Technol.7(2),313-327(2022).https://doi.org/10.1049/cit2.12055

    APPENDIX A

    TABLE A1 Experimental results in optimistic NMG-DTRS

    APPENDIX B

    FIGURE B 1 Comparison of the decision recognition rate in optimistic and pessimistic neighbourhood multigranulation-decision theoretic rough sets

    FIGURE B 2 Comparison of the decision recognition rate in optimistic and pessimistic neighbourhood multigranulation-decision theoretic rough sets

    FIGURE B 3 Comparison of the decision recognition rate based on different threshold

    悠悠久久av| 母亲3免费完整高清在线观看| 午夜日韩欧美国产| 一个人免费在线观看的高清视频| 亚洲成人免费电影在线观看| 欧美乱码精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 久久亚洲真实| 老汉色av国产亚洲站长工具| 91麻豆精品激情在线观看国产 | 夫妻午夜视频| 久久九九热精品免费| 国产精品国产av在线观看| 久久久久久人人人人人| 精品国产超薄肉色丝袜足j| 国产免费男女视频| 人妻丰满熟妇av一区二区三区 | 一本综合久久免费| 黑人欧美特级aaaaaa片| 欧美成人免费av一区二区三区 | 欧美中文综合在线视频| 欧美精品一区二区免费开放| 高清黄色对白视频在线免费看| 免费在线观看完整版高清| 丁香欧美五月| 午夜免费成人在线视频| 精品国产亚洲在线| 91在线观看av| 王馨瑶露胸无遮挡在线观看| 亚洲精品av麻豆狂野| 国产人伦9x9x在线观看| 久久人妻熟女aⅴ| 午夜福利在线免费观看网站| 久久久水蜜桃国产精品网| 亚洲av日韩精品久久久久久密| 18禁国产床啪视频网站| 色在线成人网| 伊人久久大香线蕉亚洲五| 三上悠亚av全集在线观看| 999久久久国产精品视频| 亚洲欧美激情在线| 国产精品久久久久成人av| 欧美性长视频在线观看| 欧美性长视频在线观看| 欧美乱色亚洲激情| 窝窝影院91人妻| 啦啦啦在线免费观看视频4| 国精品久久久久久国模美| 最新美女视频免费是黄的| 狂野欧美激情性xxxx| 久久这里只有精品19| 女人被狂操c到高潮| 欧美日韩一级在线毛片| 中国美女看黄片| 男女之事视频高清在线观看| 久久久水蜜桃国产精品网| 亚洲精品国产精品久久久不卡| 亚洲精品一二三| 少妇被粗大的猛进出69影院| 1024香蕉在线观看| 天堂动漫精品| 80岁老熟妇乱子伦牲交| 波多野结衣av一区二区av| 丁香欧美五月| 丰满的人妻完整版| 国产91精品成人一区二区三区| 免费黄频网站在线观看国产| 乱人伦中国视频| 亚洲美女黄片视频| 国产淫语在线视频| 国产野战对白在线观看| 亚洲国产欧美日韩在线播放| 大型黄色视频在线免费观看| 午夜影院日韩av| 韩国精品一区二区三区| 天堂俺去俺来也www色官网| 999久久久精品免费观看国产| 不卡一级毛片| 新久久久久国产一级毛片| 少妇粗大呻吟视频| 一进一出抽搐gif免费好疼 | 麻豆成人av在线观看| 久久精品亚洲熟妇少妇任你| 午夜91福利影院| 免费在线观看日本一区| 亚洲国产欧美网| 脱女人内裤的视频| 窝窝影院91人妻| 咕卡用的链子| 欧美性长视频在线观看| 一级黄色大片毛片| 下体分泌物呈黄色| 国产亚洲精品久久久久久毛片 | 午夜两性在线视频| 不卡av一区二区三区| 国产亚洲精品一区二区www | 久久人妻熟女aⅴ| 久久精品91无色码中文字幕| 99国产精品一区二区蜜桃av | 午夜91福利影院| 久久久久国产精品人妻aⅴ院 | 久久中文字幕一级| 亚洲av电影在线进入| 啪啪无遮挡十八禁网站| 成人黄色视频免费在线看| 久久这里只有精品19| 久久久精品国产亚洲av高清涩受| 日本wwww免费看| 欧美成人免费av一区二区三区 | 亚洲熟女毛片儿| 午夜激情av网站| 亚洲色图av天堂| 妹子高潮喷水视频| 91字幕亚洲| 日韩成人在线观看一区二区三区| 纯流量卡能插随身wifi吗| 午夜福利视频在线观看免费| 午夜福利乱码中文字幕| 国产成人系列免费观看| 国产真人三级小视频在线观看| 少妇被粗大的猛进出69影院| 黄色视频,在线免费观看| 欧美精品人与动牲交sv欧美| 男人的好看免费观看在线视频 | 波多野结衣av一区二区av| 午夜影院日韩av| 精品亚洲成a人片在线观看| 在线观看免费视频网站a站| 久久精品国产亚洲av香蕉五月 | 自拍欧美九色日韩亚洲蝌蚪91| 高清av免费在线| 免费观看精品视频网站| 精品卡一卡二卡四卡免费| 又黄又粗又硬又大视频| 国产免费男女视频| 一边摸一边抽搐一进一出视频| 亚洲欧美日韩另类电影网站| 激情视频va一区二区三区| 国产精品99久久99久久久不卡| 欧美日韩国产mv在线观看视频| 国产精品98久久久久久宅男小说| 日本黄色视频三级网站网址 | 1024视频免费在线观看| 亚洲av欧美aⅴ国产| 欧美在线一区亚洲| 久久久水蜜桃国产精品网| 久久国产精品大桥未久av| 欧美黄色片欧美黄色片| 久久久久久久午夜电影 | 99国产精品一区二区蜜桃av | 丁香六月欧美| av不卡在线播放| 黄网站色视频无遮挡免费观看| 涩涩av久久男人的天堂| 村上凉子中文字幕在线| 91字幕亚洲| 国产精品香港三级国产av潘金莲| 亚洲久久久国产精品| 国产精品自产拍在线观看55亚洲 | 99精品在免费线老司机午夜| www日本在线高清视频| 动漫黄色视频在线观看| 午夜影院日韩av| 国产精品香港三级国产av潘金莲| 国产蜜桃级精品一区二区三区 | 久久青草综合色| 免费日韩欧美在线观看| 亚洲成人免费电影在线观看| 不卡一级毛片| 99国产极品粉嫩在线观看| 热99久久久久精品小说推荐| 亚洲精品美女久久av网站| 免费人成视频x8x8入口观看| 亚洲一区二区三区欧美精品| 香蕉国产在线看| 中文字幕色久视频| 亚洲精品久久午夜乱码| 色综合婷婷激情| 香蕉久久夜色| 亚洲欧美精品综合一区二区三区| 午夜视频精品福利| 成年动漫av网址| 91成年电影在线观看| 欧美日韩乱码在线| 久久久久久久久久久久大奶| 操美女的视频在线观看| 人人澡人人妻人| 色婷婷久久久亚洲欧美| 欧美亚洲日本最大视频资源| 国产成人啪精品午夜网站| 女警被强在线播放| 国产激情久久老熟女| 热99国产精品久久久久久7| ponron亚洲| 国产日韩欧美亚洲二区| 国产高清激情床上av| 一个人免费在线观看的高清视频| 成人手机av| 亚洲综合色网址| 丁香六月欧美| 欧美精品啪啪一区二区三区| 妹子高潮喷水视频| 久久精品aⅴ一区二区三区四区| 精品人妻在线不人妻| 国产精品免费一区二区三区在线 | 大香蕉久久成人网| 校园春色视频在线观看| netflix在线观看网站| 在线观看66精品国产| 999久久久精品免费观看国产| 亚洲国产看品久久| 成人免费观看视频高清| 母亲3免费完整高清在线观看| 精品国产一区二区久久| 久久久国产一区二区| 日日夜夜操网爽| 超碰97精品在线观看| 欧美黑人精品巨大| 国产精品av久久久久免费| 久9热在线精品视频| 久久久国产成人精品二区 | 久久人妻av系列| 国产精品1区2区在线观看. | 久久久久精品人妻al黑| 亚洲av第一区精品v没综合| e午夜精品久久久久久久| 国产成人免费无遮挡视频| 国产无遮挡羞羞视频在线观看| 欧美午夜高清在线| 天堂中文最新版在线下载| 欧美乱妇无乱码| 大片电影免费在线观看免费| 美国免费a级毛片| 天天躁夜夜躁狠狠躁躁| 久久中文看片网| 叶爱在线成人免费视频播放| 久久香蕉激情| 人人澡人人妻人| 建设人人有责人人尽责人人享有的| 国产又色又爽无遮挡免费看| 99在线人妻在线中文字幕 | 777久久人妻少妇嫩草av网站| 老熟妇仑乱视频hdxx| 国产精品免费一区二区三区在线 | 精品久久久久久电影网| 欧美大码av| 岛国在线观看网站| 村上凉子中文字幕在线| 精品久久久久久久毛片微露脸| 亚洲精品自拍成人| 女人精品久久久久毛片| 国精品久久久久久国模美| 成人特级黄色片久久久久久久| 国产主播在线观看一区二区| 人人妻人人澡人人爽人人夜夜| 热99久久久久精品小说推荐| 18禁国产床啪视频网站| 亚洲黑人精品在线| 午夜老司机福利片| 久久久久精品国产欧美久久久| 老司机亚洲免费影院| 国产在线一区二区三区精| 亚洲精品粉嫩美女一区| 国产精品 国内视频| 久久久国产成人精品二区 | 亚洲 欧美一区二区三区| ponron亚洲| 99国产精品免费福利视频| 日本a在线网址| 国产单亲对白刺激| 日韩免费高清中文字幕av| 无遮挡黄片免费观看| 日韩欧美免费精品| 操美女的视频在线观看| 午夜免费鲁丝| 亚洲精品一卡2卡三卡4卡5卡| 日韩成人在线观看一区二区三区| 欧美激情高清一区二区三区| 中文字幕色久视频| a级毛片黄视频| av线在线观看网站| 中文字幕人妻丝袜一区二区| 青草久久国产| 人人澡人人妻人| 建设人人有责人人尽责人人享有的| 啦啦啦免费观看视频1| 免费高清在线观看日韩| 午夜精品久久久久久毛片777| 国产精品一区二区免费欧美| 国产精品亚洲一级av第二区| 国产欧美日韩一区二区三| 精品国产乱码久久久久久男人| 99久久国产精品久久久| 一级毛片精品| av线在线观看网站| 亚洲精品美女久久av网站| 中国美女看黄片| 国产麻豆69| 亚洲中文日韩欧美视频| 女人被躁到高潮嗷嗷叫费观| 精品人妻熟女毛片av久久网站| 在线观看午夜福利视频| 亚洲国产中文字幕在线视频| 欧美日韩精品网址| avwww免费| 国产精品 国内视频| 久久久久国产一级毛片高清牌| 午夜日韩欧美国产| 欧美+亚洲+日韩+国产| 岛国毛片在线播放| 免费不卡黄色视频| 女人爽到高潮嗷嗷叫在线视频| av中文乱码字幕在线| 国产午夜精品久久久久久| 午夜精品在线福利| 黄色毛片三级朝国网站| 乱人伦中国视频| 欧美在线一区亚洲| 正在播放国产对白刺激| 曰老女人黄片| 人人妻,人人澡人人爽秒播| 国产精品.久久久| x7x7x7水蜜桃| 国产成+人综合+亚洲专区| 久久狼人影院| 亚洲五月天丁香| √禁漫天堂资源中文www| 亚洲午夜精品一区,二区,三区| 精品一区二区三卡| 18在线观看网站| 亚洲欧美日韩高清在线视频| 精品亚洲成a人片在线观看| 亚洲精品美女久久久久99蜜臀| 久久精品人人爽人人爽视色| 99riav亚洲国产免费| 国产麻豆69| 又黄又粗又硬又大视频| 日韩欧美一区二区三区在线观看 | 黄色丝袜av网址大全| 欧美精品亚洲一区二区| 久热这里只有精品99| 青草久久国产| 国精品久久久久久国模美| 精品亚洲成a人片在线观看| 亚洲av第一区精品v没综合| 成熟少妇高潮喷水视频| 女性被躁到高潮视频| 欧美在线黄色| 高清毛片免费观看视频网站 | 亚洲人成伊人成综合网2020| 欧美日韩国产mv在线观看视频| 午夜免费成人在线视频| 大陆偷拍与自拍| 成人三级做爰电影| 欧美成人午夜精品| 国产欧美日韩精品亚洲av| 老司机午夜十八禁免费视频| 精品卡一卡二卡四卡免费| 老熟女久久久| 国产亚洲精品久久久久5区| av网站在线播放免费| 麻豆乱淫一区二区| 99re6热这里在线精品视频| 一区在线观看完整版| 国产激情欧美一区二区| 亚洲成人免费av在线播放| 最近最新免费中文字幕在线| 黄色a级毛片大全视频| 亚洲少妇的诱惑av| 久久久久久久久久久久大奶| 国产精品欧美亚洲77777| 变态另类成人亚洲欧美熟女 | 99国产精品99久久久久| 久久国产精品男人的天堂亚洲| а√天堂www在线а√下载 | 精品国产一区二区三区四区第35| 黄片大片在线免费观看| 99国产精品99久久久久| 国产精品香港三级国产av潘金莲| 一级片免费观看大全| 国产高清国产精品国产三级| 精品国产亚洲在线| 老司机影院毛片| 欧美中文综合在线视频| 丝袜在线中文字幕| 91av网站免费观看| 国产亚洲欧美精品永久| 侵犯人妻中文字幕一二三四区| 捣出白浆h1v1| 色综合欧美亚洲国产小说| 久久久久久免费高清国产稀缺| 中文字幕另类日韩欧美亚洲嫩草| 自拍欧美九色日韩亚洲蝌蚪91| av免费在线观看网站| 欧美黄色片欧美黄色片| 欧美黄色淫秽网站| 日本黄色视频三级网站网址 | 中文字幕高清在线视频| 国产又爽黄色视频| 啪啪无遮挡十八禁网站| 我的亚洲天堂| 久久国产乱子伦精品免费另类| 一级片免费观看大全| 国产成人精品久久二区二区免费| 国产一区有黄有色的免费视频| 久久久久久久久久久久大奶| 黄片播放在线免费| 午夜影院日韩av| 大香蕉久久成人网| 欧美日韩瑟瑟在线播放| 久久久水蜜桃国产精品网| 色综合欧美亚洲国产小说| 国产亚洲av高清不卡| 国产午夜精品久久久久久| 99久久综合精品五月天人人| 国产视频一区二区在线看| 日韩欧美免费精品| 两个人看的免费小视频| 国产男靠女视频免费网站| 大型av网站在线播放| 两个人看的免费小视频| 国产亚洲精品第一综合不卡| 国产熟女午夜一区二区三区| 热99国产精品久久久久久7| 亚洲熟妇熟女久久| 校园春色视频在线观看| 妹子高潮喷水视频| 99精国产麻豆久久婷婷| 国产日韩一区二区三区精品不卡| 国产深夜福利视频在线观看| 中国美女看黄片| 又黄又粗又硬又大视频| 黄片小视频在线播放| 精品无人区乱码1区二区| 老司机福利观看| 精品国产亚洲在线| 狠狠狠狠99中文字幕| 黄色毛片三级朝国网站| 久久精品国产亚洲av香蕉五月 | 日韩欧美国产一区二区入口| 久久久久久久精品吃奶| 精品国产乱子伦一区二区三区| 波多野结衣av一区二区av| 两性夫妻黄色片| 国产精品国产高清国产av | 国产精品电影一区二区三区 | 性少妇av在线| 成人特级黄色片久久久久久久| 欧美日韩亚洲综合一区二区三区_| 黄色怎么调成土黄色| 巨乳人妻的诱惑在线观看| 亚洲欧美一区二区三区黑人| 黄色a级毛片大全视频| 新久久久久国产一级毛片| 黄片大片在线免费观看| 757午夜福利合集在线观看| 亚洲精品美女久久av网站| 在线播放国产精品三级| 亚洲伊人色综图| 这个男人来自地球电影免费观看| 午夜日韩欧美国产| 亚洲成av片中文字幕在线观看| 成人三级做爰电影| 国产在线一区二区三区精| 久久精品亚洲av国产电影网| 曰老女人黄片| 亚洲九九香蕉| 免费在线观看日本一区| 欧美在线黄色| 国产国语露脸激情在线看| 亚洲精品成人av观看孕妇| 免费女性裸体啪啪无遮挡网站| 精品卡一卡二卡四卡免费| www.999成人在线观看| 午夜成年电影在线免费观看| 涩涩av久久男人的天堂| 两性夫妻黄色片| 色婷婷久久久亚洲欧美| 亚洲精品国产精品久久久不卡| xxx96com| 精品一品国产午夜福利视频| 性少妇av在线| 18禁观看日本| 麻豆av在线久日| 韩国av一区二区三区四区| 黄片小视频在线播放| 久久草成人影院| 丝瓜视频免费看黄片| 免费观看a级毛片全部| 午夜两性在线视频| 一级片免费观看大全| 热99国产精品久久久久久7| 美女高潮到喷水免费观看| www.熟女人妻精品国产| tube8黄色片| 无人区码免费观看不卡| 不卡一级毛片| 青草久久国产| 亚洲三区欧美一区| 国产精品久久久久久人妻精品电影| 中文字幕高清在线视频| 国产精品免费一区二区三区在线 | 又黄又粗又硬又大视频| 美女高潮到喷水免费观看| 91老司机精品| 久久精品国产亚洲av香蕉五月 | 999久久久国产精品视频| 十八禁人妻一区二区| 国产乱人伦免费视频| 黄频高清免费视频| 欧美乱码精品一区二区三区| 美女高潮到喷水免费观看| 国产日韩一区二区三区精品不卡| 日本欧美视频一区| 国产极品粉嫩免费观看在线| 久久久精品区二区三区| 母亲3免费完整高清在线观看| 又黄又爽又免费观看的视频| 天堂中文最新版在线下载| 免费日韩欧美在线观看| 人成视频在线观看免费观看| 亚洲欧美精品综合一区二区三区| 国产精品偷伦视频观看了| 丝袜在线中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美 日韩 精品 国产| 成人黄色视频免费在线看| 久久久久久久国产电影| 国产极品粉嫩免费观看在线| 国产精品影院久久| x7x7x7水蜜桃| 久久久久久人人人人人| 欧美精品一区二区免费开放| 少妇 在线观看| 天天操日日干夜夜撸| 国产在视频线精品| 国产男女超爽视频在线观看| 看黄色毛片网站| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品在线观看二区| 在线观看日韩欧美| 老熟妇仑乱视频hdxx| 91国产中文字幕| 侵犯人妻中文字幕一二三四区| 99国产精品一区二区蜜桃av | 久久中文字幕一级| 国产成+人综合+亚洲专区| 香蕉丝袜av| 亚洲专区字幕在线| 亚洲精品中文字幕一二三四区| 香蕉久久夜色| 成在线人永久免费视频| 亚洲精品av麻豆狂野| www.999成人在线观看| 我的亚洲天堂| 99re6热这里在线精品视频| 久久青草综合色| 在线天堂中文资源库| 丁香六月欧美| av有码第一页| 日日爽夜夜爽网站| 国产欧美亚洲国产| 50天的宝宝边吃奶边哭怎么回事| 日本精品一区二区三区蜜桃| 久久人人爽av亚洲精品天堂| 亚洲av成人av| 一级毛片高清免费大全| 国产精品一区二区在线观看99| 亚洲av片天天在线观看| www.999成人在线观看| 夜夜躁狠狠躁天天躁| 午夜福利,免费看| 久久国产精品人妻蜜桃| 免费在线观看完整版高清| 精品少妇久久久久久888优播| 久久久久久久午夜电影 | 男男h啪啪无遮挡| 久久香蕉国产精品| 久久国产亚洲av麻豆专区| 色94色欧美一区二区| 精品卡一卡二卡四卡免费| 欧美日韩亚洲综合一区二区三区_| 亚洲va日本ⅴa欧美va伊人久久| 亚洲aⅴ乱码一区二区在线播放 | 人人澡人人妻人| 99re6热这里在线精品视频| 黑人欧美特级aaaaaa片| 久久久久精品人妻al黑| 久久国产亚洲av麻豆专区| 国产精品av久久久久免费| 国产精品久久久久成人av| 国产伦人伦偷精品视频| 久久精品亚洲熟妇少妇任你| 99国产精品一区二区蜜桃av | 久久久久久久久久久久大奶| 女同久久另类99精品国产91| 成年人黄色毛片网站| 大型黄色视频在线免费观看| x7x7x7水蜜桃| 无遮挡黄片免费观看| av网站在线播放免费| 精品国产美女av久久久久小说| 久久人人爽av亚洲精品天堂| 久久香蕉国产精品| 天天躁日日躁夜夜躁夜夜| 18禁美女被吸乳视频| 一级黄色大片毛片| 在线观看日韩欧美| 亚洲av成人不卡在线观看播放网| av福利片在线| av中文乱码字幕在线| 欧美一级毛片孕妇| 一进一出好大好爽视频| xxxhd国产人妻xxx| 亚洲性夜色夜夜综合|