• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wavelet method optimised by ant colony algorithm used for extracting stable and unstable signals in intelligent substations

    2022-05-28 15:17:38TianyanJiangXiaoYangYuanYangXiChenMaoqiangBiJianfeiChen

    Tianyan Jiang|Xiao Yang|Yuan Yang|Xi Chen|Maoqiang Bi|Jianfei Chen

    1School of Electrical and Electronic Engineering,Chongqing University of Technology,Chongqing,China

    2DepartmentState Key Laboratory of Power Transmission Equipment&System and New Technology,Chongqing University,Chongqing,China

    3Department of Electrical and Computer Engineering,University of Maryland,College Park,Maryland,USA

    Abstract Partial discharge (PD) signals are an important index to evaluate the operation state of intelligent substations.The correct distinction of PD pulse and interference pulse has become a challenging task.Because of the noise and the low signal-to-noise ratio,the stable signals become non-stationary.The selection of a wavelet basis,the selection rule of threshold λ and the design of the threshold function are the key factors affecting the final denoising effect.Therefore,an enhanced ant colony optimisition wavelet(ACOW) algorithm was applied to find the global optimal threshold through the continuous derivative threshold function and the ant colony optimisation (ACO) algorithm.At the same time the efficiency of adaptive search calculation,was also significantly improved.The method of the ACOW algorithm was compared with the soft wavelet method,gradient-based wavelet method and the genetic optimisation wavelet (GOW)method.Using these four methods to denoise four typical signals,different mean square errors(MSE),magnitude errors(ME)and time costs were obtained.Interestingly,the results show that the ACOW method can achieve the minimum MSE and has less time cost.It generates significantly smaller waveform distortion than the other three threshold estimation methods.In addition,the high efficiency and good quality of the output signals are beneficial to the diagnosis of local discharge signals in intelligent substations.

    1|INTRODUCTION

    For meeting the demand of substation automation communication system standards,realising rapid and accurate detection and transmission of signals,the PD signals detected by power equipment must be digitally transmitted [1,2].Because of the strong electromagnetic waves,these signals must be denoised using certain digital approaches before being transferred [3].Condition signals,including stable signals like voltage and current signals,are used for relay protection.And unstable signals like partial discharge(PD)signals are vital for evaluating the conditions of electrical equipment [4].The way of the wavelet method is widely used in intelligent substations for denoising PD signals.It is vital for avoiding electrical accidents from happening or reducing them to extract discharge information.Therefore,denoise signals play an important role in the processing of PD signals [5-7].

    Obtaining the minimum mean squared error(MSE)and the best wavelet parameters is the key work of denoising signals.Recently,for solving the issue of denoising signals,various optimisation algorithms have been proposed in different fields,for example,clinical diagnosis,PD,and so on.Z.A.A.Alyasseri et al.in[8-12]proposed the hybridising method that involves the wavelet transform with theβ-Hill climbing algorithm and the wavelet transform with the genetic algorithm,which were used for denoising electrocardiogram (ECG) and the electroencephalogram (EEG) signals by obtaining the optimal wavelet parameters.The proposed method had high efficacy and reliability.The literature[13]presents db4,sym7,bior3.9,and coif3,which are four mother wavelet functions,to denoise EEG signals.

    Obtaining the global optimal threshold and improving the convergence accuracy and speed are challenge tasks.Different advanced optimisation algorithms have been proposed by many scholars.Cai et al.[14] showed a method involving an improved quantum-inspired cooperative co-evolution algorithm to improve the global search capability.Deng et al.[15,16] came up with an improved differential evolution algorithm with a wavelet basis function to obtain better optimisation capabilities and higher convergence accuracy.Y.J.Song et al.[17] had an enhanced success history when they used calculate-adaptive DE for parameter optimisation of photovoltaic models.Deng et al.[18] presented an improved PSO-based QEA method to calculate gate resource allocation.Deng et al.[19] have solved the global optimisation problems using an enhanced improved quantum-inspired differential evolution with multistrategies algorithm with novel multiple strategies.Studies [20] show the calculation of the optimal threshold of the wavelet shrinkage method by the gradientbased wavelet (GW) threshold.However,it shows the disadvantages of denoising PD signals,as demonstrated in the literature[21].The genetic approach[22]is used to denoise PD signals and its procedure is explained in [23,24].However,the genetic procedure is complicated and following it to extract the signals in the field is time consuming [25-27].The aim of the article is to get a faster and more robust method for denoising the state signals of smart substations [28-30].

    Because of the robustness,stability,and high efficiency of the wavelet method,and the robustness and quick convergence of the ant colony optimisition (ACO) algorithm,an enhanced wavelet method,improved by the ACO algorithm,is applied to extract the stable and unstable signals in intelligent substations and this method has been presented in this article.In the ant colony optimisition wavelet (ACOW),the continuous derivative threshold function and the ACO algorithm is used to obtain the global optimal threshold.The efficiency of the adaptive search calculation is also significantly improved.The ACOW is used to estimate the threshold value of wavelet and denoise signals.The soft wavelet (SW) method,GW method and the genetic optimisation wavelet (GOW) method are also used for denoising comparative experiments.The results demonstrate that the ACOW method can effectively clear white noise.Compared with the other three algorithms,the ACOW shows a superior denoising ability.

    The main contributions of the article are showed as follows:

    (1) An enhanced wavelet method improved by the ACO algorithm is used to effectively clear white noise.Based on the continuous derivative threshold function and the ACO algorithm,the global optimal threshold can be obtained.

    (2) The ACOW causes a significantly smaller distortion to denoised signals than any of the other methods.In addition,compared with other methods,it has a faster calculation speed and is more robust.

    (3) Among all the other methods,the ACOW method can achieve the minimum mean square error (MSE) and magnitude error (ME).

    The remaining part of the article is arranged as follows:Section 2 illustrates the types of stable and unstable signals and how to establish them.Section 3 introduces the ant colony optimisation (ACO) wavelet method in detail.Section 4 shows the denoising experiment and analyses the experimental results of four methods.The conclusion is presented in Section 5.

    2|CONDITION SIGNALS IN INTELLIGENT SUBSTATIONS

    Quite a few stable signals exist in intelligent substations,for example,stable voltage and current signals' output by transformers.But the influence of harmonics and electromagnetic interference make the stable signals distorted.Therefore,Blocks,Bumps,HeaviSine and Doppler signals [19],with lengths of 4096 points,are selected to simulate the stable voltage and current signals with harmonics in intelligent substations,as illustrated in Figure 1.

    There are some non-stable signals in intelligent substations,among which the PD signals are one of the typical short-term transient signals.And the signals that the PD online monitoring broadband measurement system may measure can be simulated by the attenuation oscillation pulses,which is shown(1) in the following:

    whereMis the amplitude coefficient,α1andα2are attenuation constants,ω=2πfis the oscillation frequency andψ=arctan(ω/τ2).

    Figure 2 shows two simulative PD high-frequency signals with lengths of 2048 points used to simulate the non-stable condition signals.The parameters of vibrate PD signals in this article areM=1,α1=×106s-1,α2=1×107s-1,f=1 MHz,as illustrated in Figure 2(b).

    We not only compare with the denoising effect of different kinds of simulative signals but also the field PD signal.Figure 3 shows a field PD signal detected in a 500 kV electrical transformer by a PD online monitoring system.The system includes a sampling system,with a sampling rate of 3mb/s,and a high-frequency current transformer,with a frequency passband between 50 kHz and 1 MHz.

    FIGURE 1 Four artificially stable signals.(a)-(d) signals of Blocks,Bumps,HeaviSine and Doppler

    FIGURE 2 Simulative partial discharge (PD) high-frequency signals.(a) pulse partial discharge signal;(b) vibrating partial discharge signal

    FIGURE 3 Detected partial discharge high-frequency signal

    3|ANT COLONY Optimisation WAVELET METHOD

    At momenti,suppose sequenceY={y1,y2,…yN-1}is an observation of the noise signals and sequences={s0,s1,…,sN-1}is the true value of the signals.

    whereniis a separate distribution of Gaussian white noise.The estimated signal?of noise signalYcan be derived by wavelet denoising and make the minimum MSE of both?ands.

    The thresholdλ(t+1)for the number of iterations oft-1 equals to the thresholdλ(t)for the number of iterations oftminus the MSE ξ(t)function gradient values Δλ(t),as follows:

    whereμis step [31] and Δλ(t)is expressed as Equation (4).

    where gkis the function estimate expression anddj,kis the wavelet detail coefficient of scalej.

    In Equation (4),the hard threshold function and soft threshold function cannot perform adaptive iterations because of their discontinuous derivatives.Therefore,the best threshold cannot be obtained.

    For obtaining the best threshold,another threshold function is presented in this article as Equation (5).

    whereαis a real number andα=0.5 in this article.

    Equations (6) and(7) represent the first derivative and the second-order derivative,respectively,of the hard threshold function,soft threshold function andηα(y,λ),as follows:

    By replacing (3)and(4)with types,5,6 and 7,the adaptive iteration calculation of the wavelet thresholds can be carried out and the optimal wavelet threshold can be obtained.

    The ACO algorithm has many advantages.It is a simple and robust algorithm with few parameters and is suitable for field applications.Therefore,we use the ant colony algorithm to improve the GW method,the procedure of which is presented in [19,23].

    Multi-scale wavelet coefficients of condition signals are calculated by wavelet decomposition.Thresholdλin the GW method,randomly obtained betweenλminand λmax,is each ant in the ACOW.The calculated equations ofλminandλmax,described in the literature [23],are adopted in this article.The evaluation of the fitness of each individual ant is denoted by ?λ(n),as expressed in Equation (8) [19].When it reaches the minimum value,the optimum threshold is obtained.

    where the threshold functionη(djk,λ),used in this manuscript,is referred,as in [25].

    The probability Pkp,q(n)of thekth ant moving from citypto cityqis shown in Equation (9).

    wherenis the iterative step,Mis the next city accepted of antKandτp,qis the number of pheromones deposited during the transition from cityptoq.The distance between the current city and the next city islp,q,ηp,q=1/lp,q.αandβ arethe parameters which control the influence ofτp,qandηp,q,respectively (α≥0,β≥1).

    After completing thenth computation cycle,the ant colony will update the (n+1)th trajectory using Equations (10)and (11).

    The ant colony from thenth stage to the(n+1)th on side(p,q) is symbolised by △τp,q,and antkfrom thenth stage to the (n+1)th on side (p,q) is symbolised by △τkp,q.ρrepresents the pheromone evaporation coefficient,taking 0 ≤ρ≤1.△τkp,qis shown in Equation (12).

    whereQis a constant andLkis the cost of thekth ant's tour in the iterative process.The optimised parametersQ,α,βandρin the ACO algorithm are defined from the experiments.

    Once the fitness △λ(n)becomes minimum,the optimum threshold is calculated asλ(n)=λ(n-1)+△λ(n).

    The general procedure of the ACOW method is shown in Figure 4.The parameters of the ACOW algorithm are set as follows:

    (1) Number of ant coloniesKis 40,

    (2) The city numberMis 50,

    (3) The maximum iteration numbernmaxis 500.

    4|DENOISING EXPERIMENTS

    For verifying the effectiveness of the ACOW method on signal denoising,the other three denoising methods were used to perform the denoising experiments in this article:

    (a) SW:soft wavelet method presented in [18].

    (b) GW:gradient-based wavelet method presented in [19].

    (c) GOW:genetic optimisation wavelet method presented in[17].

    White noise with different signal-to-noise ratios(SNR)was embedded in different signals.And the signals embedded in white noise were denoised by the ACOW,SW,GW and GOW methods.The effectiveness of these four denoise methods was compared.

    The denoising object and the denoising method have been introduced above.Next,we will compare and analyse the denoising results of using the SW,GW,GOW and ACOW denoising methods for different signals.

    4.1|Denoising of artificial signals

    Four denoising methods are used to denoise artificial signals.

    FIGURE 4 Flowchart of ant colony optimisition wavelet denoising method

    FIGURE 5 The denoised result of blocks.(a) Initial signal;(b) Initial signal with white noise;(c-f) denoised by soft wavelet,gradient-based wavelet,genetic optimisation wavelet and ant colony optimisition wavelet

    FIGURE 6 The denoised result of Bump.(a) Initial signal;(b) Initial signal with white noise;(c-f) denoised by soft wavelet,gradient-based wavelet,genetic optimisation wavelet and ant colony optimisition wavelet

    FIGURE 7 The denoised result of HeaviSine.(a) Initial signal;(b) Initial signal with white noise.(c-f) denoised by soft wavelet,gradientbased wavelet,genetic optimisation wavelet and ant colony optimisition wavelet

    FIGURE 8 The denoised result of Doppler.(a)Initial signal;(b)Initial signal embedded in white noise.(c-f) denoised by soft wavelet,gradientbased wavelet,genetic optimisation wavelet and ant colony optimisition wavelet

    Figures 5-8 show the denoising results of artificial signals using four methods.The Db8 wavelet was selected in this article,and 6 was selected as the largest wavelet decomposition level.Figure 5-8(a) are the initial signals of Blocks,Bumps,HeaviSine and Doppler.Figures 5-8(b) are the initial signals with the white noise of Blocks,Bumps,HeaviSine and Doppler.White noise withσs/σeof six is embedded in four artificially stable signals,whereσsrepresents the standard deviation of the signal andσerepresents the standard deviation of the noise.Figure 5-8(c-e) show the denoising results of the four artificially stable signals using the SW,GW,GOW and ACOW methods,respectively.The results show that the denoising ability of the ACOW method is significantly higher than that of the other three methods.The signals after denoising are closest to the initial signals and retain more signal characteristics.In addition,it is difficult for the SW method to extract the original signals.The GW and GOW methods can retain the signal characteristics,but there is still more white noise in the four signals.

    The MSE and the time cost are the criteria for measuring the effectiveness of signal denoising.Table 1 shows the(MSE)[19] of the four artificial signals using the four methods.For the same signal,the ACOW method has the minimum MSE among the four methods,followed by the GOW,GW and SW methods.It indicates that the ACOW method generates significantly smaller distortion than the other methods.

    TABLE 1 Mean square errors of the four signals denoised by the four methods

    TABLE 2 Time cost of the four methods (unit:second)

    Table 2 shows the time costs of the four methods.The SW method takes the shortest time,and the time costs of the GOW and ACOW methods are much less than that of the GW method.Furthermore,the time cost of the ACOW method amounts to only about 20 percent of that of the GOW method.

    4.2|Denoising of PD signals

    The literature [21] reports that the GW method is not competent enough to denoise PD signals.Therefore,this article conducts further research on denoising PD signals with different white noise-embedded SNRs.Table 3 shows the MSE and ME of the pulse PD and vibrating PD signals [23].After denoising the signals embedded with the same SNR by four kinds of methods,the minimum MSE and ME were obtained by the ACOW method.When the SNR is 1,the ME of the SW and GW methods exceeds 20%,while the ME of the GOW and ACOW methods is only around 4%.The MSE of the GOW method is very small at 0.0101,but the ACOW method's MSE is even smaller at 0.0065.It indicates that the GOW and ACOW methods,especially the latter one,generate smaller distortions than the SW and GW methods.Interestingly,for the same signals and denoising method,the higher the SNR,the lower the MSE and ME after denoising,which indicates that the higher the SNR,the more effectively the noise that can be captured and removed.

    Table 4 shows the time cost of the four denoising methods for PD signals with an SNR of 1.The time cost of denoising PD signals by the GW method is an order of several hundreds of seconds.The time cost of the GOW method is about 3s.The time cost of the ACOW and SW methods is no more than 1s.Even the time cost of the SW method is about 0.5s less than that of the ACOW method.But the ACOW method has demonstrated superior noise removal capabilities on the MSE and ME.It shows that the ACOW method is the most effective of the four methods for denoising PD signals.

    The wavelet base and the largest wavelet decomposition level used for denoising the simulative PD signals are identical to those used for denoising stable signals.Figure 9-10 showthe results of four denoising methods for two different PD signals.

    TABLE 3 The denoising result of partial discharge (PD) signals

    TABLE 4 Time cost of four methods (unit:second)

    FIGURE 9 Denoised results of pulse partial discharge signal.(a)Initial signal.(b) Initial signal with simulative white noises.(c-f) Signals denoised by soft wavelet,gradient-based wavelet,genetic optimisation wavelet and ant colony optimisition wavelet

    Figures 9-10(a) depict the initial signals of the pulse PD signal and the vibrating PD signal.Figures 9-10(b) depict the initial signals embedded with white noise,with an SNR of 1.Figures 9-10(c-e) show the denoising results of the four artificially stable signals,denoised by the SW,GW,GOW and ACOW methods.Obviously,in both PD signals,the PD signals for which the ACOW denoising method is followed are closer to the initial PD signals than those signals for which the SW,GW,and GOW methods are followed.Besides,the PD signals denoised by the ACOW methods reach the minimum ME among the four methods.

    4.3|Denoising of field‐detected PD signals

    FIGURE 10 Denoised results of vibrating partial discharge signal.(a) Initial signal;(b) Initial signal embedded in simulative white noises;(c) Denoised by soft wavelet,gradient-based wavelet,genetic optimisation wavelet and ant colony optimisition wavelet

    FIGURE 11 Denoising example of field partial discharge signal in a 220 kV transformer.(a)Field-detected signal;(b-d)Denoised signals by the soft wavelet,genetic optimisation wavelet and ant colony optimisition wavelet

    The db8 wavelet was used for denoising field-detected PD signals.Figure 11 displays the signals denoised by the SW,GOW and ACOW method.The GW method is excluded because the result of the GW method is invalid and the convergence is very slow.Figure 11(a) depicts the initial signals of the field PD signal.Figure 11(b-d) show the denoising results of the SW,GOW and ACOW methods.Figure 11(a) shows that the SW method can hardly extract PD pulses.Figures 11(c) and (d) indicate that PD pulses hidden in the noise appear,especially those pulses denoised by the ACOW method,which is focussed on by the ellipsoids.In addition,ACOW method takes less time than the GOW method.This demonstrates that the ACOW method is more competent than the SW,GW and GOW methods at denoising fielddetected PD signals.

    5 CONCLUSIONS

    An enhanced wavelet method improved by the ACO algorithm is applied to denoise condition signals of intelligent substations.Artificial signals,simulative PD and field-detected PD signals have been used as experimental signals.The proposed ACOW,SW,GW and GOW methods are applied to denoise the selected signals.The conclusions were drawn as follows:

    (1) The denoise analysis of artificial signals shows that the signals are closest to the initial signals after denoising and retain more signal characteristics.The time cost of the ACOW method can be also shortened to a great extent.

    (2) The denoise analysis of simulative PD signals indicate that the ACOW method has a higher ability of denoising than those the SW,GW,and GOW methods.In addition,the ACOW method has less time cost than the GOW method.This indicates that the way of ACOW is a promising technique to denoise signals of electrical equipment in practical circumstance.

    (3) The denoise analysis of field-detected PD signals with strong background noise shows that the GW method can no longer converge,while the ACOW method can effectively extract weak local discharge pulses.It is shown that the ACOW method has a good denoise effect in the application of state signal processing,and it is beneficial to realising the fast and real-time network communication of intelligent substations.

    Although the proposed ACOW method can effectively solve the problem of denoising compared with the AW,GW and GOW methods,it has problems such as complex calculation.Experimental results show that the time cost of the ACOW and SW methods is no more than 1s.Even the time cost of the SW method is about 0.5s less than that of the ACOW method.It indicates that the calculation speed of the ACOW method should be improved.But the ACOW method exhibited excellent results when it was adopted for signal denoising,according to the MSE and ME.The authors intend to apply the proposed technique to more complex signals,such as the EEG signal,in future studies.

    ACKNOWLEDGEMENTS

    This work is supported by the National Key Research and Development Program (2018YFB2100100) and the Joint Funds of the National Natural Science Foundation of China(U1866603).The project is supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No.KJQN202001146) and the Program of Chongqing Banan District (2020QC407).

    ORCID

    Xiao Yanghttps://orcid.org/0000-0001-6987-9357

    Yuan Yanghttps://orcid.org/0000-0002-8111-1460

    www.色视频.com| 一个人观看的视频www高清免费观看| 午夜精品在线福利| 伊人久久国产一区二区| 伦精品一区二区三区| 日本黄大片高清| 国产一区二区三区av在线| 免费不卡的大黄色大毛片视频在线观看 | 97精品久久久久久久久久精品| 春色校园在线视频观看| 麻豆av噜噜一区二区三区| 欧美 日韩 精品 国产| 两个人视频免费观看高清| 午夜福利视频1000在线观看| 久久精品久久久久久久性| 国产乱人偷精品视频| 精品少妇黑人巨大在线播放| 在线天堂最新版资源| 久久热精品热| 久久99热这里只有精品18| 男女边吃奶边做爰视频| 在线观看免费高清a一片| 五月天丁香电影| 啦啦啦啦在线视频资源| 精品久久久久久久久久久久久| 亚洲不卡免费看| 青春草国产在线视频| 91精品国产九色| 男女那种视频在线观看| 国产一区亚洲一区在线观看| 视频中文字幕在线观看| 亚洲精品国产av成人精品| 最近的中文字幕免费完整| 欧美极品一区二区三区四区| 成人午夜精彩视频在线观看| 亚洲18禁久久av| 能在线免费看毛片的网站| 国产精品一区二区三区四区免费观看| 国产精品综合久久久久久久免费| 黄片wwwwww| 国产精品一区二区三区四区久久| 欧美日韩视频高清一区二区三区二| 精品久久久久久久末码| 国产中年淑女户外野战色| 午夜精品在线福利| 久热久热在线精品观看| 免费人成在线观看视频色| 日韩,欧美,国产一区二区三区| 精品一区二区三区人妻视频| 欧美日韩精品成人综合77777| 国产精品一区二区三区四区久久| 欧美bdsm另类| 国产亚洲最大av| 18禁在线无遮挡免费观看视频| 国产激情偷乱视频一区二区| 超碰97精品在线观看| 亚洲天堂国产精品一区在线| 久久久久精品性色| 一区二区三区乱码不卡18| 非洲黑人性xxxx精品又粗又长| 99久久人妻综合| 午夜免费男女啪啪视频观看| 欧美区成人在线视频| 久久99蜜桃精品久久| 精品午夜福利在线看| 久久97久久精品| 免费观看的影片在线观看| 国产一级毛片在线| 赤兔流量卡办理| 人体艺术视频欧美日本| 欧美bdsm另类| 国精品久久久久久国模美| 水蜜桃什么品种好| 亚洲av成人精品一区久久| 搞女人的毛片| 蜜臀久久99精品久久宅男| 国产精品久久久久久精品电影| 欧美性猛交╳xxx乱大交人| 99九九线精品视频在线观看视频| 三级毛片av免费| 十八禁国产超污无遮挡网站| 欧美最新免费一区二区三区| 十八禁网站网址无遮挡 | 亚洲真实伦在线观看| 色吧在线观看| 久久韩国三级中文字幕| 亚洲成人一二三区av| 精品一区二区三卡| 1000部很黄的大片| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久久大尺度免费视频| 女的被弄到高潮叫床怎么办| 一个人看视频在线观看www免费| 91久久精品电影网| 97超视频在线观看视频| 午夜亚洲福利在线播放| 最近的中文字幕免费完整| 国产精品不卡视频一区二区| 午夜福利网站1000一区二区三区| 亚洲av福利一区| 六月丁香七月| 精品99又大又爽又粗少妇毛片| 成人高潮视频无遮挡免费网站| freevideosex欧美| av一本久久久久| 老司机影院成人| 99热这里只有精品一区| 日本免费在线观看一区| 99久久精品热视频| 国产成人a∨麻豆精品| 久久人人爽人人片av| 免费少妇av软件| 久久久欧美国产精品| 精品国产一区二区三区久久久樱花 | 99热网站在线观看| 亚洲欧美日韩卡通动漫| 99久国产av精品| 午夜免费男女啪啪视频观看| 国产女主播在线喷水免费视频网站 | 搡女人真爽免费视频火全软件| 我要看日韩黄色一级片| 久久精品夜色国产| 午夜免费观看性视频| 日本-黄色视频高清免费观看| 免费播放大片免费观看视频在线观看| 69人妻影院| 99热全是精品| 最近最新中文字幕大全电影3| 精品酒店卫生间| 国产真实伦视频高清在线观看| 高清av免费在线| 久久久久九九精品影院| videos熟女内射| 欧美不卡视频在线免费观看| 亚洲熟女精品中文字幕| 成人漫画全彩无遮挡| 久久久久精品性色| 日韩一区二区视频免费看| 欧美xxⅹ黑人| 国产成年人精品一区二区| 18禁裸乳无遮挡免费网站照片| 蜜桃亚洲精品一区二区三区| 免费看光身美女| 亚洲欧美精品专区久久| 一级二级三级毛片免费看| 美女高潮的动态| 久久久精品免费免费高清| 免费看a级黄色片| 国产精品爽爽va在线观看网站| 精品一区二区三区视频在线| 日韩电影二区| 国产黄片美女视频| 男人舔女人下体高潮全视频| 最后的刺客免费高清国语| 欧美成人午夜免费资源| 亚洲经典国产精华液单| 五月伊人婷婷丁香| 麻豆国产97在线/欧美| 在线观看免费高清a一片| 日韩亚洲欧美综合| 中文字幕免费在线视频6| 日本三级黄在线观看| 小蜜桃在线观看免费完整版高清| 日韩精品青青久久久久久| 久久久久久伊人网av| 性插视频无遮挡在线免费观看| 国产亚洲精品久久久com| 国产探花在线观看一区二区| 亚洲乱码一区二区免费版| 淫秽高清视频在线观看| 麻豆av噜噜一区二区三区| 久久亚洲国产成人精品v| 免费观看a级毛片全部| 少妇裸体淫交视频免费看高清| 久久人人爽人人片av| 日日摸夜夜添夜夜添av毛片| 午夜日本视频在线| 国产免费视频播放在线视频 | 日韩人妻高清精品专区| 国产黄a三级三级三级人| 国产精品美女特级片免费视频播放器| 在线播放无遮挡| 国产av在哪里看| 综合色丁香网| 国产久久久一区二区三区| 中文字幕av在线有码专区| 夫妻性生交免费视频一级片| 久久久成人免费电影| 在线观看免费高清a一片| 精品久久久久久成人av| 精品不卡国产一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产黄片视频在线免费观看| 99久国产av精品| av在线老鸭窝| 两个人的视频大全免费| 狂野欧美激情性xxxx在线观看| 国产乱来视频区| 联通29元200g的流量卡| 国产精品综合久久久久久久免费| 国产精品女同一区二区软件| 国产 一区 欧美 日韩| 国产高清不卡午夜福利| 亚洲av男天堂| 好男人在线观看高清免费视频| 亚洲国产日韩欧美精品在线观看| av网站免费在线观看视频 | 久久久久网色| 日韩欧美一区视频在线观看 | 亚洲高清免费不卡视频| 十八禁国产超污无遮挡网站| 亚洲熟女精品中文字幕| 免费大片18禁| 亚洲人成网站高清观看| 欧美日本视频| 久久99蜜桃精品久久| 国模一区二区三区四区视频| 国产伦精品一区二区三区四那| 日韩一本色道免费dvd| 亚洲欧美成人综合另类久久久| 深爱激情五月婷婷| av国产久精品久网站免费入址| 成年免费大片在线观看| 午夜久久久久精精品| 亚洲在线自拍视频| 精品久久久久久久久久久久久| 七月丁香在线播放| 亚洲精品日韩av片在线观看| a级毛片免费高清观看在线播放| 最近视频中文字幕2019在线8| 丰满少妇做爰视频| 久久97久久精品| 亚洲最大成人手机在线| 麻豆精品久久久久久蜜桃| 久热久热在线精品观看| 乱码一卡2卡4卡精品| 观看免费一级毛片| 亚洲av中文字字幕乱码综合| 一个人看视频在线观看www免费| 天天一区二区日本电影三级| 老司机影院毛片| 午夜日本视频在线| 久久国产乱子免费精品| 久久这里只有精品中国| 国产黄a三级三级三级人| 天天躁日日操中文字幕| 最近2019中文字幕mv第一页| 成年免费大片在线观看| 国产久久久一区二区三区| 成年女人在线观看亚洲视频 | 毛片一级片免费看久久久久| av国产久精品久网站免费入址| 乱系列少妇在线播放| 亚洲人成网站在线播| 久久久a久久爽久久v久久| 麻豆成人av视频| 国产精品一区二区在线观看99 | 天天躁夜夜躁狠狠久久av| 午夜日本视频在线| 日韩av免费高清视频| 大片免费播放器 马上看| 韩国高清视频一区二区三区| 又黄又爽又刺激的免费视频.| 免费观看精品视频网站| 在线播放无遮挡| 日本免费在线观看一区| av播播在线观看一区| 草草在线视频免费看| 午夜激情久久久久久久| 久久97久久精品| 国产黄色视频一区二区在线观看| 禁无遮挡网站| 97精品久久久久久久久久精品| 内地一区二区视频在线| 免费观看精品视频网站| .国产精品久久| 久久精品人妻少妇| 久久久久久久久大av| 久久综合国产亚洲精品| 日韩亚洲欧美综合| 嘟嘟电影网在线观看| 亚洲av免费高清在线观看| 少妇丰满av| 听说在线观看完整版免费高清| 美女内射精品一级片tv| 在线 av 中文字幕| 99热全是精品| 成人综合一区亚洲| 亚洲欧美成人精品一区二区| 亚洲经典国产精华液单| 久久久亚洲精品成人影院| 日韩制服骚丝袜av| 亚洲高清免费不卡视频| 真实男女啪啪啪动态图| 色综合色国产| 国内精品宾馆在线| 能在线免费观看的黄片| 少妇熟女欧美另类| 人妻系列 视频| av黄色大香蕉| 久久精品国产亚洲av涩爱| 十八禁网站网址无遮挡 | 亚洲欧美中文字幕日韩二区| 干丝袜人妻中文字幕| 亚洲丝袜综合中文字幕| 三级男女做爰猛烈吃奶摸视频| 亚洲自拍偷在线| 国产单亲对白刺激| 一级爰片在线观看| 黄色配什么色好看| 亚洲av中文av极速乱| www.色视频.com| 国产精品爽爽va在线观看网站| 女人十人毛片免费观看3o分钟| 日日干狠狠操夜夜爽| 在现免费观看毛片| 乱码一卡2卡4卡精品| 国产白丝娇喘喷水9色精品| 亚洲精品乱码久久久久久按摩| 国产一区亚洲一区在线观看| 男女视频在线观看网站免费| 最近2019中文字幕mv第一页| 久久精品国产鲁丝片午夜精品| 欧美人与善性xxx| 中文欧美无线码| 精品久久国产蜜桃| 亚洲四区av| 中文在线观看免费www的网站| 一个人看的www免费观看视频| 亚洲精品日韩av片在线观看| 国产高清国产精品国产三级 | 久久久精品免费免费高清| 亚洲av二区三区四区| 欧美日韩在线观看h| 天美传媒精品一区二区| 亚洲精品第二区| 乱码一卡2卡4卡精品| 内地一区二区视频在线| 亚洲精品一二三| 国产精品人妻久久久久久| 看十八女毛片水多多多| 欧美日韩精品成人综合77777| 舔av片在线| 韩国av在线不卡| 国产在线男女| 久久久久久九九精品二区国产| 美女黄网站色视频| 欧美激情在线99| 男人狂女人下面高潮的视频| 在线播放无遮挡| 纵有疾风起免费观看全集完整版 | 男女啪啪激烈高潮av片| 免费观看a级毛片全部| 一级毛片久久久久久久久女| 亚洲国产精品成人久久小说| 联通29元200g的流量卡| 99视频精品全部免费 在线| 久久精品夜夜夜夜夜久久蜜豆| 少妇猛男粗大的猛烈进出视频 | 亚州av有码| 精品欧美国产一区二区三| 免费观看精品视频网站| 成人毛片a级毛片在线播放| 亚州av有码| 春色校园在线视频观看| 午夜久久久久精精品| 99视频精品全部免费 在线| 91av网一区二区| 国精品久久久久久国模美| 女的被弄到高潮叫床怎么办| 看免费成人av毛片| 精品人妻视频免费看| 视频中文字幕在线观看| 一级av片app| 久久久久久久久久成人| 日韩一区二区视频免费看| av.在线天堂| 九色成人免费人妻av| 能在线免费观看的黄片| 亚洲丝袜综合中文字幕| 亚洲精品aⅴ在线观看| www.色视频.com| 日本av手机在线免费观看| 国产成人91sexporn| 青春草亚洲视频在线观看| 高清欧美精品videossex| 超碰97精品在线观看| 国产日韩欧美在线精品| 国产成人一区二区在线| 免费高清在线观看视频在线观看| 国产高清国产精品国产三级 | 老司机影院毛片| 久久久久免费精品人妻一区二区| 亚洲av国产av综合av卡| 26uuu在线亚洲综合色| 国产视频首页在线观看| 色视频www国产| 十八禁网站网址无遮挡 | 亚洲av成人av| 51国产日韩欧美| 国产精品人妻久久久久久| 99久久精品热视频| 97精品久久久久久久久久精品| 亚洲成色77777| 麻豆国产97在线/欧美| 国产单亲对白刺激| 日本-黄色视频高清免费观看| 午夜亚洲福利在线播放| 国产免费又黄又爽又色| av国产免费在线观看| 国产片特级美女逼逼视频| 亚洲,欧美,日韩| 爱豆传媒免费全集在线观看| 超碰97精品在线观看| 夜夜看夜夜爽夜夜摸| 国产精品女同一区二区软件| 久99久视频精品免费| 看黄色毛片网站| 午夜福利在线在线| 一级毛片久久久久久久久女| 超碰97精品在线观看| 波野结衣二区三区在线| av播播在线观看一区| av卡一久久| 十八禁国产超污无遮挡网站| 亚洲精品aⅴ在线观看| 色综合站精品国产| 水蜜桃什么品种好| 十八禁国产超污无遮挡网站| 你懂的网址亚洲精品在线观看| 亚洲av成人av| 国产精品久久久久久精品电影小说 | 热99在线观看视频| 能在线免费看毛片的网站| 成人亚洲精品av一区二区| 亚洲精华国产精华液的使用体验| 又爽又黄无遮挡网站| 国产探花极品一区二区| 国产一区二区在线观看日韩| 国产精品久久久久久av不卡| 日韩欧美国产在线观看| 国产爱豆传媒在线观看| 视频中文字幕在线观看| 色尼玛亚洲综合影院| 欧美区成人在线视频| 亚洲精品乱久久久久久| 国产精品久久久久久精品电影小说 | 91精品伊人久久大香线蕉| 晚上一个人看的免费电影| .国产精品久久| 国产精品一及| 美女内射精品一级片tv| 成人欧美大片| 日韩中字成人| 亚洲最大成人手机在线| 免费大片黄手机在线观看| 日产精品乱码卡一卡2卡三| 亚洲欧美日韩卡通动漫| 成人二区视频| 国产白丝娇喘喷水9色精品| 高清av免费在线| 亚洲精品中文字幕在线视频 | 五月伊人婷婷丁香| 婷婷色综合www| 久久久久久久久中文| 在线观看一区二区三区| 国内精品宾馆在线| 97超碰精品成人国产| 亚洲真实伦在线观看| 卡戴珊不雅视频在线播放| 国产免费又黄又爽又色| 亚洲精品乱码久久久久久按摩| 91精品伊人久久大香线蕉| 亚洲三级黄色毛片| 街头女战士在线观看网站| 亚洲欧美清纯卡通| 波多野结衣巨乳人妻| 又大又黄又爽视频免费| 国产精品久久久久久av不卡| 精品国内亚洲2022精品成人| 久久99精品国语久久久| 欧美一区二区亚洲| 国产在线一区二区三区精| 亚洲精品aⅴ在线观看| 舔av片在线| 久久久久久久久久久丰满| 久久久亚洲精品成人影院| 欧美性感艳星| 久久久a久久爽久久v久久| 国产三级在线视频| 性色avwww在线观看| 97超碰精品成人国产| 色吧在线观看| 婷婷色av中文字幕| 国产毛片a区久久久久| 国产成人精品婷婷| 欧美成人精品欧美一级黄| 国产精品一区二区性色av| 日韩成人av中文字幕在线观看| 日本一本二区三区精品| av播播在线观看一区| 精品久久久精品久久久| 亚洲天堂国产精品一区在线| 亚洲精品日韩在线中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品中文字幕在线视频 | 亚洲国产av新网站| 简卡轻食公司| 国内精品一区二区在线观看| 日韩三级伦理在线观看| 男人狂女人下面高潮的视频| 白带黄色成豆腐渣| 丰满乱子伦码专区| 老师上课跳d突然被开到最大视频| 免费看a级黄色片| 国产综合精华液| 天堂网av新在线| 亚洲精品成人久久久久久| 国产精品一区www在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲av.av天堂| 亚洲国产精品国产精品| 黄片无遮挡物在线观看| 听说在线观看完整版免费高清| 小蜜桃在线观看免费完整版高清| 中文精品一卡2卡3卡4更新| 日韩视频在线欧美| 又粗又硬又长又爽又黄的视频| 夜夜爽夜夜爽视频| 日韩av免费高清视频| 内地一区二区视频在线| 又大又黄又爽视频免费| 熟妇人妻不卡中文字幕| 黄片wwwwww| 成年av动漫网址| 免费播放大片免费观看视频在线观看| 亚洲av不卡在线观看| 亚洲av成人精品一二三区| 亚洲精品一区蜜桃| 在线免费观看的www视频| 国产精品麻豆人妻色哟哟久久 | 97精品久久久久久久久久精品| 亚洲精品亚洲一区二区| 秋霞在线观看毛片| 亚洲精品视频女| 国产精品美女特级片免费视频播放器| 国产永久视频网站| 一级黄片播放器| 日韩欧美精品v在线| 国产91av在线免费观看| 精品国产三级普通话版| 国产久久久一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 天堂影院成人在线观看| 国产成人91sexporn| 在线观看人妻少妇| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲欧美成人综合另类久久久| 国产91av在线免费观看| 男女下面进入的视频免费午夜| 亚洲精品456在线播放app| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久久久久丰满| 99久久中文字幕三级久久日本| 男女那种视频在线观看| av又黄又爽大尺度在线免费看| 国产成人精品一,二区| 亚洲av成人av| 波多野结衣巨乳人妻| 最近视频中文字幕2019在线8| 91狼人影院| 最近中文字幕高清免费大全6| 天天一区二区日本电影三级| 色播亚洲综合网| 国产黄片美女视频| 18禁裸乳无遮挡免费网站照片| 国内精品美女久久久久久| 午夜爱爱视频在线播放| 天天躁夜夜躁狠狠久久av| 男人爽女人下面视频在线观看| 国产永久视频网站| 国产中年淑女户外野战色| 国产免费福利视频在线观看| 卡戴珊不雅视频在线播放| 夫妻性生交免费视频一级片| 高清欧美精品videossex| 纵有疾风起免费观看全集完整版 | 午夜免费男女啪啪视频观看| 中国国产av一级| 国产成人精品福利久久| 欧美成人a在线观看| 一级毛片黄色毛片免费观看视频| 五月天丁香电影| 亚洲精品日韩在线中文字幕| 日本黄色片子视频| 草草在线视频免费看| 久久久久久久亚洲中文字幕| 2018国产大陆天天弄谢| 在线播放无遮挡| 丝袜美腿在线中文| 最近中文字幕2019免费版| 好男人在线观看高清免费视频| 亚洲av中文av极速乱| 一级av片app| 国产伦精品一区二区三区视频9| 成人美女网站在线观看视频| 淫秽高清视频在线观看| 亚洲欧美日韩东京热| 性色avwww在线观看| 男的添女的下面高潮视频| 天堂俺去俺来也www色官网 | 日韩av在线大香蕉| 日本-黄色视频高清免费观看| 狂野欧美白嫩少妇大欣赏| 亚洲自拍偷在线|