• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Testing the Empirical Relationship between Forbush Decreases and Cosmic Ray Diurnal Anisotropy

    2022-05-24 06:34:16JibrinAdejohAlhassanOgbonnayaOkikeandAugustineEjikemeChukwude

    Jibrin Adejoh Alhassan ,Ogbonnaya Okike ,and Augustine Ejikeme Chukwude

    1 Department of Physics and Astronomy,University of Nigeria,Nsukka 400001,Nigeria;jibrin.alhassan@unn.edu.ng

    2 Department of Industrial Physics,Ebonyi State University,Abakaliki 840001,Nigeria

    Abstract The abrupt aperiodic modulation of cosmic ray (CR) flux intensity,often referred to as Forbush decrease (FD),plays a significant role in our understanding of the Sun–Earth electrodynamics.Accurate and precise determinations of FD magnitude and timing are among the intractable problems in FD-based analysis.FD identification is complicated by CR diurnal anisotropy.CR anisotropy can increase or reduce the number and amplitude of FDs.It is therefore important to remove its contributions from CR raw data before FD identification.Recently,an attempt was made,using a combination of the Fourier transform technique and FD-location machine,to address this.Thus,two FD catalogs and amplitude diurnal variation (ADV)were calculated from filtered(FD1 and ADV) and raw (FD2) CR data.In the current work,we test the empirical relationship between FD1,FD2,ADV and solar-geophysical characteristics.Our analysis shows that two types of magnetic fields -interplanetary and geomagnetic (Dst) -govern the evolution of CR flux intensity reductions.

    Key words:methods:data analysis–methods:statistical–catalogs–Sun:coronal mass ejections(CMEs)–(Sun:)solar wind– (Sun:) solar-terrestrial relations– (ISM:) cosmic rays

    1.Introduction

    Galactic cosmic ray(GCR)intensity flux which is believed to be modulated by solar wind interplanetary magnetic field(IMF)structure,among several other agents,includes periodic and aperiodic components.The periodic category includes cosmic ray (CR) diurnal anisotropy (Okike 2021),27 days,and 11 yr long term modulations (Oh et al.2008).CR diurnal anisotropy may be viewed as a periodic,short-term variation in CR flux.It is the portion of the total CR intensity variation with 24 hr periodicity resulting from the Earth’s rotation about its axis coupled with the changes of asymptotic cone of acceptance of neutron monitors (NMs,Lockwood 1971).One of the abrupt time-intensity changes of CR flux is a Forbush decrease (FD)event which is named after the pioneer observer of the phenomenon,Forbush (1938).FD is a non-periodic sudden reduction in CR intensity flux caused by interplanetary disturbances(IPDs)in the form of magnetic field enhancements in interplanetary space and high velocity solar wind (Forbush 1938;Barouch&Burlaga 1975;Rao 1976).There are two main kinds of IPDs-sporadic and recurrent.Sporadic IPDs are caused by coronal mass ejections (CMEs) and their interplanetary version-interplanetary coronal mass ejections (ICMEs)while recurrent IPDs are associated with heliospheric current sheets and high-speed plasma flows from coronal holes (CHs)which co-rotate with the Sun(Belov et al.2001,2014;Alhassan et al.2021).FDs from CHs are known to have small magnitudes while those caused by CMEs have large magnitude signatures(Lockwood 1971;Belov et al.2009;Melkumyan et al.2019).

    Large FDs from isolated NMs appear to be relatively easier to detect than small events.This is attributed to the elusive nature of weak events believed to be caused by the masking tendencies of CR diurnal anisotropies (Barouch &Burlaga 1975).Apart from the challenges associated with weak event detection,Okike(2020a) observed that the inherent CR effects that range from enhanced diurnal anisotropies,signal superposition,periodicities,cycles to short-term random variations on the amplitude and timing of FDs (Cane et al.1996;Cane&Richardson 2003;Oh et al.2008;Richardson &Cane 2011) are scarcely removed from raw CR data.This is because the well-known manual method of FD detection is not capable of handling the superposed effects of the“unwanted signals”on CR data(Okike et al.2021).If the contributions of CR diurnal anisotropies are not considered before FD identification,some of the events selected might just be enhanced diurnal CR anisotropy,preincreases or pre-decreases that happen before the actual CR depression (Okike &Umahi 2019).Fully automated FD identification that clearly deals with these daunting issues has become the interest of recent works(e.g.,Okike&Umahi 2019;Okike 2020a,2021).

    In the study of empirical implication of conducting Chree analysis with data from isolated NM stations,Okike &Umahi(2019) developed an FD-location program which is based on Fourier transformation.Raw CR data are first transformed into sinusoidal waves.The imaginary part that handles the daily and diurnal variations is discarded.The real part serves as the input signal to the FD-location program.The FD-location program involves several different calculations.Some subroutines detect both small and large transient intensity reductions (minima/pits) as well as increases (maxima/peaks) in CR data.Other sub-modules calculate event magnitude,timing and cataloging of the events identified.The subroutines that track increases in CR flux in the form of solar energetic particles (SEPs) and ground level enhancements (GLEs) are disabled while only reductions in CR flux are selected.While Fourier transformation can remove the slow-moving signal in any data,a step beyond Fourier decomposition that can calculate the FD event date and magnitude is demonstrated in the referred publication.

    A direct application of Fourier transform techniques to handle the enhanced diurnal CR wave trains that accompany FDs is a subject of research interest.Okike(2020a)carried out a detailed study of simultaneous and non-simultaneous FDs with focus on the implications of CR diurnal oscillations on FDs at different geographical locations on Earth.This publication developed an FD location algorithm that was used to select FDs from both raw (unprocessed) and Fourier transformed CR data.The code which relies on static mean accepts raw CR data as input signal and is able to calculate both the event time and amplitude concurrently.In addition to the R program,the paper employed Fast Fourier transformation(FFT) in order to decompose the signals into their respective frequency domains to account for the CR diurnal anisotropy that occurs at the time of FDs.For the first time,the algorithm selected two FD catalogs-FD1(FD from preliminary processed data) and FD2 (FD from unprocessed data).The result of their analysis shows that the amplitude of a CR diurnal wave is about 13 or 20 times the magnitude predicted by Axford(1965)and McCracken&Rau(1965)respectively,but consistent with the high amplitude (≈10%) from Belov (2008).

    With some technical improvements in the FD location algorithm,Okike (2021) adjusted for the influence of anisotropy in CR data as well as removal of the solar cycle variations from the observed amplitude of FDs at Climax(CLMX) NM station.This algorithm allows for accurate calibration and ranking of FDs.A comparison of the amplitude of CR diurnal anisotropy with the raw CR data,the Fourier transformed signal and the associated FDs for the year 2003 at CLMX station was demonstrated (see Figure 1).The low velocity and high velocity signals were separated from the raw CR data using the FFT technique.The empirical connection between CR diurnal oscillation and FDs detected from unprocessed (FD2) and Fourier transformed (FD1) CR data is determined utilizing CR data from CLMX NM station for the period 1953–2006.Okike (2021) found strong and statistically significant correlations between FD1,FD2 and amplitude diurnal variation (ADV).The correlation coefficient between FD1 and ADV tends to be higher than that of FD2 and ADV.This underscores the proposition that CR anisotropy is an integral part of CR depressions.

    Figure 1.Comparison of the amplitude of CR diurnal anisotropy with the raw CR data,the Fourier transformed signal and the associated FDs for the year 2003 at CLMX station (adapted from Okike 2021).

    Using numerical filtering techniques on CR data from two isolated NM stations,Apatity (APTY) and Mt.Washington(MTWS),during high solar activity in 1972,Okike&Alhassan(2021),hereafter,Paper I,demonstrated that the low frequency component of CR flux in which CR anisotropy is coded could be disentangled from the rapidly varying portion that contains the FDs.The high velocity signal component is then passed on to an FD location software for accurate event timing and amplitude calculation (FD1) while the magnitudes of the CR diurnal anisotropies (ADV) are obtained from the low-energy spectrum of the raw CR data.An FD location algorithm was further used to estimate the amplitude of FDs from unprocessed CR data (FD2).Thus,two FD catalogs and ADV were calculated from Fourier decomposed (FD1 and ADV) and raw(FD2) CR data.A correlation coefficient of ≈0.98 was found between FDs at APTY and MTWS for both the raw and the transformed data.The high correlation between the FD amplitudes at the two stations may be an indication of the efficiency of the algorithms deployed in Paper I.Presently,there is no FD selection approach that can adequately solve all the problems associated with FD detection,hence the need to validate any selected FD list (Okike 2020b).Obtaining valid FDs is crucial since this approach as been suggested to be an important tool used to examine the electrodynamics of the solar-terrestrial connection (see Paper I).

    The two general approaches to FD identification from CR data include detection of FDs without recourse to solar-wind characteristics (e.g.,Pudovkin &Veretenenko 1995;Harrison&Ambaum 2010) and detection of FDs from CR data with solar-wind parameters (e.g.,Belov et al.2009;Ramirez et al.2013).The association between FD and speculated causative agents like CME,ICME,solar wind speed(SWS),geomagnetic storm index (Dst),IMF,etc.is not yet well understood.In the present work,the link between FD1,FD2,ADV catalogs from APTY and MTWS NM stations and the associated solar-wind data is tested to determine whether the events are real or spurious.

    2.Data

    The two FD catalogs:FD1-from Fourier transformed and FD2-from raw CR data with the corresponding daily ADV based on APTY (Longitude=43°.28N,Latitude=42°.69E,Rc=5.6 GV and Altitude=1700 m) and MTWS (Longitude=44°.27N,Latitude=?71°.30W,Rc=1.46 GV and Altitude=1909 m)high NM detectors are taken from Paper I.IMF,SWS and Dst data are downloaded from omniweb.gsfc.nasa.gov/html/ow data.html.

    3.Results and Discussions

    3.1.FD1,FD2 and ADV Versus Solar-geophysical Parameters

    The magnitudes of FDs and ADV for APTY and MTWS calculated by the FD location algorithm taken from Table 2 in Paper I with the corresponding solar wind parameters are as presented respectively in Tables 1–4.The regression and correlation results of the two FD data sets,ADV and solar wind data for APTY and MTWS detectors are given in Tables 5–8.The statistical significance test of the correlation coefficient(r)is based on the Fstatisticindicated on the regression result tables.Fstatisticrefers to the ratio of two variances that test significance of regression.The plots of the APTY and MTWS FD1 and FD2 versus IMF,SWS,Dst and ADV are displayed,respectively,in Figures 2–5.The corresponding regression Equations (1)–(3)(all not shown) for the graphs reflect the correlation results.

    Table 1 APTYFD1,ADV1 and Solar Wind Data

    Table 2 APTYFD2,ADV2 and Solar Wind Data

    The coefficient of determination (R2),r and chance probability (p-value) for FD?IMF diagrams in Figures 2(a),3(a),4(a) and 5(a) are given in Tables 5–8 respectively.Whereas the FD1?IMF and FD2?IMF respective correlation coefficients of ?0.63 and ?0.51 at APTY are statistically significant respectively at the 99% and 95% confidence levels,the correlation results for MTWS of ?0.32 and ?0.14 are statistically non-significant.The regression analysis of the FD?IMF relation at APTY and MTWS may imply that the FD cases from transformed and raw CR data are dependent on IMF intensity.

    Table 3 MTWSFD1,ADV1 and Solar Wind Data

    Table 4 MTWSFD2,ADV2 and Solar Wind Data

    Table 5 APTY FD1 Regression Results with other Parameters;Fcritical=7.88 (99%Confidence)

    Table 6 APTY FD2 Regression Results with other Variables;Fcritical=4.45;(95%Confidence)

    Table 7 MTWS FD1 Regression Results with other Variables;Fcritical=4.21;(95%Confidence)

    Table 8 MTWS FD2 Regression Results with other Variables;Fcritical=4.38;(95%Confidence)

    The FD-SWS plots displayed in Figures 2(b),3(b),4(b)and 5(b) yield correlation coefficients of ?0.02,?0.26,?0.44 and?0.41 respectively for FD1?SWS and FD2?SWS connections at the two stations.

    Figure 2.Scatter Plots of Magnitude of FD1APTY versus Solar Wind Parameters and CR Diurnal Anisotropy.

    Figure 3.Graph of Amplitude of FD2APTY versus Solar Wind Parameters and CR Diurnal Anisotropy.

    Figure 4.Plots of FD1MTWS Magnitude,Solar Wind Parameters and Magnitude of CR Diurnal wave.

    Figure 5.Correlation between FD2MTWS Event sizes,Solar Wind Parameters and Magnitude of CR Diurnal Wave.

    The FD-Dst relation is very striking.Compared to other parameters,the correlation coefficients for the FD-Dst relation are statistically significant at both stations for all the FD data sets.It is shown to be at the 99% and 95% confidence levels.This suggests that the CR variations at the two stations are driven by geomagnetic storm time activity.Quantitatively,from the R2values,Dst index appears to account for more than half of CR depressions in the present data.The plots of FD–ADV relation seem not to show any statistically significant correlations for the two data sets at the two stations

    We have studied the association between two separate FD catalogs (FD1 and FD2),solar-geophysical parameters and theassociated magnitudes of diurnal anisotropies observed at APTY and MTWS stations during the year 1972 which is a period of high solar activity.The results of FD1?IMF,FD1?Dst at APTY;FD1?SWS,FD1?Dst at MTWS which are statistically significant are consistent with the submission of Okike(2019)that found statistically significant correlations for FD–IMF (r=?0.39),FD?SWS (r=?0.71) and FD?Dst(r=0.45)for the processed CR data.FD1?SWS at APTY and FD1?IMF at MTWS that are statistically non-significant do not reflect their findings.

    Using a total of 17 and 68 FD events respectively,Kane(2010) and Lingri et al.(2016) investigated the connection between FD amplitude and Dst index but did not find any discernible pattern between the two parameters.Belov et al.(2001)found a correlation coefficient r <0.42 between FD and Dst.We find statistically significant FD2?Dst correlations contrary to their reports.This could be an indication of the differences in the semi-automated and the present fully automated FD event identification approaches (Alhassan et al.2021).Okike(2020b),from a critique of the traditional manual technique of determination of the magnitude of FDs,reported correlation coefficients for FD?Dst and FD?SWS relations at three CR stations:ESOI station (ESOI),McMurdo (MCMD)and Thule (THUL) respectively as 0.18,0.34,0.32 and 0.00,?0.11,?0.12.The non-statistically significant results we obtained here for FD2?SWS of r=?0.26 for APTY and?0.41 for MTWS are at variance with their result.Our result suggests that different mechanisms might be responsible for the FDs and SWS.The FD2?Dst results of r=0.76 and r=0.66 respectively for APTY and MTWS NMs reported in the current analysis agree with their finding.

    In an important review of FDs,Lockwood(1971)suggested that IMF and Dst are responsible for the high-frequency modulation of CRs.The strong connection between the amplitude of FD and Dst activity for the two data sets at the 99% and 95% confidence levels and FD?IMF relation at APTY for the two FD catalogs,significant at the 99%and 95%confidence levels reported here,is consistent with their proposition.In the context of previous publications,we report that these two types of magnetic fields (the interplanetary(IMF)and geomagnetic(Dst))could be the causative agents of the high frequency variation of CRs.Recently,Alhassan et al.(2021) found statistically significant correlations between FDs from raw CR data,IMF,SWS and Dst.The current results for FD2?IMF,FD2?Dst for APTY and FD2?Dst for MTWS reflect the finding of these authors.Our results of FD2?SWS at APTY and FD2?IMF,FD2?SWS at MTWS are contrary to their submissions.These present findings show that the mechanisms responsible for FD,IMF and SWS are not the same and also that IMF and SWS may not play significant roles in CR modulations when unprocessed data are considered as previously reported.This may also be due to the masking effect of diurnal anisotropy on the CR data.

    CR anisotropy has been identified as an important signal in CR flux intensity reductions by Okike(2021).For this reason,a linear relationship between the amplitude of FDs and the magnitude of the CR diurnal wave should be envisaged.We examined this relationship and found that there exists no statistically significant correlation between FD1,FD2 and the amplitude of the diurnal oscillation.Our regression analysis does not reflect the results of Okike(2021)in which significant correlation was reported especially between FD1 and ADV.This trend is understandable in light of the findings of Paper I.Paper I demonstrated that it is difficult to determine a pattern between FDs and ADV.This is due to the fact that in some cases,anisotropy tends to reduce the magnitude of FDs or enhance it.In some other cases,the effect seems negligible.The association between them is quite complex and does not seem to have a definite pattern.

    3.2.GCR Modulation Dependence on Rigidity/NM Efficiency

    It has been reported that an asymptotic cone of acceptance and geomagnetic cutoff rigidity determines whether a given NM observes an increasing or decreasing GCR flux (Smart &Shea 2003;D’Andrea et al.2009).This has been attributed to the fact that the distribution of GCR flux over the Earth is asymmetrical,but could be the result of the association between the IMF and the geomagnetic field at a particular location on Earth.We test the proposition that the monitors with the lowest vertical cutoff rigidity could be more sensitive to variation in counting rate with FDs observed at APTY and MTWS with different rigidities taken from Table 2 in Paper I.For the largest event on 1972 August 5,the magnitudes at APTY and MTWS are ?25.49% and ?29.22% respectively.From the event on 1972 June 18,?7.50% and ?8.57%magnitudes were calculated for APTY and MTWS respectively.For the smallest event on 1972 January 2,the amplitude at APTY is ?0.78% while that at MTWS is ?0.02%.Examining the corresponding events at the two stations,we observe that,on average,the NM at MTWS that is characterized by low vertical cutoff rigidity is more sensitive to CR intensity variations during FDs than the detector at APTY with higher rigidity.This result is consistent with the findings of Okike (2020b).

    4.Conclusions

    Raw CR data are characterized by high variability and different superposed signals of dissimilar periodicities,cycles and recurrences such as FDs,diurnal anisotropies,SEPs and GLEs(Okike 2021).The measurement of the magnitude of FDs and the accurate timing of its occurrence will be difficult to achieve with the manual FD detection method.Application of Fourier transform to isolated NM data is capable of filtering out undesirable signals superposed on raw CR counts.This led to the identification of two FD catalogs and ADV from filtered (FD1 and ADV) and raw (FD2) CR data by Paper I.Establishing the link between FD and solar-geophysical activity indices as a means of validating the FD list is still poorly understood as existing publications yield conflicting results.The conflicting submissions may be argued to stem from different FD data identified by investigators using different NM data.

    The two-dimensional regression analysis carried out in this study reveals that two types of magnetic fields -interplanetary(IMF)and geomagnetic(Dst)-appear to be responsible for FD detection as evident from FD?IMF/Dst statistically significant correlations.We did not find evidence of significant FD?ADV correlation from the two FD catalogs.This could be due to the complex link between FD and ADV.

    Acknowledgments

    We feel indebted to the group maintaining the website omniweb.gsfc.nasa.gov/html/owdata.html from where we downloaded the solar-geophysical data.The members of the R-mailing list (R-help@r-project.org) are gratefully acknowledged for assistance in codes for the preliminary data analysis stage of the work.The invaluable contributions of the anonymous referee are hereby appreciated.

    Appendix Abbreviations and Definitions

    We have used many abbreviations in the text.To assist the reader,a list of abbreviations and definitions is provided in Table 9.

    Table 9 Abbreviations and Definitions

    亚洲av一区综合| 日韩欧美精品免费久久 | 亚洲最大成人手机在线| 亚洲一区高清亚洲精品| 欧美日本视频| 成人特级黄色片久久久久久久| 日本黄大片高清| 身体一侧抽搐| avwww免费| 国产欧美日韩精品亚洲av| 一区福利在线观看| а√天堂www在线а√下载| 嫩草影院精品99| 哪里可以看免费的av片| 亚洲七黄色美女视频| 亚洲五月婷婷丁香| 久久99热6这里只有精品| 免费一级毛片在线播放高清视频| 熟女电影av网| 精华霜和精华液先用哪个| 九九热线精品视视频播放| 91在线精品国自产拍蜜月| 禁无遮挡网站| 99热这里只有是精品在线观看 | 99在线视频只有这里精品首页| 99久久精品国产亚洲精品| 51国产日韩欧美| 免费观看精品视频网站| 国内少妇人妻偷人精品xxx网站| 亚洲欧美日韩无卡精品| 又粗又爽又猛毛片免费看| 免费高清视频大片| 午夜福利在线观看吧| 国产真实乱freesex| 久久久久久久亚洲中文字幕 | 久久久久精品国产欧美久久久| 亚洲国产精品合色在线| 婷婷精品国产亚洲av在线| 最新中文字幕久久久久| 成人无遮挡网站| 亚洲欧美激情综合另类| 成人欧美大片| 午夜免费成人在线视频| 免费高清视频大片| x7x7x7水蜜桃| 国产大屁股一区二区在线视频| 日日摸夜夜添夜夜添av毛片 | 国产成人福利小说| 嫩草影院入口| 国产精品久久电影中文字幕| 色综合婷婷激情| 久久久久免费精品人妻一区二区| 自拍偷自拍亚洲精品老妇| 亚洲av.av天堂| a级毛片免费高清观看在线播放| 一区二区三区免费毛片| 亚洲第一欧美日韩一区二区三区| 国产精品国产高清国产av| av天堂在线播放| 免费电影在线观看免费观看| 亚洲性夜色夜夜综合| 精品无人区乱码1区二区| 黄色丝袜av网址大全| 9191精品国产免费久久| 日本与韩国留学比较| 99热只有精品国产| 午夜亚洲福利在线播放| 欧美激情在线99| 最新在线观看一区二区三区| 午夜视频国产福利| 精品人妻1区二区| 在线免费观看的www视频| 观看美女的网站| 一级毛片久久久久久久久女| 久久精品国产99精品国产亚洲性色| 淫妇啪啪啪对白视频| 欧美+日韩+精品| 成人三级黄色视频| 免费看美女性在线毛片视频| 1024手机看黄色片| 亚洲午夜理论影院| 好男人电影高清在线观看| 国产三级在线视频| 亚洲七黄色美女视频| 国产成人av教育| 久久精品国产亚洲av天美| 国产精品98久久久久久宅男小说| 国产av在哪里看| 丰满的人妻完整版| 一个人观看的视频www高清免费观看| bbb黄色大片| 一本精品99久久精品77| 国产高潮美女av| 九九久久精品国产亚洲av麻豆| 乱人视频在线观看| 久久精品国产99精品国产亚洲性色| 精品久久久久久久人妻蜜臀av| 在线天堂最新版资源| 国产蜜桃级精品一区二区三区| 69人妻影院| 国产美女午夜福利| 国产伦一二天堂av在线观看| 久久欧美精品欧美久久欧美| 国产一区二区亚洲精品在线观看| 欧美3d第一页| 成人欧美大片| 在线a可以看的网站| 高清日韩中文字幕在线| 18禁裸乳无遮挡免费网站照片| 亚洲avbb在线观看| 欧美不卡视频在线免费观看| av在线观看视频网站免费| 18禁在线播放成人免费| 色综合欧美亚洲国产小说| 午夜免费男女啪啪视频观看 | 看免费av毛片| 精品一区二区三区视频在线观看免费| 免费在线观看影片大全网站| 我要搜黄色片| 在线免费观看不下载黄p国产 | 国产精品1区2区在线观看.| 欧美又色又爽又黄视频| 亚洲18禁久久av| 能在线免费观看的黄片| 校园春色视频在线观看| 少妇熟女aⅴ在线视频| 精品不卡国产一区二区三区| 男女做爰动态图高潮gif福利片| a级毛片a级免费在线| 久久久国产成人免费| 成人精品一区二区免费| 人人妻,人人澡人人爽秒播| 搡女人真爽免费视频火全软件 | 亚洲av电影不卡..在线观看| 中文亚洲av片在线观看爽| 色噜噜av男人的天堂激情| АⅤ资源中文在线天堂| 久久草成人影院| 日日摸夜夜添夜夜添av毛片 | 免费电影在线观看免费观看| 男女视频在线观看网站免费| 蜜桃亚洲精品一区二区三区| av福利片在线观看| 亚洲,欧美精品.| 女生性感内裤真人,穿戴方法视频| 桃色一区二区三区在线观看| 久久久久免费精品人妻一区二区| 日韩欧美三级三区| 一级作爱视频免费观看| 中文资源天堂在线| 大型黄色视频在线免费观看| 深夜精品福利| 桃色一区二区三区在线观看| 中文资源天堂在线| 日本熟妇午夜| 国产精品一区二区三区四区久久| 精品欧美国产一区二区三| 赤兔流量卡办理| 麻豆久久精品国产亚洲av| 高清日韩中文字幕在线| 三级毛片av免费| 亚洲av中文字字幕乱码综合| 99久久久亚洲精品蜜臀av| 舔av片在线| 欧美xxxx性猛交bbbb| 亚洲天堂国产精品一区在线| 国产乱人视频| 国产精品一区二区三区四区久久| 国产亚洲欧美98| 国产精品不卡视频一区二区 | 精品99又大又爽又粗少妇毛片 | 国产视频一区二区在线看| 91av网一区二区| 国产黄色小视频在线观看| 99久久精品国产亚洲精品| 亚洲av二区三区四区| 少妇丰满av| 偷拍熟女少妇极品色| 亚洲精品乱码久久久v下载方式| 国产成+人综合+亚洲专区| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲精品久久久com| 美女被艹到高潮喷水动态| 亚洲成人中文字幕在线播放| 精品一区二区三区视频在线| 亚洲国产精品合色在线| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美在线二视频| 三级国产精品欧美在线观看| 亚洲七黄色美女视频| 亚洲在线观看片| 精品人妻视频免费看| 国产亚洲av嫩草精品影院| 亚洲天堂国产精品一区在线| 97人妻精品一区二区三区麻豆| 一本久久中文字幕| 看黄色毛片网站| 亚洲成人久久性| 黄色视频,在线免费观看| 少妇人妻精品综合一区二区 | 成人永久免费在线观看视频| 久久精品久久久久久噜噜老黄 | 国产午夜精品久久久久久一区二区三区 | 国产亚洲欧美在线一区二区| 国产欧美日韩一区二区精品| 国产精品98久久久久久宅男小说| 亚洲综合色惰| 午夜福利成人在线免费观看| 欧美精品啪啪一区二区三区| av国产免费在线观看| 久久九九热精品免费| 亚洲欧美日韩高清在线视频| 麻豆久久精品国产亚洲av| 日日干狠狠操夜夜爽| 特大巨黑吊av在线直播| 日韩精品中文字幕看吧| 舔av片在线| 又爽又黄无遮挡网站| av专区在线播放| 日韩欧美国产一区二区入口| 久久久精品欧美日韩精品| 俺也久久电影网| 国产伦一二天堂av在线观看| 国产精品久久久久久精品电影| 亚洲精品久久国产高清桃花| 日韩大尺度精品在线看网址| 婷婷精品国产亚洲av在线| 一级毛片久久久久久久久女| 又黄又爽又刺激的免费视频.| 日本黄大片高清| 国产欧美日韩精品亚洲av| 一卡2卡三卡四卡精品乱码亚洲| 国内精品一区二区在线观看| 国产一区二区在线观看日韩| 99精品久久久久人妻精品| 看片在线看免费视频| 亚洲 国产 在线| 一边摸一边抽搐一进一小说| 国产精品电影一区二区三区| 91字幕亚洲| 亚洲精品影视一区二区三区av| av在线老鸭窝| 又紧又爽又黄一区二区| 两个人视频免费观看高清| 直男gayav资源| 午夜福利在线在线| 性插视频无遮挡在线免费观看| 国产精品久久电影中文字幕| av中文乱码字幕在线| 国产伦人伦偷精品视频| 99久久精品国产亚洲精品| 九九在线视频观看精品| 色综合站精品国产| 国内精品久久久久精免费| 久久精品人妻少妇| 天美传媒精品一区二区| 日日摸夜夜添夜夜添小说| 大型黄色视频在线免费观看| 国产精品三级大全| 久久久久久久亚洲中文字幕 | 亚洲成a人片在线一区二区| 色5月婷婷丁香| 免费在线观看影片大全网站| 超碰av人人做人人爽久久| 日韩欧美在线二视频| 精品人妻1区二区| 免费人成视频x8x8入口观看| 性欧美人与动物交配| 1000部很黄的大片| 性色av乱码一区二区三区2| 免费观看精品视频网站| 婷婷色综合大香蕉| 午夜亚洲福利在线播放| 国产熟女xx| 亚洲片人在线观看| 首页视频小说图片口味搜索| 99视频精品全部免费 在线| 亚洲精品粉嫩美女一区| 老女人水多毛片| 两个人的视频大全免费| 夜夜爽天天搞| 国产 一区 欧美 日韩| 成人三级黄色视频| 精品久久久久久久末码| 亚洲成人久久爱视频| 91在线观看av| 女生性感内裤真人,穿戴方法视频| 国产精品亚洲av一区麻豆| 国产免费一级a男人的天堂| 免费大片18禁| 十八禁国产超污无遮挡网站| 久久国产乱子伦精品免费另类| 欧美激情在线99| 国产欧美日韩精品一区二区| 在线观看一区二区三区| 精品一区二区三区视频在线| 99久久精品国产亚洲精品| 一区二区三区高清视频在线| 超碰av人人做人人爽久久| 国产在线男女| 草草在线视频免费看| 色视频www国产| 人妻夜夜爽99麻豆av| 嫩草影院入口| .国产精品久久| 天美传媒精品一区二区| 搡老熟女国产l中国老女人| 国产精品av视频在线免费观看| 麻豆av噜噜一区二区三区| 在线观看66精品国产| 一夜夜www| 观看免费一级毛片| 在线观看av片永久免费下载| 成人性生交大片免费视频hd| 国产精品国产高清国产av| 观看美女的网站| 久久人妻av系列| 色噜噜av男人的天堂激情| 麻豆国产av国片精品| 午夜视频国产福利| 亚洲熟妇熟女久久| 如何舔出高潮| 亚洲自拍偷在线| 欧美乱妇无乱码| 99久久99久久久精品蜜桃| 国产精品久久久久久精品电影| 99精品久久久久人妻精品| 亚洲中文字幕一区二区三区有码在线看| 亚洲av一区综合| 搡老熟女国产l中国老女人| 午夜福利免费观看在线| 看片在线看免费视频| 变态另类丝袜制服| 又爽又黄a免费视频| 亚洲国产欧洲综合997久久,| 1024手机看黄色片| 精品福利观看| 天堂动漫精品| 夜夜躁狠狠躁天天躁| 村上凉子中文字幕在线| 欧美丝袜亚洲另类 | 日本熟妇午夜| 日本与韩国留学比较| 18禁黄网站禁片午夜丰满| 亚洲最大成人中文| 69人妻影院| 脱女人内裤的视频| 久久人人爽人人爽人人片va | 欧美色视频一区免费| 女同久久另类99精品国产91| 国产一区二区三区在线臀色熟女| 国产激情偷乱视频一区二区| 免费电影在线观看免费观看| 十八禁国产超污无遮挡网站| 国产高清激情床上av| 欧美xxxx性猛交bbbb| 国产精品亚洲一级av第二区| 丰满人妻一区二区三区视频av| 高清在线国产一区| 自拍偷自拍亚洲精品老妇| 久久99热6这里只有精品| 亚洲国产高清在线一区二区三| 俺也久久电影网| 搡老熟女国产l中国老女人| 国产高清视频在线观看网站| 丰满人妻熟妇乱又伦精品不卡| 亚洲美女视频黄频| 久久久国产成人精品二区| 自拍偷自拍亚洲精品老妇| 给我免费播放毛片高清在线观看| 亚洲电影在线观看av| 嫩草影院新地址| 极品教师在线视频| 婷婷六月久久综合丁香| 麻豆国产av国片精品| 最近最新中文字幕大全电影3| 亚洲av五月六月丁香网| 国产欧美日韩精品亚洲av| 夜夜躁狠狠躁天天躁| 久久这里只有精品中国| 午夜福利在线观看吧| 国产老妇女一区| 日本免费a在线| 日本熟妇午夜| 淫秽高清视频在线观看| 熟妇人妻久久中文字幕3abv| 欧美一区二区国产精品久久精品| 人妻久久中文字幕网| 亚洲美女黄片视频| 色综合欧美亚洲国产小说| 久久热精品热| 免费在线观看成人毛片| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品色激情综合| 亚洲最大成人手机在线| 激情在线观看视频在线高清| 免费搜索国产男女视频| 欧美激情国产日韩精品一区| 亚洲七黄色美女视频| 少妇的逼水好多| 国产精品爽爽va在线观看网站| 国产aⅴ精品一区二区三区波| 国产精品av视频在线免费观看| 久久久久性生活片| 亚洲av中文字字幕乱码综合| 亚洲av.av天堂| 两人在一起打扑克的视频| 搞女人的毛片| 免费高清视频大片| 人妻丰满熟妇av一区二区三区| 日本与韩国留学比较| 国产精品嫩草影院av在线观看 | 免费搜索国产男女视频| 午夜视频国产福利| 成年女人看的毛片在线观看| 毛片一级片免费看久久久久 | 琪琪午夜伦伦电影理论片6080| 国产69精品久久久久777片| 亚洲欧美日韩无卡精品| 国产中年淑女户外野战色| 欧美又色又爽又黄视频| 狂野欧美白嫩少妇大欣赏| 男人舔奶头视频| 欧美乱妇无乱码| 久久热精品热| 好男人在线观看高清免费视频| 91字幕亚洲| 性插视频无遮挡在线免费观看| 久久久久久久久中文| 99热只有精品国产| 久久人妻av系列| 亚洲精品亚洲一区二区| 国模一区二区三区四区视频| 国产高潮美女av| 国模一区二区三区四区视频| 成人av一区二区三区在线看| 欧美成狂野欧美在线观看| 一进一出抽搐gif免费好疼| 亚洲欧美清纯卡通| 国产精品一区二区性色av| 久久久久国内视频| 午夜免费男女啪啪视频观看 | 99国产极品粉嫩在线观看| 国产精品嫩草影院av在线观看 | 国产在线精品亚洲第一网站| 国产欧美日韩精品亚洲av| 中文在线观看免费www的网站| 哪里可以看免费的av片| 高潮久久久久久久久久久不卡| 久久久久久久午夜电影| 丁香六月欧美| 国产精品精品国产色婷婷| 97热精品久久久久久| 国产老妇女一区| 亚洲欧美日韩高清专用| 老女人水多毛片| 一进一出好大好爽视频| 亚洲欧美激情综合另类| 99国产极品粉嫩在线观看| 男女之事视频高清在线观看| 内射极品少妇av片p| 丰满乱子伦码专区| 国产毛片a区久久久久| 成年女人永久免费观看视频| 国产精品亚洲美女久久久| 中文字幕熟女人妻在线| 国产精品一区二区三区四区免费观看 | 久久伊人香网站| 国产成年人精品一区二区| 日本一本二区三区精品| 最近视频中文字幕2019在线8| 国产精品99久久久久久久久| 精品久久久久久久末码| 十八禁网站免费在线| 亚洲av电影不卡..在线观看| 国产成年人精品一区二区| 国产综合懂色| 露出奶头的视频| a级一级毛片免费在线观看| 免费看美女性在线毛片视频| 亚洲一区二区三区不卡视频| 亚洲18禁久久av| 国产成人a区在线观看| 少妇被粗大猛烈的视频| 欧美一级a爱片免费观看看| 亚州av有码| 赤兔流量卡办理| 久久久久久国产a免费观看| 天天一区二区日本电影三级| а√天堂www在线а√下载| 亚洲国产高清在线一区二区三| 成人无遮挡网站| 日韩人妻高清精品专区| 一进一出抽搐动态| 丁香欧美五月| 色综合欧美亚洲国产小说| 亚洲精品色激情综合| 十八禁国产超污无遮挡网站| 深爱激情五月婷婷| 国产熟女xx| 一边摸一边抽搐一进一小说| 在线观看免费视频日本深夜| 免费在线观看成人毛片| 免费看a级黄色片| 99久久成人亚洲精品观看| 日韩欧美一区二区三区在线观看| 国产探花在线观看一区二区| 国产精品三级大全| 国产毛片a区久久久久| 欧美zozozo另类| 精品一区二区三区视频在线观看免费| 欧美乱妇无乱码| 男人舔奶头视频| 俺也久久电影网| 欧美+日韩+精品| 日本a在线网址| 国产综合懂色| 2021天堂中文幕一二区在线观| 中国美女看黄片| 日日夜夜操网爽| 男人舔女人下体高潮全视频| 国产成人av教育| 伦理电影大哥的女人| 亚洲18禁久久av| 美女 人体艺术 gogo| 国内精品美女久久久久久| 国产高清有码在线观看视频| 色综合欧美亚洲国产小说| 国产一区二区三区视频了| 天天躁日日操中文字幕| 99热精品在线国产| 国产不卡一卡二| 嫩草影院精品99| 国产av麻豆久久久久久久| 中文字幕人成人乱码亚洲影| 日本一二三区视频观看| 欧美日韩综合久久久久久 | 欧美丝袜亚洲另类 | 首页视频小说图片口味搜索| 日本与韩国留学比较| 亚洲人成伊人成综合网2020| 欧美午夜高清在线| 中文字幕高清在线视频| 少妇裸体淫交视频免费看高清| av福利片在线观看| 免费观看的影片在线观看| 悠悠久久av| 欧美成狂野欧美在线观看| 久久国产乱子免费精品| 久久草成人影院| 国产av不卡久久| 亚洲av成人精品一区久久| 69人妻影院| 国产午夜精品论理片| a在线观看视频网站| 亚洲中文字幕一区二区三区有码在线看| 男人狂女人下面高潮的视频| 色噜噜av男人的天堂激情| a级一级毛片免费在线观看| 国产一区二区三区在线臀色熟女| 在线天堂最新版资源| 亚洲欧美日韩高清专用| 最新中文字幕久久久久| 久久久久精品国产欧美久久久| 综合色av麻豆| 在线播放无遮挡| 禁无遮挡网站| 久久久久久九九精品二区国产| 亚洲av电影不卡..在线观看| 精品一区二区免费观看| 国产伦在线观看视频一区| 免费看美女性在线毛片视频| 1000部很黄的大片| 少妇人妻精品综合一区二区 | 亚洲专区中文字幕在线| 久久伊人香网站| 欧美性猛交╳xxx乱大交人| 午夜福利在线观看免费完整高清在 | 悠悠久久av| 美女 人体艺术 gogo| 国产精品,欧美在线| 欧美乱色亚洲激情| 色播亚洲综合网| 欧美+亚洲+日韩+国产| 国产精品伦人一区二区| 色哟哟·www| 亚洲精品一卡2卡三卡4卡5卡| 两人在一起打扑克的视频| 欧美精品国产亚洲| 一个人看的www免费观看视频| 国产视频内射| 长腿黑丝高跟| 国产白丝娇喘喷水9色精品| 三级毛片av免费| 丰满人妻一区二区三区视频av| 亚洲va日本ⅴa欧美va伊人久久| 日韩 亚洲 欧美在线| 亚洲av.av天堂| 亚洲最大成人中文| 午夜激情福利司机影院| 亚洲av免费在线观看| 人妻制服诱惑在线中文字幕| 熟女人妻精品中文字幕| 国产免费av片在线观看野外av| 国产精品99久久久久久久久| 日韩有码中文字幕| 国产精品久久久久久精品电影| 久久精品国产亚洲av涩爱 | 91字幕亚洲| 中文在线观看免费www的网站| 丰满的人妻完整版| 免费看光身美女| 色精品久久人妻99蜜桃| 亚洲国产精品999在线| 老司机午夜福利在线观看视频|